
The Type 42 Font
Format Specification

Technical Note # 5012

1 March 1993

Adobe Developer Support
postc

PN LPS5012

Adobe Systems Incorporated

Corporate Headquarters

1585 Charleston Road PO Box 7900

Mountain View, CA 94039-7900

(415) 961-4400 Main Number

(415) 961-4111 Developer Support

Fax: (415) 961-3769

Adobe Systems Europe B.V.

Europlaza

Hoogoorddreef 54a

1101 BE Amsterdam Z-O, Netherlands

+31-20-6511 200

Fax: +31-20-6511 300

Adobe Systems Eastern Region

24 New England

Executive Park

Burlington, MA 01803

(617) 273-2120

Fax: (617) 273-2336

Adobe Systems Japan

Swiss Bank House 7F

4-1-8 Toranomon, Minato-ku

Tokyo 105, Japan

+81-3-3437-8950

Fax: +81-3-3437-8968

Copyright 1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems Incorpo-
rated unless otherwise stated. The name PostScript also is used as a product trademark for Adobe Sys-
tems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

Adobe, PostScript and the PostScript logo are trademarks of Adobe Systems Incorporated which may
be registered in certain jurisdictions. TrueType is a trademark and Apple, Macintosh, and LaserWriter
are registered trademarks of Apple Computer, Incorporated. Windows is a trademark and Microsoft is
a registered trademark of Microsoft Corporation. Other brand or product names are the trademarks or
registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

List of Tables v

The Type 42 Font
Format Specification 1

1 Introduction 1

2 The Type 42 Font Format 1
Type 42 Font Comment Lines 2
The Type 42 Font Dictionary 3
Implications of The Glyph Coordinate System 5

3 Identifying PostScript Language Interpreters with TrueType Rasterizers 5

4 Conversion Issues 6
The FontInfo Dictionary 6
The sfnts Array 6
Generating The CharStrings Dictionary 8
Generating the Encoding Vector 8
Generating Unique Identifiers 9
Required TrueType Tables 10
Known Bugs 10
Example Type 42 font program 10

Index 13

iv Contents (1 Mar 93)

v

List of Tables

Table 1 Entries in all types of font dictionaries 3
Table 2 Additional entries in all base fonts (FontType not 0) 4
Table 3 Additional entries in Type 42 fonts 4

vi List of Tables (1 Mar 93)

1

The Type 42 Font
Format Specification

1 Introduction

This document describes a PostScript™ font format which can be used to
download TrueType™ fonts to PostScript language interpreters which con-
tain a TrueType rasterizer.

A Type 42 font dictionary contains thesfnts keyword, whose value is a
PostScript language representation of the data in a TrueType font. Other
entries in the Type 42 font dictionary permit the PostScript language inter-
preter to handle the font in a manner similar to a Type 1 font, and to make the
TrueType font data in thesfnts entry available to the TrueType rasterizer.

This method yields better performance and quality of output than can be
achieved by converting a TrueType font to a Type 1 or 3 font program, since
the translation cannot be exact.

This document describes only the format of a Type 42 font program and how
it may be created from a TrueType font. The TrueType specification is avail-
able in the document:The TrueType Font Format Specification 1.0;
#M0825LL/A, available from the Apple® Programmers and Developers
Association (APDA). Microsoft’s TrueType specification is available elec-
tronically in two locations (as of February 1993): via anonymous FTP on the
Internet on the ftp.uu.net host, in the /vendor/Microsoft®/TrueType-Info
directory; and on Compuserve in the Microsoft Developer’s Support forum.
The documents are in two formats: a Windows™ 3.1 winhelp version and in
a Word for Windows 2.0 version.

2 The Type 42 Font Format

The TrueType font format was originally developed by Apple Computer, and
is currently supported by the Macintosh® and Windows 3.1 operating envi-
ronments. Until recently, documents containing TrueType fonts could be sent
to PostScript language interpreters by downloading the TrueType rasterizer to
interpreters with 680X0-class controllers, or by converting the font into a

2 The Type 42 Font Format Specification (1 Mar 93)

PostScript Type 1 or 3 font program. Both of these methods have disadvan-
tages: the TrueType rasterizer is large, and conversion to Type 1 or Type 3 is
not exact.

