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1 Introduction

Including systematic uncertainties in calculating limits is a very common
need in HEP, and there are various ways to do it on the market, each with
its own features; it is important for the user to understand the differences
between them and their relative merits. For the sake of definiteness, it is
important to adopt an unambiguous definition of systematics, as explained
in [1]: the systematic uncertainty on g is the uncertainty coming by an
incomplete knowledge of the pdf p(z; p) of obtaining the observation z, given
the parameter p. One can always represent this uncertainty on the pdf by
adding an additional set of parameters v (“systematic parameters”) to the
pdf, such that the uncertain p(z;p) turns into a “perfectly known” function
p(x; p,v), where the values of the v are unknown.

Usually the systematic parameters will not be completely free, but they
will be known “within some uncertainty”. In practice this can happen in two
ways: the range of values allowed for v may be limited by intrinsic physi-
cal constraints, theoretical predictions, or assumptions; or a measurement of
some other observable(s) y might be available, whose pdf depends on the sys-
tematic parameters, thereby providing some information on v. This is easily
incorporated in the problem by considering the pdf for the joint observation
of z and y: p((z,y); p,v).



2 A toy problem

We will use repeatedly in this note a simple example to help illustrating the
various issues. Let’s consider a trivial problem, where a normally distributed
variable x is measured, in the presence of an unknown offset of the overall
scale. Let this offset () be constrained by a separate measurement y, which
is also normally distributed. All parameters and observables are assumed to
be unbounded.

As discussed above, we can construct an overall pdf, describing the dis-
tribution of both x and y observables, parametrized by the unknown g and
v, as follows:

p(z,y;p,v) = Glz — (p+v),1)G(y — v, s)

where G(z, ) is a normal distribution for the variable z with mean zero and
variance o2,
The two observables are independent random variables; note that the

likelihood function is nevertheless non-factorizable in (u,v) (Fig. 1).

y pdf v Likelihood
7 7
6 6
5 5
4 4
3 X 3
6 8 10 12 14 2 4 6 8

Figure 1: Contour plot of the pdf (u = 5, v = 5), and Likelihood function
(x =10, y = 5), for toy example.

Note explicitly that the probability distribution of = (obtained by inte-
grating the above pdf over y) depends on both p and v.

This particular problem admits a trivial solution by an appropriate change
of variable, that achieves a complete separation of physics from systematics
(readers uninterested in the details of the derivation can skip to the solution,



eq. (2) and proceed from there). By replacing the observable x with a new
observable t = x — y, and replacing the systematic parameter v with a new

parameter v/ = v + l‘f; , the pdf becomes:
tysp, V) =Gt ! a G S
p(,y,,u,y)— ( _(V—I_l_l_sg_y)v ) (y_(y_1—|—32)73>

The expression does not appear to be particularly illuminating, but it is
easy to prove that now the observable ¢ is a sufficient statistic for u'; this
means that we can safely ignore the value of y and set limits based just on
the value of ¢ and its distribution, which is readily obtained by integrating
over the y variable?:

p(tps ') = Gt — p, V1 + 5%) (1)

If one now rewrites the pdf as p(t; p, ") p(y|t; p, ')

Pty ) = Gt — p, VI + )Gy — v/ + 157/ (1 + 87),/V1 + )

one can see clearly that the new Likelihood function is factorizable in g and
V' (see Fig. 2).

It is important to note that while ¢/ formally depends on g, any knowledge
of the value of v/ gives no clue at the value of y, because of the simultaneous
dependence on the value of v, which is completely unknown; for this reason,
V' is effectively a pure nuisance parameter just as v is, with no information
content on the physics parameter p.

Since the distribution (1) of ¢ is a simple Gaussian depending only on
the value of p, systematics has disappeared and one-sigma central limits are
obvious:

t—VIi+s2<pu<t+v1+s? (2)

This result should be considered the “right answer” to compare to, when
evaluating results produced by applying a specific technique to the original
pdf of this problem.

1To prove this, it is necessary to prove that p(y|t; u,v') = p(t,y; p,v’)/p(t; p, v') does
not depend on p. As it turns out, p(y|t; p,v') = G(y — v’ + 52 /(1 + %), s/V1 + s?)

Incidentally, y and ¢ are NOT independent variables, but this is irrelevant for our
purpose
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Figure 2: Contour plot of pdf and Likelihood function for toy example after
a change of variable. Numerical values were chosen to match the previous
figure.

