

� EMBED Word.Picture.6 ��� Fermilab

ETT/ CDF Upgrade Group �
�

TESTCLK V7

CDF Crate Clock and Trigger Driver

Theresa M. Shaw

Walter Stuermer

Original September 6, 1995

Revised April 16, 1996

Revised March 23, 1997	(Board revision C.)

Revised June 10, 1997	(Testbeam version.)

Revised December 15, 1997 (Programmable CDF Clock, restart sequence.)

Revised July 22, 1998	(Corrections, addendums.)

��
�
�
Contents

Section 1	Introduction

Section 2	Changes for Version 7

Section 3	Changes for Version 6

Section 4	Front Panel

Section 5	Using the Testclk with Other CDF Modules

Section 6	Using the Testclk with Mupac and Vipa Compatible Crates

Section 7	Addressable Registers

Section 8	Control register

Section 9	Clock Generator

		Selecting a Clock Source

		Adjusting the Phase of the TSIE Clock and CDF Clock Macroscopic Timing Adjustment

Section 10	CDF Clock Emulator

				Clock Emulator Flash Ram

				Programming the Clock Emulator Flash Ram

Section 11	TSI Emulator

				TSIE Control Register

				Transmitting a Single TSI Sequence

				Sending TSI Data in Loop Mode

				START_WAIT Bit

				Sending TSI Data in Response to the Trigger Input

				TRIGGER_SET Bit

				Synchronizing the TSIE with the Taxi Clock and L2_Word Clock

				Hardwired TSI Restart Sequence

				RESTART_SET Bit

				TSIE Fifo Status

				TSIE Backplane Interface

Section 12	Alignment of Clock and TSI Data Words

Appendex A	TESTCLK Register Guide

Appendex B 	Sample TSIE Pattern

Appendex C	TSIE State Diagram

Appendex D	Comparing V6 and V7 Control Functions

Appendex E	Testclk V7 Jumpers

Appendex F	Front Panel Bus Monitor

�
�
�
1.0 Introduction

The TESTCLK module is designed to allow the user to work with cards that require the signals from the CDF clock and the TSI, in a test crate where one or both of these facilities are not available. The TESTCLK is meant for use in teststands for prototype or production checkout and it will not be used during normal data acquisition.

CDF Clock Emulator simulates the sequence for CDF_CLK and CDF_CLK~, CDF_B0 and CDF_B0~, CDF_ABORT and CDF_ABORT~, CDF_BC and CDF_BC~ as they would normally be generated by the CDF clock.��The Clock Emulator can drive these signals through a cable connected to the front panel to a TRACER module, or can drive the backplane directly. �

The TSI Emulator (ÒTSIEÓ for short) simulates the Trigger Supervisor Interface by sending a programmable command sequence to reset the Level 1 Pipeline, issuing Sync/L1R until a trigger is detected, and sending a programmable sequence to perform the L1A/L2A readout sequence.

The output of the TSIE can be sent to a TRACER through an optical interface on the front panel, or can be sent to the TSIE Backplane (ÒTSIE_BKPLNÓ) interface. The TSIE Backplane interface looks like the TSI interface on the TRACER. There is a SES register and a DONE register; signals which control the operation of other cards in the crate are asserted on the backplane.

2.0 Changes for Version 7

Version 7 of the Testclk includes features to support data acquisition cards that use Fifo based Level 1 pipeline:

In addition to the existing 132 ns clock sources (an onboard oscillator and NIM compatible 53 Mhz RF clock input), a LVDS compatible 132ns clock input has been added.��When this input is selected, all of the CDF clock signals (Bunch 0, Abort Gap, Beam Crossing markers and the CDF clock) come through this connector.�

Generates L1R/Sync sequence when waiting for Trigger, when the L1R_ENABLE bit is set in CSR 10. �

Executes a user programmable sequence when the Restart signal (via NIM compatible external restart or software controlled SET_RESTART bit) and the Bunch 0 marker have been detected. This sequence can be used for Halt/Reset/Run or Halt/Reset/Run plus readout. �

Executes user programmable L1A/L2A readout sequence when the trigger signal (via NIM compatible external trigger or software controlled SET_ TRIGGER bit) is detected.�

Version 7 of the Testclk is designed only to work in the newer, Vipa compatible, 9U VME crates. Earlier versions of the Testclk worked in either the Vipa compatible or the older Mupac style crates.�

A jumper has been provided to disable the assertion of the decoded TSI control signals on the backplane. These control signals will only be asserted on the backplane if the TSI_BKPLN bit in CSR 4 is set and the jumper S4 has been inserted on the board.�

CSR address 0 is used for the diagnostic register and the delay register has been moved to address 0x14.�

The format of the Fifo status has been modified, reflecting a change in the FIFO used for the TSI emulator.

�3.0 Changes for Version 6

Version 6 of the Testclk includes features specific to the needs of the Testbeam environment:

The CDF_CLK (aka MC clock) can be generated by enabling the onboard 132ns oscillator or by applying the 53 Mhz (18.857ns) RF clock to the external, NIM compatible X7CLOCK input.