Some PostScript language interpreters now include a TrueType rasterizer;
they can be identified from the PostScript Printer Description (PPD) file (see
section 3). For a TrueType font to be recognized by a PostScript interpreter, it
must be enclosed in a PostScript font dictionary, with the binary TrueType
font expressed as an array of strings as the value for ansfnts keyword.

Note Although the keyword namesfnts is derived from the Macintosh resource
type used for TrueType fonts, TrueType fonts from the Windows environment
can be converted in an identical manner.

A Type 42 font is a base font and shares all the properties of base fonts as
documented in thePostScript Language Reference Manual, second edition.
In particular, presence of an unique identifier such as anXUID facilitates
bitmap caching for a Type 42 font just as it does for any other type of base
font. When Type 42 fonts are permanently downloaded to a hard disk con-
nected to a PostScript language interpreter, only thecharstrings actually ref-
erenced in the print job will be read into VM, thus saving memory (see
section 4.2). Also, glyphs can be modified or added to the Type 42 font by
using user-defined PostScript language procedures (See section 5.6.3 inThe
PostScript Language Reference Manual, second edition.).

2.1 Type 42 Font Comment Lines

The first line of a Type 42 font program shall be:

%!PS-TrueTypeFont-TTVersion-MfrRevision

whereTTVersion is the TrueType version number of the font (specified in the
header); MfrRevision is the font manufacturer’s revision number of the font.
This line helps downloaders to easily identify TrueType/Type42 fonts on the
printer’s hard disk.

The first portion of the comment line:%!PS-TrueTypeFont, is required for
compatibility with the Apple LaserWriter® IIf and IIg, and NTR printers’
requirements for disk-based Type 42 fonts. If the font has the required por-
tion of the comment line and it conforms to the requirements listed in section
4.2, the embedded TrueType glyph data will be accessed from disk on
demand rather than reading the entire font into VM.

Another useful and recommended comment line specifies the VM usage:

%%VMusage:MinMemory MaxMemory

2 The Type 42 Font Format 3

whereMinMemory andMaxMemory specify the minimum memory needed
for the font and how much is needed if the font is downloaded first (these
numbers are not necessarily the same; seeThe Adobe™ Type 1 Format, ver-
sion 1.1, Addison Wesley, 1990). This comment is not used by the PostScript
interpreter, but is useful for application programs. The PostScript language
operatorresourcestatus can be used to obtain the VM requirements for a
font resource.

The values for theVMusage comment can be derived from a TrueType font
which contains apost table (which contains information useful for PostScript
language printing). For downloading purposes, the size of the font can be
used as an estimate for the values forVMusage . However, a properly con-
structed Type 42 font on a printer’s hard disk will generally require only a
percentage of the VM required for the downloadable version of the font.

2.2 The Type 42 Font Dictionary

Table 1 lists entries common to all types of font dictionaries. Table 2 lists
additional key-value pairs that are meaningful in allbase fonts. Table 3 lists
additional key-value pairs that are meaningful in Type 42 fonts. See the cor-
responding tables 5.1 through 5.3 inThe PostScript Language Reference
Manual, second edition.

Table 1 Entries in all types of font dictionaries

Key Type Description

FontType integer (Required) Value must be42.

FontMatrix array[6] (Required) Transforms the glyph coordinate system into the user coor-
dinate system. Type 42 fonts, unlike Type 1 fonts, are usually defined in
terms of an identity transform, so the value ofFontMatrix should be
[1 0 0 1 00]. See section 2.3 for a discussion of the implications of this
choice of coordinate system.FontMatrix must be a literal array.

FontName name (Optional) The font program’s name, derived from the TrueTypename
table.

FontInfo dictionary (Optional) SeeThe PostScript Language Reference Manual, second
edition, Table 5.4, page 268.