3 Systematics on Bayesian limits

The Bayesian treatment of systematics is conceptually trivial, however com-
plicated the procedure might be in practice: by being able to assume an
a-priori distribution for v, say 7(v), it is always straightforward to transform
the problem into one without systematics®:

p(z|p) = /p($|y,u,u)ﬂ'(u)d1/

In our toy problem, by assuming a uniform (improper) prior 7(r) one gets:

P elisgo) = [ Gla— (n+2),1)Glgo — v, 5)dv = Gl — (1 + o), VT T 57)

The resulting probability distribution is free from systematic parameters,
and can then be used to obtain Bayesian limits using standard Bayesian tech-
niques. In our example, the distribution is a simple Gaussian; by assuming a
uniform prior in g one gets a Gaussian posterior, and one would presumably
want to set limits by simply choosing a symmetric interval around the mode

3The vertical bar (|) is used here to separate observables from parameters in place of
the semicolon (;), to indicate explicitly that all parameters are allowed to be treated as
random variables.



of the posterior (equivalent in this case to ordering by decreasing posterior
probability). This gives the same limits as the frequentist limits in eq. (2);
the coincidence is however accidental, coming from the particular choices
being made and the special properties of the Gaussian distribution.

If one desires to understand the contribution of systematics to the final
limits, one can simply evaluate additional limits assuming a fixed, central
value of the systematic parameter without smearing, and compare the results.

From the above considerations it appears that from the Bayesian point
of view the systematic uncertainty is not intrinsically different from statisti-
cal uncertainty: one might say that systematics is an intrinsically frequentist
concept, arising from the sharp distinction being made between random vari-
ables and unknown constants.

From here on, we will therefore consider the issue of including systemat-
ics in limits only in the framework of the frequentist definition (Confidence
Limits).

4 Systematics in the frequentist framework

Systematics appear in the frequentist context under the form of additional
unknown parameters in the pdf. Usually one does not care to determine their
value; their presence is just an undesirable complication of the problem, and
therefore they are often called “nuisance parameters”. What one wants is to
correctly determine limits on the physical parameters, with no reference to
the values of nuisance parameters. The problem has been early recognized
as a very difficult one.

We are currently aware of four methods for treating systematics in setting
Confidence Limits:

e Variation method
e Smearing method
e Kxact method

e Profile method



4.1 Variation method

When evaluating the systematic uncertainty on the point estimate of a pa-
rameter (e.g. a ML estimator), a very common method is to look at the
variation of the estimate when the systematic parameter is varied within its
uncertainty. The same simple method can in principle be applied to limits
calculation. In this case, one would need to calculate limits on y by fixing v
in turn to every possible value within its allowed range, and define the final
limits as the union of all y ranges obtained; in practice in most cases one will
need to calculate limits just for the extreme values of . 1t is easy to see that
this procedure always covers, but it only makes sense when the uncertainty
on v takes simply the form of a range, because it is incapable of accounting
for any other experimental information available on v. Under these condi-
tions, the solution from the variation method can be directly related to the
solution from the exact method (see below), provided the ordering algorithm
is appropriately chosen. FExamples that may fall within this category are
choices of structure functions, or theoretical uncertainties. Our toy example
does not fall in this category; it would if there were no measurement of y
available, and the v had a limited range. For our toy problem in its original
form, one might think of using the measurement of y to define a range for
v, by cutting at some conservatively large number of sigmas. This method,
while somewhat arbitrary and overly conservative, may be a useful simple
shortcut to use when systematics is small compared to other effects.

4.2 Smearing method

The greatest appeal of the smearing method is its intuitive appearance and
relative simplicity of implementation. The main idea is to start proceeding
just as in Sec. 3, by eliminating parameters using some prior distribution
and Bayes theorem, but after arriving at a pdf without nuisance parameters
revert to a frequentist mindset and calculate standard frequentist Confidence
LLimits. Implementing this calculation is simple enough, and requires a mod-
est additional amount of CPU over the no-systematics case. This smearing
method has been discussed in detail for the Poisson problem with uncer-
tain background and efficiency in [10] and often named Cousins-Highland
method since then, but has been much more widely used, sometimes even
unconsciously and in non-apparent forms. To many people, this method



simply appears at first glance as the right thing to do. See also [6] for imple-
mentation notes.

The difficult issue with this technique is the conceptual incompatibility
between Bayesian integration and frequentist limits; it has been argued that
this incoherence “can be excused” when the systematic uncertainty is small
compared to the statistical, but “it is important to be aware of the possible
pitfalls”[5].