The NIM compatible EXT_TRIGGER input can be used to initiate a L1 accept/L2 accept sequence. A list of TSI commands is stored in the TSIE Fifo and transmitted when EXT_TRIGGER is detected.�

The NIM compatible EXT_RESTART input can be used to initiate the HALT/RESET /RUN sequence for system startup. The RESTART sequence is hardwired into the TSIE state machine.�

Two 8-bit, 200ns range programmable delays are used to synchronize the MC clock from the CDF clock emulator and the TSI commands with each other and with the timing of the beam crossing time.

In addition, the onboard 132ns clock is controlled by the EXT_CLK_EN bit in CSR4 and is now independent of the state of the CABLE_CLK_EN and BKPLN_CLK_EN bits. Previously, the onboard clock was enabled if the CABLE_CLK_EN or BKPLN_CLK_EN bits were set. Now, the onboard clock is enabled whenever the external 53 Mhz RF clock is disabled.

�4.0 Front panel Connections

No front panel has yet been fabricated for the Testclk V7. The following drawing is intended to identify the various connectors on the front of the Testbeam version of the Testclk.

� EMBED ShapewareVISIO20 ���

�
5.0 Using the Testclk with other CDF Modules

The Testclk is designed to be used by itself, or in conjuction with other CDF front end modules.

Mode 1 - Using the Testclk by Itself

The Testclk can be used by itself, carrying on the roles of the TSI, CDF clock and Tracer.

In this mode, the Testclk can use the onboard 132ns clock generator, or derive the 132ns clock from the external 53 Mhz RF input or 132ns clock input .

Data from the TSI emulator is decoded and asserted on the backplane when the TSI_BKPLN bit is set and jumper S6 is inserted.

Mode 2 - Using the Testclk and Tracer in Different Crates

When the Testclk is used in conjunction with the Tracer, we connect the TSIE output of the Testclk to the TSI input of the Tracer using a fiber optic cable and connect the CDF clock emulator output of the Testclk to the CDF clock input of the Tracer using a CDF clock fanout cable.

In this mode, the Tracer receives the TSI command data, decodes it into control signals for the front end pipeline and asserts them on the backplane. The Tracer also receives the CDF clock signals (CDF_CLK, CDF_BC, CDF_ABORT and CDF_B0) and asserts them on the backplane.

Mode 3 - Using the Testclk and Tracer in the Same Crate

As in mode 2, the TSIE output of the Testclk is connected to TSI input of the Tracer using a fiber optic cable and the CDF clock emulator output of the Testclk is connected to the CDF clock input of the Tracer using a CDF clock fanout cable.

In this mode it is important that the user take the following steps so that the Testclk is not trying to assert various control signals on the CDF backplane at the same time that the Tracer is doing so:

Remove jumper S6 from the Testclk, to prevent the Testclk from asserting the TSI control signals on the backplane.

Remove jumpers S4 and S5 to prevent the Testclk from asserting CDF_CLK on the backplane.

Remove jumper S2 from the Testclk, to prevent the Testclk from asserting CDF_BC, CDF_B0, CDF_ABORT on the backplane.

6.0 Using the Testclk with Mupac and Vipa Compatible Crates

Previous versions of the Testclk have been designed to work in either the older “Mupac style” or newer “Vipa compatible” crates, when the appropriate jumpers are inserted or removed.

Version 7 of the Testclk can only be used in Vipa compatible crates. Attempting to use this version of the Testclk in the older crates will result in damaging one or more chips on the Testclk.�

�
7.0 Addressable Registers

�
� EMBED ShapewareVISIO20 ���

�
The ID Prom (CSR10000-CSR10007F) has 32 characters of ASCII encoded data and is used to identify this card's type and serial number.

The Control register (CSR4) provides miscellaneous control functions, including the selection of the active clock source, enabling the TSIE function, generating global reset and reset of the TSIE Fifo.

The TSIE control register (CSR10) is used to control functions specific to the TSI Emulator, such as enabling "Loop Mode". The TSIE control register enables the external trigger input and external restart input. These input signals can also be emulated by setting specified bits in the TSIE control register.

The Delay register (CSR 14) allows the user to adjust the timing of the TSIE and CDF Clock emulators between 0 and approximately 200ns, in 1.2ns steps.

The Fifo status register (CSR18) is used to read the status of FIFO_A and FIFO_B. Note that the FIFO_A status can also be determined by reading the TSIE control register (CSR 10).

CSR addresses 0x500000 - 0x503FFF allow the user to examine the hex data pattern used to generate the CDF clock emulation.

The Clock Emulator Flash ram (0x500000 - 0x50FFFC) is used to define the pattern of Bunch0, Beam Crossing and Abort Gap markers for the CDF clock emulator. (Only the first sector of the flash ram is used for the clock emulator.)

