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Abstract

The frequentist concept of coverage is explained, and illustrated
by calculating the coverage properties of eight error bar schemes for
Poisson data. The primary goal is to aid physicists in doing their own
coverage calculations, but some conclusions are also drawn concerning
the relative coverage performance of the eight schemes. While mostly
intended for beginners, some advanced concepts are also introduced.

1 Introduction

When physicists determine an unknown parameter from experimental data,
they also provide error bars. The central value and the error bars, often
written V +σ2

−σ1
, determine an interval [V − σ1, V + σ2], which is the region

within the error bars. One quantity of interest associated with such an
interval is the coverage probability (usually just called the coverage) of the
interval. We define coverage in the following single-parameter example:

We will assume that there is a single unknown parameter µ that is es-
timated from the data ~x. The experimenters have functions that deter-
mine the central value and errors from the data—V (~x), σ1(~x), and σ2(~x)
respectively—for all possible data ~x. (These functions often are defined by,
and implemented through, some fitting procedure.)

The data follow a probability distribution p(~x, µ) that depends on µ, and
is completely known once a specific numerical value for µ is picked. The
coverage C(µ) is a function of µ, defined as the probability that

V (~x)− σ1(~x) ≤ µ ≤ V (~x) + σ2(~x)

for random ~x generated from p(~x, µ). It is important to note that in this
equation, µ is regarded as fixed, and the probability statement applies to the
“variables” (really functions) V , σ1, and σ2, which in turn depend on ~x.
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So the coverage is a function C(µ) of the unknown parameter. It is, for
any given µ, the probability that an experiment, with data following the
same distribution p(~x, µ), and employing the same analysis functions V (~x),
σ1(~x), and σ2(~x), will obtain an interval that includes (i.e. “covers”) µ. The
Holy Grail of Frequentist Statistics is to define V (~x), σ1(~x), and σ2(~x) so
that C(µ) = C0, C0 being some predefined constant. This optimum case
(constant C(µ)) is referred to as exact coverage. By default, physicists use,
and will normally assume, C0 = 0.682689492137. . . (the area of the Gaussian
distribution contained within ±1σ) as the coverage value for error bars1: if
any other coverage value is used (for error bars), it must be explicitly stated
to avoid misunderstandings.

Exact coverage, like the Grail of legend, if approached by any but a per-
fectly pure and holy frequentist, is borne away and vanishes from sight. So,
the following examples mainly demonstrate how badly the coverage deviates
from exact when applying common methods to Poisson distributed data.

In the sections that follow we will investigate the coverage C(µ) achieved
by eight different error-bar schemes for Poisson data with no background. In
fact, exact coverage cannot be achieved through normal means for the Poisson
distribution, or discrete distributions in general—the reasons for this will be
manifest upon understanding the examples.

2 Pearson’s χ2 Intervals

In this section we examine the coverage of intervals derived from Pearson’s
χ2.[1, 2] Specifically, we choose a Poisson process characterized by parameter
µ ≥ 0 from which we observe n events. The probability of observing n events
is

p(n, µ) =
e−µµn

n!

and Pearson’s χ2 is given by

χ2(µ, n) =
(n− µ)2

µ

(We give the arguments of the probability as (n, µ) to indicate that n is
variable and µ is fixed. For the χ2, it’s µ that is variable and n that is fixed,
so the arguments are swapped.)

1There are other physics conventions for limits, where C(µ) = 95% is a common choice.
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Having observed n events, we obtain our central estimate V of the un-
known parameter µ by minimizing the χ2 with respect to µ, obtaining V = n.
For the error bars, we adopt the interval defined as the set of all µ such that
χ2(µ, n) ≤ ∆. In the language of Minuit[3], these are MINOS errors, and ∆
is the Minuit ERRDEF parameter. The MINOS error bars are defined as the
change in parameter value (µ) required to increase the function value (χ2)
by ERRDEF (∆). In this simple example, the errors are

σ1 =
√
n∆ + ∆2/4−∆/2 σ2 =

√
n∆ + ∆2/4 + ∆/2

and we also have the useful relations σ1σ2 = n∆ and σ2 − σ1 = ∆. For
no observed events (n = 0), the above formulas still are valid, and we have
σ1 = 0 and σ2 = ∆.

The interval [µ1, µ2] that defines these error bars satisfies

µ1 = n+ ∆/2−
√
n∆ + ∆2/4 µ2 = n+ ∆/2 +

√
n∆ + ∆2/4

and µ1µ2 = n2, and we wish to calculate the coverage of this interval. Note
that the size of the interval,

√
4n∆ + ∆2, grows steadily with the observed

number of events n. At this point in the discussion, it is useful to show a
plot of the coverage C(µ) for the case ∆ = 0.1:
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∆ = 0.1 is not the usual choice; this plot is shown first because it is easier to
explain than the plot to follow with ∆ = 1. There are two shocks to recover
from: C(µ) is discontinuous at ∼ 40 points in the region µ < 20, and the
value of C(µ) is all over the map. The first time one sees a plot like this, one
assumes that some bug must exist, but, of course, the plot turns out to be
correct.