In particular, it is important to realize that the frequentist procedure of
setting Confidence Limits cannot restore the coverage property that was lost
during the Bayesian step. For this reason, it is inaccurate to label this proce-
dure as “Confidence Limits calculation” (even if the result may turn out to
have correct, or almost correct coverage). On the other hand, the procedure
cannot be correctly reported as a Bayesian limit calculation either, because
the CL construction breaks the Bayesian probability requirements. There-
fore, when reporting a result from this technique, it is important to make
it clear to the reader how it was obtained, and that it is a “mixed” result,
neither frequentist or Bayesian. Unfortunately it looks like no standard way
of qualifying this hybrid procedure exists, presumably due to the fact that
the results obtained in this way have no understood general properties or
straightforward interpretation, even if they may happen to approximate a
rigorous result, either Bayesian or frequentist.

In short, one could say that the justification for this technique rests
on past records of producing “reasonable results” and widespread practice,
rather than firm statistical grounds. It will therefore be necessary to deter-
mine a postiori the properties of the method (e.g. coverage) in each specific
case, by means of MC calculations. This additional burden, which may
require significant CPU, partly spoils the advantage of the relatively fast
calculation of the result itself.

Looking at its application to our toy example, we have already written
down in Sec. 3 the expression of the smeared pdf with an assumed uniform
prior for v (7(v)):

psmeared(m; yOnU’) = (;(T - (IU + Yo, v 1+ ‘C’-Z)

This function (that from the frequentist viewpoint admits no interpre-
tation as a pdf) will now be used formally “as if it were a pdf’ to derive
confidence limits. In particular, if one choses a symmetric interval or a



Probability-ordering rule, one obtains exactly the results of eq. (2). The
smearing technique therefore turns out to be particularly successful in this
case, but again it is important to note that the result is accidental: for any
other a-priori distribution for v (another reasonable choice might be a uni-
form distribution in log(v)), a different ordering rule, or a different form of
the pdf, produces very different results.

One final word: the usage of smearing is sometimes not very apparent in
written reports. In order to check for its presence, one good way is to look
for integrals, performed either explicitly or by MonteCarlo. If the procedure
contains any integration on a variable that is not an observable quantity, that
is a sure sign that Bayes theorem is being used to get rid of some unwanted
unknown parameter.

4.3 Exact frequentist method

There is a conceptually straightforward method to incorporate systematics
into Confidence Limits, coming essentially from applying the definition, that
has received little attention until recently[7].

It is sufficient to consider the overall pdf:

p((; 9)l(p,v))

that gives the joint probability of observing the value of the “physics ob-
servables” x plus all “systematic measurements” y, given all unknown pa-
rameters, physics and systematics. In many situations the distribution of y
will be independent of z and p, so the needed pdf will be written as a simple
product: p((z,y); p,v) = p(x; p,v)-q(y; ), but this is by no means necessary
for the discussion that follows.

One starts by deriving Confidence Limits in the larger (u, ) space from
the observed values of (z,y), just in the way regular Confidence Limits are
obtained. In fact, the standard Neyman construction for confidence limits
is (in principle, if not in practice) directly applicable for any number of
dimensions in the observable and parameter spaces: one simply needs to
sample a number of points inside the parameter space and require coverage
for each of them. The dimensionality of the parameter space is irrelevant
in this respect, except for the number of points that need to be sampled.
Finally, in order to get results containing only the physical parameter, one



simply needs to project the confidence region in the (u, ) onto the u space.

Given that this procedure is rigorous, conceptually simple, and fully gen-
eral, one may wonder why other methods have been developed. There are
indeed some important difficulties associated with this procedure:

e Numerical calculation: the problem of calculating Confidence Regions
(CRs) in multi-dimensional spaces can be complex and very CPU-
consuming in some problems.

e Projecting on the p space effectively enlarges a possibly limited region
in (p,v) to an indefinitely extended band along the v axis, thereby in-
creasing the coverage for all additional points (u,v) included. This
means that the quoted result almost always owvercovers, sometimes
badly. The overcoverage tends to be larger when v has many dimen-
sions.

e One needs to be particularly careful in choosing the ordering algorithm
for the band construction. The multidimensionality potentially leads
to a greater sensitivity of the result to the specific choice of ordering.
The variety of conceivable changes of variable makes the local proba-
bility density a very arbitrary guidance, and simple recipes like “equal
tails” used in 1-D simply do not apply in many dimensions. What is
particularly annoying here is that one would really like to make the
choice that minimises the overcoverage introduced by the projection
step, but it is well known that the risk of producing paradoxical or
empty CR by arbitrarily juggling ordering algorithms is high. In addi-
tion, this optimization if often a very complicated problem in practice,
for which there is no known general solution, and each specific case
must be looked at individually.