Flash ram command registers 1 and 2 (0x515554 and 0x50AAA8, respectively) are used to activate the erase and write sequences on the clock emulator flash ram.

TSIE FIFO A (CSR addresses 0x600000 - 0x607FFF) is used to read the event data after a trigger, to send a TSI sequence on TSIE_ENABLE, or to send a TSI sequence in loop mode.

TSIE FIFO B (CSR addresses 0x700000 - 0x707FFF) is used for the halt/reset/run or halt/reset/run plus readout sequence.

�
�
8.0 Control Register

� EMBED ShapewareVISIO20 ����
CSR 4 provides some miscellaneous control functions, including the selection of the active clock source, enabling the TSI Emulator, generating the global reset ("sw_reset"), TSIE Fifo reset, and TSIE reset.

When the “clock mode" field is set to "0", the Testclk uses the onboard 132ns clock generator to run the CDF clock emulator and TSI emulator. When this field is set to “1”, the Testclk takes the 18.8ns "ext_x7clock" (a NIM compatible signal that comes from the accelerator) input and and uses it to generate the 132ns clock. When this field is set to “2”, the LVDS compatible 132ns clock input is used. By default, the 132ns clock comes from the onboard oscillator (clock_mode = 0).

�Note that bit 30, which used to control the clock control function, is now a read-only bit that is set to “1” when the clock_mode is “1”, and is set to “0” otherwise.

Also, two other bits, CABLE_CLK_EN and BKPLN_CLK_EN, which used to turn the onboard oscillator on or off, no longer carry out this function. These functions still control whether the CDF Clock emulator signals (MC_CLK, BUNCH0, ABORT, BC) are asserted on the backplane and/or front panel connectors.

�
9.0 The Clock Generator

�
� EMBED ShapewareVISIO20 ���

Figure 1 - MC and TSIE Clock Sources

�
Selecting a Clock Source

As shown above, the 132ns clock can be derived from the onboard 132 ns oscillator clock, from the 53 Mhz RF clock input, or the 132 ns clock input. One of these clock sources must be present and enabled for the TSI emulator and CDF Clock emulator to function.

The [clock_mode] field, found in the CSR4 control register, controls which clock source is currently active. The onboard oscillator clock is turned off (0 Hz) when the clock_mode is set to 1 (external 53 Mhz clock) or 2 (external 132ns clock).

Adjusting the Phase of the�TSIE Clock and CDF Clock

Two 8 bit programmable delays allow us to align the mc_clock and tsie_clock with each other and with a third time reference, the beam crossing time. The 8 bit delay for the mc_clock and tsie_clock are set in CSR 14, the delay control register.

It is assumed that the mc_clock and L1A, as seen on the target crate’s backplane, will be put on an oscilliscope and different values written to the delay register until the correct alignment is observed. (L1A is a TSIE derived signal and requires writing data to the TSIE FIFO.)

The mc_clock (also known as cdf_clk) is used to provide the precise timing for the signals generated by the CDF Clock Emulator and TSI Emulator. It is asserted on the CDF backplane (as a differential PECL signal) when the [bkpln_clk_en] bit is set in CSR4. (Jumpers S13 and S15 must also be present). It is asserted on the front panel connector (as a differential LVDS signal) when the [cable_clk_en] bit is set in CSR4.

The mc_clock is also used to drive the CDF clock emulator, so the same programmable delay is applied to the signals generated by the clock emulator as the mc_clock.

Macroscopic Timing Adjustment

A different timing problem occurs when the TSIE is programmed to wait for the next Bunch 0 marker before executing the data readout sequence stored in Fifo A or the halt/reset/run sequence stored in Fifo B.

It has been observed that data that is sent from the TSIE to the Tracer via fiber optic link is delayed about 3 clock cycles x 132ns each, relative to the delivery of the Bunch0 marker via the front panel connector for the CDF clock emulator.

This delay is greater than the adjustment available via the Delay control register. It is assumed that the user will compensate for this macroscopic delay by removing data words from the beginning of the data readout and/or halt/reset/run sequences. If this is not possible, then the user may have to add enough (empty) Level 2 and Level 1 control words to the beginning of these sequences (delaying the active control sequences until the next Bunch0 marker), then remove some of these control words to advance the TSIE data in time.

If the BUNCH0_WAIT bit (for the data readout sequence in Fifo A) or RESTART_WAIT bit (for the halt/reset/run sequence in Fifo B) are set, then the corresponding TSIE data will be delayed until the next Bunch0 marker is detected. If the user adds 1111 empty control words to the beginning of either sequence, the first active word in the sequence will be issued on the second Bunch0 marker.

�
10.0 CDF Clock Emulator

� EMBED Visio.Drawing.3 ���

�
The CDF clock emulator provides the user the ability to drive a pre-programmed set of clock gates as well as the 132ns CDF clock. A flash ram is used to drive a set of clock gates which have been programmed to match expected operating conditions. The clock gating signals driven by the PROM output are CDF_B0~, CDF_BC~, and CDF_ABORT~.