The following explanation should help: At µ = 0, the coverage must
be 100%—zero events are aways observed, and the n = 0 interval [0,0.1]
contains µ = 0 every time. As µ increases slightly, but remains less than 0.1,
occasionally n ≥ 1 is observed, but the interval for n = 1 is [0.7298,1.3702],
which does not cover µ < 0.1. So C(µ) = p(0, µ) = e−µ for µ < 0.1. For
µ greater than 0.1 and less than 0.7298, no possible n has an error interval
that covers µ. So C(µ) = 0 for 0.1 < µ < 0.7298. When µ is within the
region [0.7298,1.3702], only n = 1 covers, since the n = 2 interval is [1.6,2.5]
(exactly). So C(µ) = p(1, µ) = µe−µ for µ ∈ [0.7298, 1.3702].

Similarly, after another zero coverage region, we have C(µ) = p(2, µ) =
µ2e−µ/2 for µ ∈ [1.6, 2.5]. The interval when n = 3 is observed is [2.5,3.6]
(exactly), and the interval for n = 4 is [3.4156,4.6844], which overlaps the
n = 3 interval. So, for µ ∈ [2.5, 3.4156], C(µ) = p(3, µ) = µ3e−µ/6. For
µ ∈ [3.4156, 3.6], both the n = 3 and n = 4 cases cover, and C(µ) =
p(3, µ) + p(4, µ) = µ3e−µ/6 + µ4e−µ/24.

After that, the form C(µ) = (k, µ) alternates with C(µ) = p(k, µ)+p(k+
1, µ) for a while. For µ > 10, the error intervals are wide enough so that there
are regions where three of them overlap, and C(µ) = p(k, µ) + p(k + 1, µ)
alternates with C(µ) = p(k, µ) + p(k + 1, µ) + p(k + 2, µ).

Since discontinuities in C(µ) occur at the beginning and the end of each
interval, within the region µ < 20 there are about 40 discontinuities. This
property—average continuous segment width of 0.5—must hold quite accu-
rately over large regions. Strictly speaking, there are two segments of zero
width not mentioned above: for µ = 2.5 exactly, under our definition, both
the n = 2 and n = 3 intervals cover, so C(2.5) = p(2, 2.5)+p(3, 2.5) = 0.4703.
But line segments of zero size simply don’t show up on the plot. The other
orphan coverage point is at µ = 10.

The following trivial C program suffices to calculate the coverage of Pear-
son’s χ2 intervals for any µ small enough that e−µ does not underflow. It
expects two command-line arguments: the first is µ, and the second is ∆.
As the entire calculation only takes a half a dozen lines or so of C-code, a
careful examination of the logic should reward the reader with an improved
understanding.
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double chi2(double mu,int n) { return (n) ? (n-mu)*(n-mu)/mu : mu; }

int main(int argc, char* argv[]) {
const double mu = (argc>1) ? strtod(argv[1],NULL) : 0.0;
const double delta = (argc>2) ? strtod(argv[2],NULL) : 1.0;
double sum=0.0, p=exp(-mu);
int n;
for(n=0 ; p>0 ; p *= mu/(++n)) {
if( chi2(mu,n) <= delta )
sum += p;

else if(n>mu)
break;

}
printf("mu=%g delta=%g coverage=%g\n",mu,delta,sum);
return 0;

}

The following plot shows C(µ) for ∆ = 1:
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∆ = 1, of course, is the physicist’s standard choice for 1σ error bars. The
minimum value for C(µ) on this plot is 1.5e−1 = 0.5518, which is attained in
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the limit as µ approaches 1 from above. There is an orphan point at exactly
µ = 1, and C(1) = 2.5e−1 = 0.9197. (To the attentive reader, it will be
obvious from looking at the plot that there are also orphan points at n = 4,
n = 9, and n = 16.) It seems amazing that one obtains such a complicated
structure from such a simple rule. The program given above is sufficient to
calculate the coverage for a given value of µ, but it won’t indicate where the
discontinuities are located; the discontinuities occur at the interval bound-
aries. The plot is actually produced by locating all the discontinuities first,
sorting them in ascending order, and then plotting C(µ) as continuous curves
between the discontinuities.

Suppose we do an experiment and we observe 6 events. Under the above
rule, we report µ = 6+3

−2
. From the frequentist point of view, µ is still

an unknown parameter: it could be in the neighborhood of 1 (where the
minimum coverage occurs). All we can say about the coverage with absolute
certainty is that it is greater than or equal to 55.18% (and less than or equal
to 1). Average coverage is a Bayesian concept; for the frequentist, µ, although
unknown, has a definite and fixed value2. In fact, even if 100 events were
observed, the C ≥ 55.18% conclusion is still the only strictly valid statement,
although in practice most frequentists would grant that C ' 68.27% is a
reasonable approximation for 100 observed events.

But frequentists will generally demand (if the number of observed events
is not large) that the minimum coverage be at least 68.27%. One simple
strategy is just to boost ∆ until this is achieved. In fact, this is first achieved
when ∆ = 1.5 (minimum coverage as a function of ∆ is also discontinuous).
This case is shown in the following plot:

2The Bayesian and the frequentist both agree that µ has a definite and fixed value;
the Bayesian assigns a probability distribution to µ to represent the prior state of his
knowledge of what that true value might be.
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Here the minimum coverage is 0.7095, achieved in the neighborhood of µ =
2.1883. Unfortunately this leads to serious overcoverage3: the average cover-
age is ∼ 78%. When physicists see a plot that overcovers significantly (i.e.,
the error bars cover the theoretical curve at greater than 68%), they tend
to accuse the authors of overstating their errors—or of being biased by the
theory[4].