4 The Type 42 Font Format Specification (1 Mar 93)

Table 2 Additional entries in all base fonts (FontType not 0)

Key Type Description

Encoding array[256] (Required) An array of 256 glyph names ordered by glyph code value.
The encoding is most likely to be either the Apple standard encoding or
the Windows ANSI encoding, but other encodings will occur. See sec-
tion 4.4. Encoding must be a literal array.

FontBBox array[4] (Required) See description inThe PostScript Language Reference
Manual, second edition, Table 5.2. Derived from the TrueTypehead
table.

UniqueID integer (Optional) See section 4.5.

XUID array (Optional) Array of integers that uniquely identifies this font or any
variant of it. See section 5.8 ofThe PostScript Language Reference
Manual, second edition. XUID must be a literal array.

Table 3 Additional entries in Type 42 fonts

Key Type Description

PaintType integer (Required) 0 for filled glyphs; 2 for stroked glyphs.

StrokeWidth number (Optional) The width of the line used to stroke outline fonts (PaintType
= 2) in glyph coordinates. This is interpreted in glyph space; see section
2.3.

Metrics dictionary (Optional) Width and sidebearing information for writing mode 0. Not
normally present in the original definition of a font; adding this dictio-
nary to a font overrides the widths and sidebearings encoded in the
glyph definitions in the TrueType font. This dictionary will only affect
Type 42 fonts in version number 2013 and greater of the PostScript
interpreter. The values in this dictionary are interpreted in glyph space;
see section 2.3.

Metrics2 dictionary (Optional) Width and sidebearing information for writing mode 1. In
general this dictionary is only interpreted by Level 1 devices with com-
posite font extensions and all Level 2 devices; for Type 42 fonts it is
only recognized by PostScript interpreter version 2013 and greater. The
values in this dictionary are interpreted in glyph space; see section 2.3.

CDevProc procedure Algorithmically derives global changes to a font’s metrics. SeeThe
PostScript Language Reference Manual, second edition, p. 277.
CDevProc works the same in a Type 42 font as in a Type 1 font, aside
from the different glyph coordinate system; see section 2.3.

3 Identifying PostScript Language Interpreters with TrueType Rasterizers 5

CharStrings dictionary (Required) Associates glyph names with glyph descriptions. If an
entry’s value is an integer, it is used as an index into the TrueTypeloca
table, which contains the byte offsets of glyph definitions in the True-
Typeglyf table. If the value is a procedure (executable array or packed
array), it is interpreted as described in section 5.6.3 ofThe PostScript
Language Reference Manual, second edition. This dictionary must have
an entry whose key is/.notdef .

sfnts array (Required) An array of one or more PostScript language string objects
containing the binary TrueType font. (see section 4.2 for information on
the constraints and format).

2.3 Implications of The Glyph Coordinate System

As indicated in Table 1, a Type 42 font’s glyph coordinate system is typically
defined as an identity transform. This is in contrast to a Type 1 font, whose
glyph coordinate system is typically defined at a 1000 unit scale relative to
user space.

This difference has implications regarding the interpretation of font dictio-
nary entries whose values are defined in glyph space. If a PostScript language
program adds or changes such entries in a font dictionary, it must choose
values that are appropriate to the font’s glyph coordinate system. In particu-
lar, values that would be appropriate for a Type 1 font will be 1000 times too
large for a Type 42 font.

The font dictionary entries for which this issue arises include:

• The value ofStrokeWidth (whenPaintType has been set to 2);

• The contents of theMetrics andMetrics2 dictionaries;

• The operands and results of theCDevProc procedure;

• The values ofUnderlinePosition andUnderlineThickness in theFon-
tInfo dictionary.

3 Identifying PostScript Language Interpreters with True-
Type Rasterizers

PostScript language interpreters with TrueType rasterizers can be identified
from the following entry in the device’s PPD file (version 4.1 of the specifica-
tion):

*TTRasterizer:RasterizerOption

6 The Type 42 Font Format Specification (1 Mar 93)

whereRasterizerOption can be any of the following:

A PostScript language program can determine whether a Level 2 device sup-
ports Type 42 fonts (no Level 1 devices support Type 42) by executing:

42 /FontType resourcestatus {pop pop true} {false} ifelse

which pushestrue or false on the stack depending on whether Type 42 font
support is present.