The clock driver may be turned on in two modes. In the first mode, the user would set the cable_clk_en bit in CSR4 to a “1”. This bit would then cause the clock and gating signals to be driven to the front panel connector. A cable could then be run from the TESTCLK to the TRACER, which would then drive the clock and gates directly onto the backplane.

In the second mode, the user would assert the bkpln_clk_en bit in CSR4. This bit allows the TESTCLK to drive the clock and gates directly on the backplane. When this bit is not set, the output buffer on the CDF backplane goes to the high impedence state. This allows the Testclk to be inserted in the same crate as a Tracer, which also wants to drive these signals.

Note that when the jumper S2 has been removed from the board, the clock signals driving the CDF backplane are forced into the high impedence state. This jumper (S2) should be removed before the Testclk is inserted in the same crate as a Tracer module.

Also note that jumpers are installed on the CDF_CLK and CDF_CLK~ lines. These must be installed if the TESTCLK module is meant to provide the clock. If the Testclk is going to be in the same crate as the TRACER or an equivalent, these jumpers must be left off.

Clock Emulator Flash Ram

The Clock Emulator Flash Ram is programmed with the pattern of abort gap, beam crossing, and bunch 0 gates that accompany the 132ns CDF clock. The flash ram is non-volatile memory that can be reprogrammed with a different sequence of gates, if needed.

�
Programming the Clock Emulator Flash Ram

�
Because the clock emulator pattern is stored in in a non-volatile (flash) memory, it is not necessary to download this memory every time the Testclk is powered up. The user should only download this memory when the pattern of clock gates needs to be changed.

The Testclk uses the AMD 29F010, a 128K x 8 bit sector erase flash ram to store the CDF clock emulator pattern. The user is directed to the data sheet for this part, available at www.amd.com/ products/nvd/techdocs/techdocs.html (look for “5.0 Volt-only Flash Memories”) for detailed information regarding the operation of this part. A simplified procedure for programming this memory is described below.

The 128 Kbytes of data in the 29F010 is divided into 8 sectors of 16 Kbyte each but the clock emulator only uses 1111 words to store the pattern for the clock emulator, so we will only be using the first sector in this device.

Step 1

The first step in downloading a pattern to the clock emulator flash ram is to erase the first sector in this memory. This is done as follows:

Define CMD1 = YY515554

Define CMD2 = YY50AAA8

write 0xAA00 0000 to CMD1

write 0x5500 0000 to CMD2

write 0x8000 0000 to CMD1

write 0xAA00 0000 to CMD1

write 0x5500 0000 to CMD2

write 0x1000 0000 to CMD1

Erasing a sector takes up to 1 second, so it may be desirable to put a delay in any program that is going to perform this operation, after this sequence

�Step 2

To write the new pattern to the clock emulator flash ram, the following procedure is used:

address = YY500000

i = 0

n = 0x0456

for i = 0 to n-1

write 0xAA000000 to CMD1

write 0x55000000 to CMD2

write 0xA0000000 to CMD1

write pattern[i] to address

i = i+1

address = address+1

end for

The clock emulator uses a counter to generate the addresses that go to the flash ram that generates the abort gap, beam crossing and bunch 0 gates. This counter has been programmed to go from 0 to 457 hex (1110 decimal). This corresponds to the 1111 RF buckets in the accelerator. Therefore, all data files for programming the clock emulator flash ram should be 1111 words in length. The format of the data in the flash ram is as follows:

� EMBED ShapewareVISIO20 ���

There are two standard clock emulator flash ram data files available:

132ns_timing.hex	Emulates the CDF clock in 132ns mode where every accelerator bucket is occupied.

396ns_timing.hex	Emulates the CDF clock in 396ns mode (where every third bucket is filled with beam).�
11.0 TSI Emulator

� EMBED Visio.Drawing.3 ���

�
The TSIE generates a data word or empty Taxi cycle (called a “sync” word) every 66ns.

The TSIE provides the user with the ability to:

Send any pattern of 9-bit TSI data words and empty frames, up to 8k in length.

Send any pattern of 9-bit TSI data words and empty frames, up to 8k in length, in a continuous loop.

Emulate the complete data acquistion sequence, issuing L1R and Sync words until the Restart or Trigger signals are detected. Restart causes the TSIE to wait for the next Bunch0 marker and execute the Halt/Reset/Run sequence that has been stored in Fifo B and the Trigger signal causes the TSIE to execute data readout sequence stored in Fifo A.

The output of the TSIE can be sent to a TRACER through the optical interface on the front-panel. This data is also decoded and asserted on the CDF backplane when the TSI_BKPLN bit is set in CSR4.

�TSIE Control Inputs

The Restart and Trigger signals mentioned above can be come from NIM compatible front panel connectors or by writing to the RESTART_SET or TRIGGER_SET bits in the TSIE control register (CSR 10).

The tsie_enable control, which is used to send an arbitrary set of TSI commands either once or in a loop, are controlled by writing to CSR 4.