3 Neyman’s Modified χ′2 Intervals

Instead of Pearson’s χ2, often Neyman’s modified[5] χ′2 is used:

χ′2(µ, n) =
(n− µ)2

n

where the number of observed events n replaces µ in the denominator. Al-
though asymptotically approaching Pearson’s χ2 for large n, χ′2 is generally
thought to be inferior to Pearson’s χ2 at small n. One must also make some
choice about what to do when n = 0. Once again, we take the error interval

3It also overcovers for all µ, since C(µ) is greater than 68.27% everywhere.
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to be the set of all µ such that χ′2(µ, n) ≤ ∆. The errors, symmetric for
n ≥ ∆, are then given by

σ1 = min(n,
√
n∆) σ2 =

√
n∆

the interval is defined by

µ1 = max(n−
√
n∆, 0) µ2 = n+

√
n∆

and we have µ1µ2 = nmax(n−∆, 0). For n = 0, we take σ1 = σ2 = 0, which
is simply the limit of the above expressions.

The coverage C(µ) for the standard case ∆ = 1 is shown here:
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For 0 < µ < 2 −
√

2, only the interval corresponding to n = 1 includes µ,
so C(µ) = µe−µ in this region, and the coverage approaches zero in the limit
as µ → 0. There is an orphan coverage point at µ = 0: C(0) = 1 by our
definition, since only in that special case is µ included in the n = 0 interval.
There are also orphan coverage points at µ = 2, 6, 12, and 20.

From the frequentist point of view, the fact that the minimum coverage
is zero (for any choice of ∆) is the worst possible outcome. This fate could
have been avoided by picking some other (ad hoc) interval for n = 0, but we
thought it best instead to illustrate what goes wrong in the given case.
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Comparing with the corresponding Pearson’s χ2 plot on page 5, it is inter-
esting that there the continuous coverage segments have a general negative
slope, while here the segments, although arranged in a similar pattern, have
a predominantly positive slope. Neither trend seems present in the −2 lnλ
plot of page 10 in the next section, where the continuous segments tend to
center more closely about their peak location.

4 Likelihood Intervals

Instead of Pearson’s χ2, or Neyman’s modified χ′2, we can also try error
intervals based on the value of the likelihood. Specifically, having observed
n events, we can use the error interval defined as the set of all µ such that
−2 lnλ(µ, n) ≤ ∆, where

−2 lnλ(µ, n) = 2[(µ− n) + n ln(n/µ)]

is −2 times the log likelihood ratio4 of the Poisson distribution[6, 7]. This
is the quantity that is minimized when one does a maximum-likelihood fit
to the Poisson distribution. Once again, standard error bars correspond to
∆ = 1. The next plot shows the coverage for this case:

4The likelihood ratio λ = p(n, µ)/p(n, µbest), where µbest is the value of µ that max-
imizes p(n, µ) (n being treated as constant). Considered as a function of µ, λ is simply
the likelihood renormalized so that the maximum value it can take is 1. In the Poisson
case, λ = p(n, µ)/p(n, n). By definition, maximizing the likelihood (with respect to µ) is
equivalent to maximizing λ or minimizing −2 lnλ.
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The minimum coverage, 0.3033, occurs in the neighborhood of µ = 0.5. Sur-
prisingly5, this is worse than for ∆ = 1 Pearson’s χ2 intervals. There are
no orphan coverage points—those present in the corresponding Pearson’s χ2

case (compare with the figure on page 5) have “gained weight”, and are
visible here as short segments.

If we ask again to what value we must increase ∆ to obtain a minimum
coverage of 68.27%, this time the answer is ∆ = 2.581. This is also clearly
worse than the corresponding Pearson’s χ2 case. The ∆ = 2.581 plot is
shown here:

5Reference [7] shows that, when the variance is the comparison criterion, −2 lnλ is
superior to Pearson’s χ2 in the Poisson case.
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5 “Improved Likelihood Ratio” Intervals

The statistic

w =
−2 lnλ

1 + 1
6
µ−1

is the “improved likelihood ratio”[8, 9, 10] statistic for the Poisson case. As
shown in [7], the mean and variance of the Poisson −2 lnλ are asymptotically
1 + 1

6
µ−1 + O(µ−2) and 2 + 2

3
µ−1 + O(µ−2) respectively, when expanded in

powers of µ−1. The rationale of the improved likelihood ratio is that w as
defined above then has mean 1 +O(µ−2) and variance 2 +O(µ−2); i.e., closer
to the moments of the χ2 distribution for 1 degree of freedom (for large µ).
The coverage of the resulting intervals is shown here:
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The coverage looks qualitatively similar to that of the −2 lnλ case shown on
page 10.

6 Classical-Frequentist Central-Intervals

Since, from the frequentist point of view, none of the previous interval
schemes have adequate coverage at small µ, we next investigate the cov-
erage achieved by the “68.27%” (central) intervals of the classical frequentist
approach. The classical approach to Poisson frequentist intervals is described
in Ref. [11]. In this case, the (central) error interval for n observed events is
given by the set of all µ such that:

n∑
k=0

e−µµk

k!
≥ 1− C0

2
and

∞∑
k=n

e−µµk

k!
≥ 1− C0

2

The interval for n = 0 is defined completely by

µ ≤ ln
2

1− C0
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since, when n = 0, the 2nd inequality, becoming 1 ≥ 1−C0

2
, is true for all µ.

The corresponding coverage plot is shown here:
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The definition of these intervals is tailored so that the minimum coverage is
guaranteed to be ≥ C0. The average overcoverage is worse here than for the
case of the unified intervals (see the figure on page 19) considered next. This
seems to be because conservatism is applied twice—there are two inequalities
that both need to be satisfied—while the unified approach leads to only a
single inequality.