The exact method, however, looks much more attractive today than it
was some time ago. This is for number of reasons:

e Modern computing technology has reduced the impact of the CPU re-
quirement. This allowed first applications to real, complex experiments,
with two observables, two “physics” parameters and one systematic
parameter[8].



e The problem of overcoverage has been recently understood to be much
less of an issue than was previously believed, and even some optimal
solutions have appeared[7]. T'he point is that most of the overcoverage
is intrinsic to the problem, not to the particular solution. There is
simply no way in general, in a problem with systematics, to obtain a
correct frequentist solution (one that does not undercover at any point
in parameter space) without overcovering to some extent?

e T'here is a general increase in the awareness of the HEP community of
the possible pitfalls coming from less than perfect analysis techniques,
and an increased level of standards expected from the analysis of data
from important experiments, that justifies a greater level of effort in
order to obtain the soundest possible result.

For the sake of illustration, let’s see what happens with our toy example.

The overall pdf is:

p($7y3M7V) :G(:E—(M—I_V)al)G(y_VvS)

where @ and v can take any real values.

One has to decide which ordering algorithm to use. In this particu-
lar example LR-ordering and P-ordering happen to be identical, due to
the fact that the value of the likelihood at the maximum (occurring at
{{g > r—y,v—y}})isa constant (1/(27s)), independent of the value of
(,y)-

Moreover, it is easy to see that the pdf of the LR (or the probability
density) is independent of (p,v); for that reason, the confidence region is
determined simply by a cut on the value of the ordering variable, which is
essentially the y?. Given the special properties of the Gaussian distribution,
the position of the cut to yield any desired confidence is level, is independent
of (u,v), further simplifying the problem, yielding an elliptic region in the
(u,v) space of equation:

(v—y)’

g2

(M—I—I/—.’E)Q—I- < C

*This effect is unrelated with the overcoverage that may occur as a consequence of
discretization of the observable.
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The constant C' is determined by the integral of the y? distribution with
2 degrees of freedom. The resulting region must finally be projected onto the
- axis to yield the confidence region for p (see Figure 3).

3 4 5 6 7 s M

Figure 3: Likelihood ratio contours, and CR on p obtained from either P or
LR-ordering in the (p, ) space (F-C)

The extension to the shaded area increases the coverage from a nominal
68% for 1-sigma case to a (constant) 87%; at a nominal 90% the actual
coverage is (constant) 96.8%. Note that in this (particularly lucky) problem,
a solution exists ( see eqn. (2)) with no overcoverage at all, thanks to the
fact that in this particular example the coverage for each given value of pu
happens to be independent of . This means that the solution we just found
is unnecessarily conservative, and we could tighten the cut and get a better
solution. The cause of this situation is the chosen ordering principle (LR-
ordering): if we want to preserve that, we cannot tighten the cut any further.
On the other hand, abandoning an a-priori choice of ordering algorithm in
favor of a strategy of choosing ad-hoc the ordering algorithm to get the
narrowest interval, innocuous as it may appear in the example provided,
might have dire consequences in a more general case. This is simply not
known, but the well-known difficulties encountered with P-ordering in the
past should suggest caution.
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A well-defined general solution to the problem of optimal and safe choice
exists only in the particular contest of “strong limits”[4]: in that case a spe-
cific ordering algorithm emerges as optimal: the ratio of profile Likelihoods®[7]:

sup p(; (1, )
IJHprof = .

(3)

sup sup p(z; 1, v)
m v

If we apply this to our toy problem we get:

(—ptz—y)

1+ s2

This expression depend on = and y only through their difference x —y, and
since we have shown before that the probability distribution of t = x — y is
independent of v, then the distribution of —2log(L R,.y) is also independent
of v. Ordinary Confidence Regions obtained by ordering on this variable are
then shaped as stripes parallel to v axis, providing exact coverage and exactly
the “ideal” limits (see eqn. (2)) obtained by changing variables®.

In this special problem this particular ordering achieves the optimal re-

—210g(LRyrof) =

sults; however this does not apply for a generic pdf, where confidence regions
will not, in general, be vertical strips of constant width.