The Bunch 0 marker comes from the CDF clock emulator or the LVDS compatible “X1CLOCK” input, when this is selected via CSR 4.

Other signals which control the behavior of the TSIE are controlled by the TSIE Control register (CSR 10). These include “loop_enable”, “L1R_enable”, “trigger_enable”, “restart_enable”, “bunch0_wait”, and “restart_wait”.

�
� EMBED ShapewareVISIO20 ���

�
TSIE Control Register

The TSIE Control register (CSR10), allows the user to control certain functions in the TSIE and, by decoding this register, to determine the status of the TSIE. Other control functions (TSIE_RESET, FIFO_RESET, TSIE_ENABLE) are controlled by CSR4.

� EMBED ShapewareVISIO20 ���

Fifo Status Register

The Fifo Status register (CSR14), allows the user to determine the status of each of the 2 Fifos used by the TSIE. Note that the status of FIFO_A can also be determined by reading the contents of the TSIE Control register (CSR10).

� EMBED ShapewareVISIO20 ���

�The interpretation of the two Fifo status fields is as follows:

� EMBED ShapewareVISIO20 ���

Simplified TSIE State Diagram

The simplified state diagram for the TSIE on the top of this page shows an overview of the TSIE behavior. A more comprehensive state diagram is shown in Appendex C.

The TSIE starts in State 0 until it sees one of the conditions listed below:

 If “tsie_enable” is set to 1, the TSIE will send an arbitrary sequence of TSI commands that has been loaded in Fifo A one time, or to send this over and over again in a loop (if the “loop_enable” bit has been set).��Note that the TSI data is not sent until the next Bunch 0 marker is detected when the “start wait” bit has been set.

If “restart_enable” is set and a rising edge on the Restart signal is detected, the TSIE will send a Halt/Reset/Run sequence that has been loaded in Fifo B and go back to state 0. The read pointer for Fifo B are reset to its initial state in order to be ready for the next restart signal.��Note that the Halt/Reset/Run data is not sent until the next Bunch 0 marker is detected when the “restart_wait” bit has been set.�

If “trigger_enable” is set and a rising edge on the trigger signal is detected, the TSIE will execute the L1A/L2A readout sequence (stored in Fifo A), and go back to waiting in state 0. The read pointer in Fifo A is reset to its initial state in order to be ready for the next trigger signal.��Just like the last case, the readout sequence stored in Fifo A is not sent until the next Bunch 0 marker when the “restart_wait” bit has been set.

The “L1R_enable” bit causes the TSIE to issue sync/L1R when waiting for one of the above conditions. If this bit is not set, the TSIE issues only “sync” words.

The state machine makes one transition every 33ns. It has been designed to generate one Taxi strobe (or empty frame) every 66ns, and to guarantee that every Level 2 word occurs on even 132ns boundaries with respect to each other.

Transmitting a Single TSI Sequence

The TSIE_ENABLE bit (located in CSR4) allows the user to send an arbitrary sequence of TSI commands. When this bit it set, a state machine reads each word from Fifo A and writes it to the Taxi input register. When this Fifo becomes empty, the state machine stops.

TSIE_DATA[8:0] represents the TSI data to be sent to the TRACER. TSIE_DATA[9], the ÒsyncÓ bit, tells the state machine to ignore the TSI data and transmit an empty frame (Taxi “Sync”) instead.

Sample TSIE_DATA[9:0] patterns are shown in Appendix B. Note that TSIE_DATA[8:0] is defined by the document ‘Trigger Supervisor Protocols for Run II’ by the CDF Group/Yale University. The user must have a good understanding of the above document to create a trigger pattern.

The recommended sequence for sending a TSI sequence is as follows:

1.	Check that CLOCK_MODE=0 (onboard 132ns oscillator is enabled), or that there is a 18.8ns, NIM compatible clock source attached to the EXT_X7CLOCK input (CLOCK_MODE=1), or that there is a 132ns LVDS compatible clock source on the EXT_X1CLOCK input (CLOCK_MODE=3).

2.	Set TSIE_ENABLE = 0,�FIFO_RESET = 1,�BUNCH0_WAIT = 1

4.	Set FIFO_A_RESET = 0

5.	Load Fifo A with data.

6.	Set TSIE_ENABLE = 1

Sending TSI Data in Loop Mode

It is possible to send the same TSI data again and again in a loop. The procedure is the same as sending the data once, except that LOOP_ ENABLE bit in CSR10 should be set before TSIE_ENABLE is set to 1.

The user should be aware that the TSIE will insert an single empty ÒsyncÓ frame into the data stream at the end of the Fifo data, while the state machine restores the read pointer. Usually, this means that the user will use an odd number of TSI data words and plan on using the empty frame as a Level2 reject.

The user should also be aware that it is very important that Fifo A is reset before the data for the loop has been loaded. The reason for this is that the TSIE state machine restores the Fifo read pointer to a previously saved state at the end of each loop. Doing a Fifo reset before loading the TSI data causes the Fifo to store the read pointer for the empty Fifo. If this is not done the user may find that data previously loaded into the TSI Fifo may be output along with the intended data. (Resetting the Fifo causes it to store the read pointer for the empty Fifo.)