7 Unified Intervals

We next investigate the coverage achieved by the “68.27%” intervals (zero
background) of the unified approach[12]. As in the classical frequentist ap-
proach, the unified intervals will guarantee that the minimum coverage is
≥ C0. The error interval for n observed events is given by the set of all µ
satisfying

U(µ, n) =
∑

k∈A(µ,n)

e−µµk

k!
< C0
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where the set (of zero or more non negative integers) A(µ, n) is defined as

A(µ, n) = { k | k ∈ Z, k ≥ 0, and −2 lnλ(µ, k) < −2 lnλ(µ, n) }

and Z denotes the set of integers. The fact that the set A(µ, n) is selected
using the likelihood ratio is the hallmark of the unified approach. We might
(crudely) describe A(µ, n) as the set of all integers that give a “better fit” to
µ than n does, where “better fit” is defined in terms of the likelihood ratio.
Note that n /∈ A(µ, n).

Although the terse definition given above is mathematically equiv-
alent to that of Ref. [12], this fact may not be obvious at first glance to
readers familiar with that reference. For those readers, the brief expla-
nation in the next paragraph will help to make the connection. (The
rest, especially readers unfamiliar with the Neyman construction, may
wish to skip the next paragraph entirely.)

In performing the Neyman construction for the Poisson case using
likelihood ratio ordering, when constructing the band at any given
fixed value of µ, one includes integers k in the band—starting with
the one that gives the smallest −2 lnλ(µ, k), and continuing, one by
one, in order of smallest −2 lnλ(µ, k) not yet included—only stop-
ping when the probability (given the specified µ) of observing a k
within the band finally becomes ≥ C0. When one reaches the stage
of the construction at which the band is equal to the set A(µ, n), the
next integer to be considered for inclusion in the band is n, since, by
our definition of A(µ, n), all k with −2 lnλ(µ, k) < −2 lnλ(µ, n) have
already been included in the band. Then, if

∑
k∈A(µ,n) e

−µµk/k! ≥
C0, the construction of the band (at this µ) has already terminated,
meaning n will not be included in the band. On the other hand,
if
∑
k∈A(µ,n) e

−µµk/k! < C0, the construction of the band must con-
tinue, meaning n will be included in the band—independent of what
the value of e−µµn/n! actually is, or how many additional integers k
must be included in the band subsequent to the inclusion of n.

For example, suppose we observe n events, and we want to know if µ = n
is within the error interval for that case. Since A(n, n) = ∅ (empty set),
U(n, n) = 0, which being less than C0, means that µ = n is included within
the error interval for any C0 > 0 and any n.

Another example: We observe n = 1 and we want to know if µ = 0.35
is within the interval for C0 = 0.6827. We have A(0.35, 1) = {0}, and
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therefore U(0.35, 1) = e−0.35 = 0.7047. Since 0.7047 6< 0.6827, µ = 0.35 is not
within the n = 1 interval. Based on this, one might falsely suspect that the
n = 1 interval extends no further down than − ln(C0) = 0.3817. However,
checking µ = 0.375 for coverage when n = 1, we have −2 lnλ(0.375, 0) 6<
−2 lnλ(0.375, 1), A(0.375, 1) = ∅, U(0.375, 1) = 0, and thus µ = 0.375
is contained within the interval. Since A(µ, 1) changes from {0} to ∅ at
µ = e−1, the low end of the interval for n = 1 is given by µ1 = e−1 = 0.3679.

Interestingly, in the unified approach, the width of the error intervals no
longer increases at a steady rate with n. This behavior is seen in the following
table, which shows the endpoints of the intervals, and their widths, for n = 0
to 30:

n µ1 µ2 µ2 − µ1 −2 lnλ(µ1, n) −2 lnλ(µ2, n)
0 0.0000 1.2904 1.2904 0.0000 2.5807
1 0.3679 2.7505 2.3827 0.7358 1.4775
2 0.7358 4.2504 3.5147 1.4715 1.4853
3 1.1036 5.3012 4.1976 2.2073 1.1865
4 2.3359 6.7764 4.4405 0.9750 1.3356
5 2.7505 7.8064 5.0559 1.4775 1.1577
6 3.8231 9.2783 5.4552 1.0546 1.3256
7 4.2504 10.3006 6.0502 1.4853 1.1931
8 5.3012 11.3187 6.0175 1.1865 1.0852
9 6.3342 12.7905 6.4562 0.9911 1.2544

10 6.7764 13.8060 7.0296 1.3356 1.1617
11 7.8064 14.8194 7.0130 1.1577 1.0819
12 8.8291 16.2920 7.4629 1.0227 1.2456
13 9.2783 17.3043 8.0259 1.3256 1.1724
14 10.3006 18.3152 8.0145 1.1931 1.1075
15 11.3187 19.3249 8.0061 1.0852 1.0495
16 12.3338 20.7991 8.4653 0.9955 1.2039
17 12.7905 21.8084 9.0180 1.2544 1.1480
18 13.8060 22.8169 9.0109 1.1617 1.0971
19 14.8194 23.8247 9.0053 1.0819 1.0506
20 15.8310 25.3003 9.4692 1.0125 1.1972
21 16.2920 26.3079 10.0159 1.2456 1.1512
22 17.3043 27.3150 10.0108 1.1724 1.1087
23 18.3152 28.3216 10.0065 1.1075 1.0692
24 19.3249 29.3278 10.0029 1.0495 1.0325
25 20.3336 30.8049 10.4712 0.9973 1.1699
26 20.7991 31.8110 11.0120 1.2039 1.1328
27 21.8084 32.8169 11.0084 1.1480 1.0980
28 22.8169 33.8223 11.0054 1.0971 1.0653
29 23.8247 34.8275 11.0027 1.0506 1.0345
30 24.8319 36.3057 11.4739 1.0079 1.1648