4.4 Profile method

The profile method consists in performing essentially the same method de-
scribed in previous section, but limiting to a small subsample of the whole
parameter space given by (p,r). Taking the overall pdf one restricts the
problem to specific values of v:

Porof (23 1) = p(&, Yo; th, Voest (1)),

where vpes:(ft) is the value that maximizes the Likelihood for each given u:
i.e. p(xo,Yolp,v) is a maximum when v = v (p). The rationale behind

5T'he same ordering has been used, for different reasons, within the different context
of the “profile method” (see following section)). Note also that this method of calculating
limits has the advantage of simplifying the computations needed to include systematics,
as it avoids the need for explicit construction of a multidimensional region.

Strong limits, that motivated this choice of ordering, would however be looser due to
the additional requirements imposed.
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the method is that one expects the limits to be determined to a large extent
by the behaviour of the pdf for those values of the systematic parameters
that are close to their most likely values for the given observations. The
choice of fixing a specific value for the systematic parameters considerably
reduces the computation load as the parameter space is reduced to just the
dimensionality of the physics parameters p (see [9, 11] for discussion of some
interesting examples).

Since z¢ and yo indicate the values actually observed in the given ex-
periment for x and y, the value of .5 depends on the experimental data.
There is thus a potential of ‘flip-flopping’[3] (apparently not mentioned for
this context in the literature); the Neyman construction for generating the
confidence band should be independent of the actual measured value(s). The
alternative approach of finding the best v separately for each value of x, y cre-
ates even more problems, because the expression p(x, y|p, vsest(x, y)) is not,
in general, normalized (it is not anymore a valid pdf), so there is an intrinsic
difficulty with this method, whose consequence is often undercoverage.

In our toy example, it is easy to determine analytically the value of v
maximizing the Likelihood:

ILLSZ—SZ.'E—y
Vpest = —
best 1—|-32

The pdf then is:

2_ .2 2 2_.2 2
pat—stzg—yo pat—stzg—yo
- (—#+m+ 1+a2 ) (y+ 1+a2 )

e 2 2 g2

1

278

Pprof (T, Y3 1, To, Yo) =

Note how the expression depends on the specific values xg, yo measured
in the particular experiment at hand. It is this feature which could produce
the ‘flip-flopping’ if this type of pdfis used to derive the confidence belt. In
our toy example however we will see that the derived limits turn out to be
independent of (o, yo).

In order to derive limits from this p,,.,s, one now has to choose an order-
ing algorithm. A common practice in neutrino experiments (see [13, 12]) has
been to use a generalized form of the Likelihood ratio, where the both the
numerator and denominator are separately maximized with respect to the
nuisance parameters, taken over all available space, not just in the restricted
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subset defined by 4.5 above. While this is reported in papers as “Feldman-
Cousins” ordering, it actually isn’t, because the actual F-C prescription in
this case would be to order by ratio of p,..,r, maximizing within its restricted
domain. This is different also from F-C ordering in the larger space, that
would not involve any maximization in the numerator of the ratio. It should
therefore be considered simply as a different ordering, and could be termed
”Profile-Likelihood-Ratio ordering” (the same ordering has been used in [§]
on the basis of its fitness to complement the strong-CL approach). Note that
usage of this ordering is not, in itself, inconsistent with the current limit
calculation, even if it makes reference to the values of the probability density
well outside the domain that is assumed as parent distribution of the data, as
any function can be used to establish a choice of ordering in calculating con-
fidence limits. It is however worth remembering that no argument has been
made in support of the soundness of the limits obtained by that ordering, so
nothing specific is known about the possibility of occurrence of paradoxical
results.

In passing, note that in our toy example the standard LR ordering in the
restricted space is exactly the same thing as the “Profile-LLR ordering” used
in neutrino experiments, but again, this is due to the very special properties
of the Gaussian function rather than anything intrinsic to the method itself.

The main properties of the profile method are:

e Coverage is correctly calculated, but only for a small subspace of the
parameter space; therefore, the method tends to undercover[9].

e lLuckily, the coverages is correct for large samples. But unfortunately,
you often need limits just because the sample is small.

e Computationally, it is not too intensive.

One possible improvement of this method is to perform a random sam-
pling of the pdf in the vicinity of the best-fit value of the systematic param-
eters, thus decreasing the undercoverage by approaching the exact method,
while keeping the computational load under control. When doable, this is
certainly a good compromise approach.
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5

Recommendations
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