START_WAIT Bit

The START_WAIT bit (CSR10) allows the user to synchronize the operation of TSIE with other system components. When the START_WAIT bit is set, the TSIE state machine will not start transmitting data until the next Bunch 0 marker is detected (the TSIE_ENABLE bit must also be set).

Sending TSI Data in Response to the Restart and Trigger Inputs

The Testclk can be setup to wait for the “Restart” signal (and optionally, the Bunch 0 marker), send a Halt/Reset/Run sequence of TSI commands, wait for the “Trigger” signal, and send a second sequence of commands to simulate the L1A and L2A sequence. It is anticipated that this is the normal mode in which the Testclk will be used in the Testbeam environment.

The recommended sequence for setting up the Testclk to respond to external triggers is as follows:

1. Check that CLOCK_MODE=0 (onboard 132ns oscillator is enabled), or that there is a 18.8ns, NIM compatible clock source attached to the EXT_X7CLOCK input (CLOCK_MODE=1), or that there is a 132ns LVDS compatible clock source on the EXT_X1CLOCK input (CLOCK_MODE=2).

2.	Set TSIE_ENABLE=0,�TRIGGER_ENABLE=0,�RESTART_ENABLE=0,�L1R_ENABLE=1,�RESTART_WAIT=1

3. Set FIFO_A_RESET=1�Set FIFO_B_RESET=1

4. Set FIFO_A_RESET=0�Set FIFO_B_RESET=0

5.	Load FIFO_A with the data readout sequence and FIFO_B with the Halt/Reset/Run sequence.�

6.	Set TRIGGER_ENABLE=1 and RESTART_ENABLE=1.

7. The TSIE will respond to the “restart” and “trigger” signals with the sequences loaded above.

The TSIE issues L1R and Sync until the Restart or Trigger signals are detected. When the TSIE detects the Restart signal it will wait for the Bunch0 marker and transmit the data stored in Fifo B. It then restores the read pointer for Fifo B so that it is ready for another “restart” signal. The TSIE resumes generating L1R and Sync.

When the TSIE detects the “trigger” signal, it transmits the contents of Fifo A and restores the read pointer so that the TSIE is ready for the next trigger. The TSIE goes back to state 0, where it generates L1R and Sync words.

Some notes on the procedure above:

It is not necessary that TSIE_ENABLE be set in order to enable the external trigger. (When this bit is set, the TSIE immediately starts to transmit the contents of TSIE Fifo A through the Taxi.)

The reset control bit for each Fifo has to be set (then cleared) before loading each of the TSIE Fifos. The reasons are the same as described under the procedure for "Sending TSI Data in Loop Mode".

The data should be loaded into Fifo A and Fifo B before setting TRIGGER_ENABLE and RESTART_ENABLE.

RESTART_SET Bit

The RESTART_SET bit allows the user to simulate a NIM pulse on the EXT_RESTART input. If the Testclk has been set up as described in the section on using the external trigger, the TSIE will transmit the data found in FIFO_A and FIFO_B, restore the read pointer for each Fifo, and wait for another (internal or external) trigger. Like the external restart signal, the RESTART_SET bit will not cause a response unless the RESTART_ ENABLE bit has been set.

The RESTART_SET bit is self-clearing.

�
TRIGGER_SET Bit

The TRIGGER_SET bit allows the user to simulate a NIM pulse on the EXT_TRIGGER input. If the Testclk has been set up as described in the section on using the external trigger, the TSIE will transmit the data found in the TSIE Fifo, restore the read pointer in the Fifo, and wait for another (internal or external) trigger. Like the external trigger, the TRIGGER_SET bit will not cause a response unless the TRIGGER_ ENABLE bit has been set.

The TRIGGER_SET bit is self-clearing.

 Synchronizing the TSIE with the Taxi Clock and L2_word Clock

When the TSIE detects the external trigger signal (which implies that TRIGGER_ENABLE must have been set) it synchronizes the transmission of the first TSI data word with the clock which drives the Taxi and with another clock which keeps track of whether we are on an even or odd numbered Taxi word.

The TSIE state machine is driven by a 33ns clock ("tsie_x4clock") that is generated by a phase locked loop ("PLL"). The same PLL generates a 66ns clock called "tsie_x2clock" that is used to drive the Taxi transmitter and a 132ns clock called "tsie_x1clock".

The state machine checks the state of the tsie_x2clock to make sure that it always writes data to the Taxi on the same phase of the Taxi clock.

The state machine also checks the state of the tsie_x1clock so that it always starts transmitting a sequence of TSIE data on an even 132ns boundary. The reason for this is that TSI data always consists of pairs of data words where the first word is a L2 word and the second a L1 word. This way the TSI always sends the L2 words on even 132ns boundaries.