Unified 68.27% intervals

The width µ2 − µ1 of the intervals decreases slightly for the runs n = 7
to 8, n = 10 to 11, n = 13 to 15, n = 17 to 19, etc. It may seem strange
that the error interval for n = 8 is slightly smaller than the error interval for
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n = 7, for example. This, however, should not be taken too seriously. The
interpretation of the size of an interval as proportional to the precision of
the measurement is known to suffer when considerations of coverage become
dominant. Some formulations of frequentist confidence intervals can occa-
sionally even give empty confidence intervals, or intervals that just contain a
single point. These are not to be interpreted as representing infinitely precise
measurements: the coverage (in general) at any particular value of µ is not
completely determined by the size and location of the interval for a single n,
but has significant contributions from several overlapping intervals.

Comparing values from the µ1 and µ2 columns of the table, one notices
that every value of µ2 from 2.7505 to 23.8247 also appears somewhere in
the µ1 column. For C0 = 68.27%, this synchronization continues indefinitely
when the table is extended. As observed in a previous section, this means
that there are many orphan coverage points that will not show up in the
coverage plot.

It is interesting to examine the calculation of the unified intervals in
slightly more detail. We show U(µ, n) for the case n = 3 here:
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U(µ,3) vs µ:      U(µ,3)<C0= 0.6827 defines Unified n=3 1σ interval
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As one would expect from its definition, U(µ, 3) as a function of µ has dis-
continuities at discrete points. As µ increases, the first discontinuity is lo-
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cated at µ = 3e−1 = 1.1036, where U(µ, 3) drops below 68.27%, so we have
µ1 = 1.1036. At µ = 5.3012, U(µ, 3) jumps discontinuously from 0.6081 to
0.6852, so µ2 = 5.3012. Thus, the n = 3 interval’s endpoints are defined by
the location of the discontinuities in U(µ, 3).

Note that, if we tried to calculate the n = 3 interval for the case C0 =
57.5%, we would find that the equation U(µ, 3) = 0.575 has two roots for µ <
3, leading to an error-interval with a gap (or hole) in its interior, according to
the definition given above. Error intervals with holes are generally considered
unacceptable. The possibility of obtaining intervals with holes via the unified
approach is noted in [12], which therefore adds an additional clause to the
definition: any holes in the interior of an interval are to be added to the
interval, so that the final interval can always be described simply as [µ1, µ2].

It turns out that the hole-filling step never needs to be performed for the
68.27% (i.e. 1σ) intervals, but in general, one does need to check for this possi-
bility. Surprisingly, for 1σ intervals, it seems that the equation U(µ, n) = C0

has no roots at all for n > 0. We conjecture6 that the endpoints of the 1σ
intervals for n > 0 are always located at discontinuities in U(µ, n). This
seems to be a property specific to the single point C0 = 0.682689492137. . .
that is not shared by other values for C0 in that neighborhood.

For general C0, what does happen is that the equation U(µ, n) = C0 can-
not be satisfied for most (but not all) large n. This seems to be because the
continuous segments of U(µ, n) flatten out as n becomes larger—illustrated
here in the case n = 10:

6This conjecture is based on a numerical search covering n = 1 to n = 107. It would
be nice to have a mathematical proof—or a counterexample.
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A random horizontal line drawn on this graph already has a relatively high
probability of passing through a gap, rather than actually intersecting a seg-
ment.

The location of the discontinuities in U(µ, n) can be described analytically
as follows: Solving −2 lnλ(µ, k) = −2 lnλ(µ, n) for µ yields

µ = n exp

(
k ln(n/k)

n− k
− 1

)
(k 6= n)

Evaluating this expression for k = 0, 1, 2, . . . , n− 1, n+ 1, n+ 2, . . . therefore
produces the location of the discontinuities of U(µ, n) in ascending order.
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Finally, we show the coverage of the 1σ unified intervals:
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Coverage (C) vs µ: Unified Intervals      (C → 0.6827 as µ → ∞)
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As is desired, C(µ) ≥ 68.27% for all µ. If the previously mentioned conjec-
ture is correct, C(µ) = C0 at only the single point µ ' 1.2904, which is µ2

for the n = 0 interval. At all other values of µ, C(µ) > C0. Because of the
“synchronization” of the µ1 and µ2 mention above, this coverage plot looks
qualitatively different from the previously shown coverage plots.

8 Interval Bias

There is an interesting concept that involves coverage considerations which
can be introduced at this point: interval bias7. Quoting from reference [13]:

Further, it seems highly desirable that a good confidence inter-
val should cover a value of θ with higher probability when it is
the true value than when it is not, so that the confidence coeffi-
cient will exceed the probability of covering any false value. Such
a confidence interval is called unbiased—this use of the term is
unconnected with estimation bias.