4 Conversion Issues

The following sections discuss issues related to converting a TrueType font
into a Type 42 font.

4.1 The FontInfo Dictionary

The optionalFontInfo dictionary may be constructed from entries in the
name andpost tables in the TrueType font. It is not used by the PostScript
interpreter, but some PostScript language programs may utilize entries such
asUnderlinePosition andUnderlineThickness .

4.2 The sfnts Array

In VM, a TrueType font is represented as an array namedsfnts which is com-
posed of PostScript language string objects which, when concatenated, com-
prise the entire TrueType font. Multiple strings may be required due to the
PostScript language implementation limit of 65535 bytes in a string.

When a TrueType font is divided into multiple strings, the strings must begin
at TrueType table boundaries, or at individual glyph boundaries within the
glyf table. The TrueType file format requires that tables begin at 4-byte

None No TrueType rasterizer is present, and the device is not
capable of receiving a downloadable rasterizer. To use
a TrueType font on this interpreter, it must be con-
verted to a Type 1 or Type 3 font.

Accept68K No TrueType rasterizer is built-in, but the device has a
680X0-based controller and enough memory to accept
a downloadable TrueType rasterizer. (The code to
accomplish this is proprietary to Apple Computer, and
is not generally available).

Type42 The device has a Type 42 TrueType rasterizer in ROM.

4 Conversion Issues 7

boundaries and that individual glyph descriptions begin at 2-byte boundaries.
Therefore, each string will contain an even number of bytes of TrueType
data.

For compatibility with Type 42 implementations in PostScript interpreter ver-
sions prior to 2013, each string must have one additional padding byte
appended by adding “00” to the hex data in the file. That is, the length of each
string must be odd. The last byte is not logically part of the TrueType font
data and is ignored by the interpreter.

Thesfnts array is expressed as a series of strings:

/sfnts [<string1> <string2> … <stringN>] def

In the font file, the strings are made up of lines of hexadecimal characters.
The characters in each line may be preceded, followed, and divided by an
arbitrary (but consistent) number of white space or control characters (see the
additional compatibility constraint in the bullet list below for fonts down-
loaded to a hard disk).

For Type 42 fonts to be downloaded to a printer’s disk (or other filesystem
hardware), there are specific additional constraints on the text representation
of that array in the file. Observing these constraints and beginning the file
with the correct comment line (see section 2.1) enables the PostScript inter-
preter to have dynamic access to the font file on an as-needed basis, which
has significant implications for saving VM. If a Type 42 font has the correct
initial comment line but does not conform to the constraints listed below, the
result will be aninvalidfont error on some interpreters.

Although newer versions of the PostScript interpreter are likely to have fewer
restrictions on the format of thesfnts array, the following constraints should
be used, for backward compatibility purposes, to enable dynamic access to a
disk-based font file:

• There may be whitespace and/or control-characters between the/sfnts , the
“[“, and the “<“, and between any string’s “>” and the next string’s “<”.

• The string should be sub-divided into lines of a constantn characters in
length and which may be divided bym characters of white space and/or
control characters. The numbersn andm must be constant for the entire
sfnts array, although it may vary from font to font. Line lengths should
also satisfy the Document Structuring Convention constraint: 0 <n <= 255
(see Appendix G ofThe PostScript Language Reference Manual, second
edition

• The data encoding technique used in thesfnts array, for example, either
ASCII-Hex or binary (see below) must be the same for all strings in a par-
ticular font, but may vary among fonts.

8 The Type 42 Font Format Specification (1 Mar 93)

The strings in thesfnts array may be represented in binary in the same way
as may be used for Type 1 charstrings (see section 2.4 in theAdobe Type 1
Font Format book). However, fonts using this representation cannot be
installed on disk in PostScript interpreter versions prior to 2013. Also, they
cannot be safely transmitted across non-binary channels, so fonts in this
format should not be embedded in documents. Use of this format should be
limited to disk font installer utilities that know something about the capabili-
ties of the PostScript interpreter being accessed.