Fifo Status Register

� EMBED ShapewareVISIO20 ���

It is possible to determine the state of each of the TSIE Fifos by looking up the designated field of the register (CSR14) using the table:

� EMBED ShapewareVISIO20 ���

It is possible to determine the TSIE machine state (RS3..RS0) by decoding the contents of CSR10.

TSIE Backplane Interface

The TSIE_BKPLN bit (CSR4) controls whether the data read from the FIFO is sent to the TSIE Backplane interface. This interface emulates the TSI (receiving) interface on the TRACER.

The TESTCLK module also has Start Scan and Done Registers which will allow the user to check for a L2 Accept by reading the Start Scan Register and to clear it by writing to the Done Register. Please note that there is no start scan/done interlock like there is in a normal system. It is possible to program several L2 Accepts into the FIFO which will be able to overwrite each other without checking the state of Done.

When the TSIE Backplane Interface detects a Start Event Scan trigger word, the event ID and SES buffer address data is written to the Start Scan register. The Start Scan bit is also set at this time. The VRC can poll the Start Scan register until the Start Scan goes high, then use the buffer address to read L2 data from a set of front-end (eg ADMEM) cards.

�
The TSIE Backplane Interface asserts the following data from TSI Level 1, TSI Control, and TSI Calibration Enable directly on the CDF backplane:

� EMBED ShapewareVISIO20 ���

As discussed in the section on the clock generator, the 132 ns clock goes through a 30-230ns programmable delay (controlled by the CLK_DELAY field in the Delay Control register). This delayed signal then drives a phase locked loop to generate several copies of this 132 ns clock. One of these clocks is used to drive the "MC" clock on the CDF backplane. This signal is driven on the backplane only when the appropriate jumpers (S13 and S15) are inserted.

PLEASE Note that at any time only one clock driver or one CDF signal driver should be installed in a crate. Multiple TRACER and TESTCLK combinations can damage buffers. The safest method is to install only one TESTCLK or TRACER per crate.

Another copy of this delayed 132ns clock is used drive the "MC_CLK" clock on the front panel connector (along with "MC_B0", "MC_ABORT" and "MC_BC").

Finally, a third copy of this delayed 132ns clock is used to drive the CDF clock emulator.

12.0 Alignment of Clock and Trigger Signals

Two independent 8 bit programmable delays allow the user to properly align the output of the TSIE with the backplane CDF_CLOCK, and to align both with a third timing signal, such as the local beam crossing time.

All CDF signals are required to be valid at least 10 ns before and after the rising edge of CDF_CLOCK, monitored on the VME backplane.

The "tsie_delay" and "mc_delay" fields in the delay control register (CSR 0) allow the user to move the output of the CDF Clock Emulator (MC_CLK, MC_B0, MC_ABORT and MC_BC) in approximately 1.2 ns increments, over a range of approximately 200ns.

As discussed in Section 9, under “Macroscopic Timing Adjustment”, the delay control register is useful for adjusting the phase of the TSIE data so that it occurs at the right time relative the mc_clock, but the range is insufficiant to move the timing of the TSIE data relative the Bunch 0 marker.

When the BUNCH0_WAIT bit (effecting the data readout sequence in Fifo A) or RESTART_WAIT bit (which effects the halt/reset/run sequence in Fifo B) are set, then the corresponsing TSIE data will be delayed until the next Bunch0 marker is detected. The data which is sent from the TSIE to the Tracer via fiber optic link is delayed about 396ns relative the delivery of the Bunch0 marker via the front panel cable connection.

In order to compensate for this delay, it is necessary for the user to remove data words from the beginning of the data readout and/or halt/reset/run sequences. If this is not possible, the user will have to add 1111 empty control words to the beginning of either sequence, which will delay the first active word in the sequence to the second Bunch0 marker, then remove some of these words to advance the TSIE data in time.

�
�

APPENDIX A

TESTCLK Register Guide

�
ADDRESSABLE REGISTERS

�
� EMBED ShapewareVISIO20 ����
Delay Register

� EMBED ShapewareVISIO20 ���

�Control Register

� EMBED ShapewareVISIO20 ���

SES Register

� EMBED ShapewareVISIO20 ���

TSIE Control Register

� EMBED ShapewareVISIO20 ���

Fifo Status Register

� EMBED ShapewareVISIO20 ���

Clock Emulation Flash Ram

� EMBED ShapewareVISIO20 ���

TSIE Fifo Data

� EMBED ShapewareVISIO20 ���

TSIE Fifo Status

� EMBED ShapewareVISIO20 ���

TSI Data - Level 1 word

� EMBED ShapewareVISIO20 ���

TSI Data - Start Event Scan Word

� EMBED ShapewareVISIO20 ���

TSI Data - Control Word

� EMBED ShapewareVISIO20 ����

�

APPENDIX B

Sample TSIE Patterns

�
" Sample TSIE Pattern

" Every control line is activated,

" one at a time.