7The concept of interval bias is directly related to test bias.
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We can illustrate this concept using any of the coverage plots shown so
far—they all demonstrate interval bias. Coverage is usually calculated for
a given µ, assuming the “data” is generated with that µ. To investigate
interval bias, we assume the data is generated at µgen, and the coverage
is calculated for a different value µcov. For example, here we expand the
µ-axis of the unified coverage plot from page 19, and extend the original
coverage segment at µ ' 2.5 as a dashed line down to lower values of µ:
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As with the other coverage plots, the solid curves above give the coverage
at the generated value (i.e. µgen = µcov). To determine the coverage for
µcov = 2.5 when the data is generated at µgen = 2.0, the solid segment at
µ = 2.5 needs to be extended to the left, shown as dashed. Interval bias will
be demonstrated by the fact that the dashed curve is higher than the solid
curve at µ = 2:

Suppose the true value of µ is 2.0. Then the coverage of that point under
the unified scheme is

e−2
(
2 + 22/2 + 23/6

)
=

16

3
e−2 ' 0.7218

because the µ intervals for n = 1, 2, 3 include µ = 2 (see Table on page 15).
However, given that the true value of µ is 2.0, the coverage of the false value
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µ = 2.5 (or any false value in that segment) is

e−2
(
2 + 22/2 + 23/6 + 24/24

)
= 6e−2 ' 0.8120

because the µ intervals for n = 1, 2, 3, 4 include µ = 2.5. That is, although
the Poisson probabilities are calculated using the true value (µ = 2) in both
cases, the coverage probability of the false point µ = 2.5 (or any false point
in that segment) gains the n = 4 interval when compared to the coverage
probability of the true value. Since this false value of the parameter µ is more
likely to lie within the error bars than the true value, we have an example of
interval bias.

It should be obvious both that interval bias is undesirable, and that is
present in all the cases we have examined so far. The size of the bias is
proportional to the size of the discontinuities in the C(µ) function, so we
have another reason to want to keep the size of the “jumps” as small as
possible. On the whole, because of the “synchronization” of the intervals,
the unified approach does better than the others examined so far in keeping
the size of the jumps small.

9 Pearson’s χ2 Ordering

In analogy with the unified approach, we next consider intervals constructed
by imposing an ordering based on Pearson’s χ2 (instead of −2 lnλ). Ex-
plicitly, the error interval for n observed events is given by the set of all µ
satisfying

U(µ, n) =
∑

k∈A(µ,n)

e−µµk

k!
< C0

where now the set A(µ, n) is defined as

A(µ, n) = { k | k ∈ Z, k ≥ 0, and (k−µ)2

µ
< (n−µ)2

µ
}

The locations of the discontinuities of U(µ, n), which occur at values of µ
that satisfy (k − µ)2/µ = (n− µ)2/µ, are then simply given by

µ =
k + n

2
(k 6= n)

for k = 0, 1, 2, . . . , n − 1, n + 1, n + 2, . . .. The function U(µ, n) for the case
n = 3 is shown here:
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The resulting coverage function C(µ) is shown here:
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It is qualitatively similar to the unified coverage plot on page 19.

10 Probability Ordering

Instead of −2 lnλ or Pearson’s χ2, we can also order on the Poisson proba-
bility itself. In this case, the error interval for n observed events is given by
the set of all µ satisfying

U(µ, n) =
∑

k∈A(µ,n)

e−µµk

k!
< C0

with the set A(µ, n) defined as

A(µ, n) = { k | k ∈ Z, k ≥ 0, and e−µµk

k!
> e−µµn

n!
}

The locations of the discontinuities of U(µ, n) are then given by

µ =

(
n!

k!

) 1
n−k

(k 6= n)
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for k = 0, 1, 2, . . . , n − 1, n + 1, n + 2, . . .. The function U(µ, n) for the case
n = 3 is shown here:
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U(µ,3) vs µ:      U(µ,3)<C0= 0.6827 defines probability ordered n=3 1σ interval
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The resulting coverage function C(µ) is shown here:
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Although quantitatively it is not so different from the unified coverage plot
on page 19 or the Pearson’s χ2 ordering coverage plot on page 23, it seems
at first glance quite different because the smaller discontinuities in C(µ) are
“closed up”, leaving only a discontinuity in the first derivative8. At these
points of discontinuity in the derivative, C ′(µ) actually changes from a nega-
tive value to exactly zero. This behavior represents an improvement, since it
eliminates the interval bias that was present in the neighborhood of the small
discontinuities, but the main discontinuities still remain about the same.

11 Summary and Conclusions

• The intervals (or error bars) based on the change in the value of Pear-
son’s χ2, Neyman’s modified χ′2, the likelihood ratio (−2 lnλ), and the
“improved likelihood ratio” all produce both overcoverage and under-
coverage (at different values of µ). Of these four schemes, the Pearson’s
χ2 approach seems to give the best results. However, (any) undercover-
age is deemed unacceptable by many frequentists—all of these methods

8We ignore the orphan coverage points present at these locations.
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fail that test.

• Classical central intervals, unified intervals, Pearson’s χ2 ordered inter-
vals, and probability ordered intervals all effectively eliminate under-
coverage. The overcoverage of the classical central intervals is clearly
worse than in the other three cases. The coverage functions C(µ) of
the other three are quite similar, with probability ordered intervals ar-
guably giving slightly better properties. However, all these conclusions
only apply to the specific case investigated here: Poisson data with no
background.