To represent a string in a binary representation, a PostScript language proce-
dure must be defined with the following code:

/RD {string currentfile exch readstring pop} executeonly def

Each use ofRD is followed by exactly one blank character followed by a
sequence of binary bytes that are the string contents:

n RD ~binary~bytes~ {noaccess def} executeonly def

RD itself is preceded by an integern which is the number of binary bytes fol-
lowing theRD (not including the single blank that follows theRD).

The following is an example of a two-elementsfnts array encoded in this
way:

/sfnts [
62135 RD ~62135~binary~bytes~
12093 RD ~12093~binary~bytes~

] def

Each string contains an even number of bytes of TrueType data, followed by
one byte of padding which the PostScript interpreter ignores.

4.3 Generating The CharStrings Dictionary

The CharStrings dictionary for a Type 42 font is a standard dictionary of
key/value pairs, where thekey is the glyph’s name (derived from the True-
Type font’scmap table), and thevalue is an index number into the TrueType
font’s loca (glyph offsets) table. The value in the key/value pair may also be a
PostScript language procedure (executable array or packed array); see section
5.6.3 of theThe PostScript Language Reference Manual, second edition.

4.4 Generating the Encoding Vector

TrueType fonts used in the Windows or Macintosh environments will gener-
ally use the encoding specific to that system, such as ANSI for Windows and
the Apple encoding for the Macintosh. The platform-specific encoding can be
determined by the platform ID number in a subtable of thecmap table. The

4 Conversion Issues 9

post table lists glyph names that differ from the platform’s standard encoding.
If there is nopost table in a TrueType font in the Windows environment, the
Windows ANSI encoding can be assumed.

To generate an encoding vector, the ith name in the Type 42 font’sEncoding
array must be associated with the ith entry in theTrueType cmap table. If a
glyph is not in thecmap table, it should be given a glyph index of zero (0),
which indicates a non-printing glyph.

4.5 Generating Unique Identifiers

The Type 42 font may contain an unique identifier which allows the glyph
bitmaps to be cached across print jobs (see also section 5.8 ofThePostScript
Language Reference Manual, second edition). This entry is optional but
highly desirable since many users may use the same fonts in every print job.

Bitmaps generated from TrueType fonts in Type 42 format use the same
caching system as is used for Type 1 fonts. When a glyph bitmap is needed
from a Type 42 font, the glyph cache is checked first. If the bitmap has not
been cached, the bitmap is produced from the outline font program.

TrueType fonts do not contain any type of unique number which either corre-
sponds to the PostScript languageUniqueID entry or could be used for such.
Using something like a checksum number as aUniqueID value devices
would not be advisable since it does not assure uniqueness. Although this
approach would work in many situations, there is an increased and unaccept-
able risk when, as at a service bureau, bitmaps are cached on a hard disk for a
potentially long period of time. Hence, the performance gain resulting from
caching does not offset the danger of a user getting incorrect bitmaps from
the cache.

Since TrueType rasterizers only exist in Level 2 interpreters, theXUID opera-
tor offers a safer opportunity to cache bitmaps. TheXUID (extended unique
ID) is an array of integers which provides for distributed, hierarchical man-
agement ofUniqueID numbers. The goal is to have a mechanism for generat-
ing anXUID array of values, on-the-fly, which are unique for every font, yet
exactly repeatable since a TrueType font in a user’s system may be converted
multiple times to a Type 42 for printing.

A recommended method for generating a number for a given font which is
both more likely to be unique than a simple checksum and exactly repeatable,
is to use the MD5 algorithm from RSA Data Security, Incorporated. Their
software can be copied and freely distributed if it is properly identified. The
code for this algorithm is readily available from:

10 The Type 42 Font Format Specification (1 Mar 93)

RSA Data Security, Inc.
100 Marine Parkway
Redwood City, CA 94065

The goal is to generate anXUID array of 5 elements, with the first having the
value of 42 (decimal). This value has been registered in the AdobeXUID reg-
istry for use by software in creating Type 42 fonts. The MD5 algorithm can
then be used to generate a 128-bit number, using the font file as input. This
number can then be divided into four 32-bit integers to make the other four
elements of the array. Some optimization of the algorithm code may be nec-
essary to enhance performance.