• Overcoverage is undesirable, so one is justified in trying to minimize
it. Physicists intuitively expect exact coverage for error bars, but un-
fortunately, exact coverage is not attainable through normal means for
discrete distributions—the Poisson case being a prime example. Inter-
val bias (a wrong value of µ covering at a higher rate than the correct
value of µ), like non exact coverage, is both undesirable and unavoid-
able in the Poisson case (and in the general discrete case).
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Appendix: Interval Tables

Pearson’s χ2 Neyman’s χ′2 Likelihood Improved L
n µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2

0 0.0000 1.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.6319
1 0.3820 2.6180 0.0000 2.0000 0.3017 2.3577 0.1457 2.4170
2 1.0000 4.0000 0.5858 3.4142 0.8976 3.7654 0.8212 3.8117
3 1.6972 5.3028 1.2679 4.7321 1.5840 5.0802 1.5252 5.1198
4 2.4384 6.5616 2.0000 6.0000 2.3185 6.3463 2.2691 6.3815
5 3.2087 7.7913 2.7639 7.2361 3.0841 7.5811 3.0408 7.6131
6 4.0000 9.0000 3.5505 8.4495 3.8719 8.7936 3.8329 8.8232
7 4.8074 10.1926 4.3542 9.6458 4.6765 9.9891 4.6408 10.0168
8 5.6277 11.3723 5.1716 10.8284 5.4946 11.1711 5.4615 11.1973
9 6.4586 12.5414 6.0000 12.0000 6.3237 12.3422 6.2926 12.3670

10 7.2984 13.7016 6.8377 13.1623 7.1619 13.5040 7.1326 13.5277
11 8.1459 14.8541 7.6834 14.3166 8.0080 14.6580 7.9802 14.6807
12 9.0000 16.0000 8.5359 15.4641 8.8609 15.8052 8.8344 15.8270
13 9.8599 17.1401 9.3944 16.6056 9.7198 16.9463 9.6944 16.9674
14 10.7251 18.2749 10.2583 17.7417 10.5840 18.0822 10.5596 18.1025
15 11.5949 19.4051 11.1270 18.8730 11.4529 19.2132 11.4295 19.2330
16 12.4689 20.5311 12.0000 20.0000 12.3262 20.3401 12.3035 20.3592
17 13.3467 21.6533 12.8769 21.1231 13.2033 21.4630 13.1814 21.4816
18 14.2280 22.7720 13.7574 22.2426 14.0839 22.5823 14.0627 22.6005
19 15.1125 23.8875 14.6411 23.3589 14.9679 23.6984 14.9472 23.7161
20 16.0000 25.0000 15.5279 24.4721 15.8548 24.8115 15.8347 24.8288
21 16.8902 26.1098 16.4174 25.5826 16.7445 25.9218 16.7250 25.9387
22 17.7830 27.2170 17.3096 26.6904 17.6368 27.0295 17.6178 27.0460
23 18.6782 28.3218 18.2042 27.7958 18.5315 28.1348 18.5129 28.1510
24 19.5756 29.4244 19.1010 28.8990 19.4285 29.2378 19.4103 29.2537
25 20.4751 30.5249 20.0000 30.0000 20.3276 30.3387 20.3098 30.3543
26 21.3765 31.6235 20.9010 31.0990 21.2287 31.4377 21.2113 31.4530
27 22.2798 32.7202 21.8038 32.1962 22.1317 32.5347 22.1146 32.5497
28 23.1849 33.8151 22.7085 33.2915 23.0364 33.6300 23.0197 33.6447
29 24.0917 34.9083 23.6148 34.3852 23.9429 34.7235 23.9264 34.7381
30 25.0000 36.0000 24.5228 35.4772 24.8509 35.8155 24.8347 35.8298
31 25.9098 37.0902 25.4322 36.5678 25.7605 36.9060 25.7446 36.9201
32 26.8211 38.1789 26.3431 37.6569 26.6715 37.9950 26.6558 38.0089
33 27.7337 39.2663 27.2554 38.7446 27.5838 39.0826 27.5685 39.0963
34 28.6477 40.3523 28.1690 39.8310 28.4975 40.1689 28.4824 40.1824
35 29.5628 41.4372 29.0839 40.9161 29.4125 41.2540 29.3976 41.2673
36 30.4792 42.5208 30.0000 42.0000 30.3286 42.3379 30.3139 42.3510
37 31.3967 43.6033 30.9172 43.0828 31.2459 43.4206 31.2314 43.4335
38 32.3153 44.6847 31.8356 44.1644 32.1643 44.5022 32.1500 44.5150
39 33.2350 45.7650 32.7550 45.2450 33.0838 45.5827 33.0697 45.5953
40 34.1557 46.8443 33.6754 46.3246 34.0043 46.6622 33.9904 46.6747
41 35.0774 47.9226 34.5969 47.4031 34.9258 47.7407 34.9121 47.7531
42 36.0000 49.0000 35.5193 48.4807 35.8482 48.8183 35.8347 48.8305
43 36.9235 50.0765 36.4426 49.5574 36.7716 49.8949 36.7582 49.9070
44 37.8479 51.1521 37.3668 50.6332 37.6958 50.9707 37.6826 50.9826
45 38.7732 52.2268 38.2918 51.7082 38.6209 52.0456 38.6079 52.0574
46 39.6993 53.3007 39.2177 52.7823 39.5468 53.1197 39.5339 53.1314
47 40.6261 54.3739 40.1443 53.8557 40.4735 54.1930 40.4608 54.2045
48 41.5538 55.4462 41.0718 54.9282 41.4010 55.2655 41.3884 55.2769
49 42.4822 56.5178 42.0000 56.0000 42.3293 56.3372 42.3168 56.3486
50 43.4113 57.5887 42.9289 57.0711 43.2583 57.4083 43.2459 57.4195

Lower and upper limits of “68.27%” intervals.
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Classical Unified χ2 Order Probability Order
n µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2

0 0.0000 1.8410 0.0000 1.2904 0.0000 1.5000 0.0000 1.8171
1 0.1728 3.2995 0.3679 2.7505 0.3817 3.0000 0.3817 3.3098
2 0.7082 4.6379 0.7358 4.2504 1.0000 4.5000 1.1447 4.7894
3 1.3673 5.9182 1.1036 5.3012 1.5000 5.5000 1.8171 5.8274
4 2.0857 7.1628 2.3359 6.7764 2.4438 7.0000 2.4438 7.2989
5 2.8403 8.3825 2.7505 7.8064 3.0000 8.0000 3.3098 8.3239
6 3.6201 9.5836 3.8231 9.2783 4.0000 9.5000 4.1226 9.7947
7 4.4185 10.7703 4.2504 10.3006 4.5000 10.5000 4.7894 10.8143
8 5.2316 11.9451 5.3012 11.3187 5.5000 11.5000 5.8274 11.8303
9 6.0565 13.1102 6.3342 12.7905 6.4382 13.0000 6.4382 13.3019

10 6.8913 14.2669 6.7764 13.8060 7.0000 14.0000 7.2989 14.3160
11 7.7344 15.4165 7.8064 14.8194 8.0000 15.0000 8.3239 15.3282
12 8.5847 16.5598 8.8291 16.2920 9.0000 16.5000 9.1183 16.8010
13 9.4413 17.6976 9.2783 17.3043 9.5000 17.5000 9.7947 17.8123
14 10.3035 18.8304 10.3006 18.3152 10.5000 18.5000 10.8143 18.8225
15 11.1706 19.9587 11.3187 19.3249 11.5000 19.5000 11.8303 19.8315
16 12.0422 21.0831 12.3338 20.7991 12.4363 21.0000 12.4363 21.3059
17 12.9178 22.2037 12.7905 21.8084 13.0000 22.0000 13.3019 22.3147
18 13.7971 23.3210 13.8060 22.8169 14.0000 23.0000 14.3160 23.3228
19 14.6798 24.4352 14.8194 23.8247 15.0000 24.0000 15.3282 24.3301
20 15.5656 25.5465 15.8310 25.3003 16.0000 25.5000 16.1169 25.8058
21 16.4542 26.6552 16.2920 26.3079 16.5000 26.5000 16.8010 26.8132
22 17.3455 27.7614 17.3043 27.3150 17.5000 27.5000 17.8123 27.8199
23 18.2393 28.8652 18.3152 28.3216 18.5000 28.5000 18.8225 28.8263
24 19.1354 29.9669 19.3249 29.3278 19.5000 29.5000 19.8315 29.8321
25 20.0337 31.0666 20.3336 30.8049 20.4355 31.0000 20.4355 31.3094
26 20.9340 32.1643 20.7991 31.8110 21.0000 32.0000 21.3059 32.3153
27 21.8362 33.2602 21.8084 32.8169 22.0000 33.0000 22.3147 33.3209
28 22.7403 34.3544 22.8169 33.8223 23.0000 34.0000 23.3228 34.3262
29 23.6461 35.4470 23.8247 34.8275 24.0000 35.0000 24.3301 35.3311
30 24.5535 36.5380 24.8319 36.3057 25.0000 36.5000 25.1162 36.8095
31 25.4624 37.6276 25.3003 37.3110 25.5000 37.5000 25.8058 37.8146
32 26.3729 38.7158 26.3079 38.3160 26.5000 38.5000 26.8132 38.8194
33 27.2847 39.8026 27.3150 39.3207 27.5000 39.5000 27.8199 39.8240
34 28.1979 40.8881 28.3216 40.3251 28.5000 40.5000 28.8263 40.8283
35 29.1123 41.9724 29.3278 41.3294 29.5000 41.5000 29.8321 41.8325
36 30.0280 43.0555 30.3335 42.8090 30.4351 43.0000 30.4351 43.3122
37 30.9449 44.1376 30.8049 43.8134 31.0000 44.0000 31.3094 44.3164
38 31.8628 45.2185 31.8110 44.8176 32.0000 45.0000 32.3153 45.3205
39 32.7819 46.2984 32.8169 45.8216 33.0000 46.0000 33.3209 46.3244
40 33.7020 47.3773 33.8223 46.8254 34.0000 47.0000 34.3262 47.3281
41 34.6231 48.4552 34.8275 47.8291 35.0000 48.0000 35.3311 48.3317
42 35.5452 49.5322 35.8323 49.3097 36.0000 49.5000 36.1159 49.8124
43 36.4682 50.6083 36.3057 50.3135 36.5000 50.5000 36.8095 50.8161
44 37.3921 51.6835 37.3110 51.3171 37.5000 51.5000 37.8146 51.8197
45 38.3168 52.7579 38.3160 52.3206 38.5000 52.5000 38.8194 52.8231
46 39.2424 53.8315 39.3207 53.3240 39.5000 53.5000 39.8240 53.8264
47 40.1688 54.9043 40.3251 54.3273 40.5000 54.5000 40.8283 54.8296
48 41.0960 55.9763 41.3294 55.3304 41.5000 55.5000 41.8325 55.8327
49 42.0240 57.0476 42.3335 56.8121 42.4349 57.0000 42.4349 57.3144
50 42.9527 58.1182 42.8090 57.8153 43.0000 58.0000 43.3122 58.3176

Lower and upper limits of “68.27%” intervals.
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