4.6 Required TrueType Tables

In creating a Type 42 font from a TrueType font, only a limited subset of all
potential tables in the original font are actually used by the rasterizer in the
PostScript language device. Following is a list of the names of tables which
are actually referenced by the TrueType rasterizer (see the TrueType specifi-
cation for details):

Since a significant number of tables may be included in a TrueType font
(including potentially large kerning tables), performance may be improved
only by including the tables actually used by the TrueType rasterizer — in the
downloadable Type 42 font.

4.7 Known Bugs

There is a known bug in the TrueType rasterizer included in versions of the
PostScript interpreter previous to version 2013. The problem is that the trans-
lation components of theFontMatrix , as used as an argument to thedefine-
font or makefont operators, are ignored. Translation of user space is not
affected by this bug.

4.8 Example Type 42 font program

%!PS-TrueTypeFont-65536-65536-1

11 dict begin

/FontName /Chicago def

/Encoding 256 array

0 1 255{1 index exch/.notdef put}for

dup 0 /.null put

head prep

hhea glyf

loca hmtx

maxp fpgm

cvt_

4 Conversion Issues 11

dup 1 /option put

dup 2 /control put

%

%... many Encoding array entries omitted...

%

dup 253 /hungarumlaut put

dup 254 /ogonek put

dup 255 /caron put

readonly def

/PaintType 0 def

/FontMatrix [1 0 0 1 0 0] def

/FontBBox[-190 -283 1164 1090] def

/FontType 42 def

/XUID [42 16#7880BE99 16#AC616C9D 16#D021DE98 16#1F9CD56E] def

%

% Optional FontInfo dictionary may be inserted here

%

/sfnts[<

000100000009000900090009

637674202B194DE00000009C00000290

6670676D31773E000000032C000003B6

%

%...many sfnts lines omitted...

%

58B0FF1D5945695342737373737373737374737345684400

00>]def

/CharStrings 279 dict dup begin

/.notdef 0 def/.null 1 def/nonmarkingreturn 2 def

/space 3 def/exclam 4 def /quotedbl 5 def/numbersign 6 def

/dollar 7 def/percent 8 def/ampersand 9 def

%

%...many CharStrings entries omitted...

%

/checkmark 273 def/linebreakltor 274 def

/linebreakrtol 275 def /markingnobreakspace 276 def

/diamond 277 def/appleoutline 278 def end readonly def

FontName currentdict end definefont pop

12 The Type 42 Font Format Specification (1 Mar 93)

13

Index

Symbols

.notdef 5

B

bitmap cache 9
bugs 10

C

CDevProc 4
character coordinate system 5
comment lines 2
conversion issues 6

F

FontInfo dictionary 3, 5
FontMatrix 10
FontType 3, 6

G

glyph coordinate system 3, 5

H

hard disk 2, 3

I

invalidfont error message 7

M

makefont 10
MD5 algorithm 9
Metrics 4
Metrics2 5

P

PaintType 4
PPD file 2, 5

R

resourcestatus 3

S

sfnts 2, 7
string

binary representation 8
StrokeWidth 5

T

TrueType rasterizer 2, 5, 6, 10
TrueType specification 1
TrueType table

cmap 8
cvt_ 10
fpgm 10
glyf 5, 10
head 10
hhea 10
hmtx 10
loca 5, 8, 10
maxp 10
name 3, 6
post 3, 6, 9
prep 10

Type 42 Font Dictionary 3

U

UnderlinePosition 6
UnderlineThickness 5, 6

14 Index (1 Mar 93)

V

VM 2
VMusage comment 2

	Contents
	List of Tables Entries in all types of
	Additional entries in all base fonts (FontType not