H000 "L1 word - nothing active

H007 "Control word - set Halt

H000 "L1 word - nothing active

H00B "Control word - set Reset

H000 "L1 word - nothing active

H013 "Control word - set TEST

H000 "L1 word - nothing active

H043 "Control word - set SCN0

H000 "L1 word - nothing active

H083 "Control word - set SCN1

H000 "L1 word - nothing active

H103 "Control word - set SCN2

H000	 "L1 word - nothing active

H023 "Control word - set

H000 "L1 word - nothing active

H005 "Calibration Word - set CAL0

H000 "L1 word - nothing active

H009 "Calibration Word - set CAL1

H000 "L1 word - nothing active

H011 "Calibration Word - set CAL2

H000 "L1 word - nothing active

H021 "Calibration Word - set CAL3

H000 "L1 word - nothing active

H041 "Calibration Word - set CAL4

H000 "L1 word - nothing active

H081 "Calibration Word - set CAL5

H000 "L1 word - nothing active

H101 "Calibration Word - set CAL6

H004 "L1 word - set L1A

H200 "sync

H008 "L1 word - set L1R

H200 "sync

H014 "L1 word - set L1A, L1B0

H200 "sync

H024 "L1 word - set L1A, L1B1

H200 "sync

H044 "L1 word - set L1A, RSRV1

H200	 "sync

H084 "L1 word - set L1A, L1W0

H200 "sync

H104 "L1 word - set L1A, L1W1

H200 "sync

H000 "L1 word - nothing active

H002 "L2 word

H000 "L1 word - nothing active

H006 "L2 word - set SESB0

H000 "L1 word - nothing active

H00A "L2 word - set SESB1

H000 "L1 word - nothing active

H012 "L2 word - set RSVD

H000 "L1 word - nothing active

H022 "L2 word - set EVID0

H000 "L1 word - nothing active

H042 "L2 word - set EVID1

H000 "L1 word - nothing active

H082 "L2 word - set EVID2

H000 "L1 word - nothing active

H102 "L2 word - set EVID3

H000 "L1 word - nothing active

�" Example of (FIFO_A)

" Data Readout Sequence

H200 "L2 : L2 Reject

H004 "L1 : L1A Buffer 0 (1)

H200 "L2 : L2 Reject	

H014 "L1 : L1A Buffer 1 (2)

H200 "L2 : L2 Reject	

H024 "L1 : L1A Buffer 2 (3)

H200 "L2 : L2 Reject

H034 "L1 : L1A Buffer 3 (4)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(5)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(6)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (7)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (8)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (9)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (10)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(11)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(12)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (13)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (14)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(15)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(16)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (17)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (18)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (19)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (20)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(21)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(22)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (23)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (24)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(25)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(26)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (27)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (28)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (29)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (30)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(31)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(32)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (33)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (34)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(35)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject	(36)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (37)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (38)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (39)

H200 "L2 : L2 Reject

H008 "L1 : L1 Reject (40)

H200 "L2 : L2 Reject

H000 "L1 : null	(41)

H002 "L2 : L2A Buffer 0

H000 "L1 : null	(42)

H006 "L2 : L2A Buffer 1

H000 "L1 : null	(43)

H00A "L2 : L2A Buffer 2

H000 "L1 : null	(44)

H00E "L2 : L2A Buffer 3

H000 "L1 : null	(45)

" Example of (FIFO_B)

" Halt/Reset/Run Sequence

H007 "Control : HALT

H000 "L1 : Null

H00B "Control : RESET

H000 "L1 : Null

H023 "Control : RUN

H000 "L1 : Null

�
" Example of (FIFO_B)

" Sequence to Reset the

" Level 1 Pipeline, Clock

" the L1 Pipeline 42 Times,

" Then Accept the Next Event

H007 "CONTROL : HALT

H000 "L1 : Null

H00B "CONTROL : RESET

H000 "L1 : Null

H023 "CONTROL: RUN

H000 "L1 : Null (0)

H200 "L2 : L2 Reject

H000 "L1 : Null (1)

H200 "L2 : L2 Reject

H000 "L1 : Null (2)

H200 "L2 : L2 Reject

H000 "L1 : Null (3)

H200 "L2 : L2 Reject

H000 "L1 : Null (4)

H200 "L2 : L2 Reject

H000 "L1 : Null (5)

H200 "L2 : L2 Reject

H000 "L1 : Null (6)

H200 "L2 : L2 Reject

H000 "L1 : Null (7)

H200 "L2 : L2 Reject

H000 "L1 : Null (8)

H200 "L2 : L2 Reject

H000 "L1 : Null (9)

H200 "L2 : L2 Reject

H000 "L1 : Null (10)

H200 "L2 : L2 Reject

H000 "L1 : Null (11)

H200 "L2 : L2 Reject

H000 "L1 : Null (12)

H200 "L2 : L2 Reject

H000 "L1 : Null (13)

H200 "L2 : L2 Reject

H000 "L1 : Null (14)

H200 "L2 : L2 Reject

H000 "L1 : Null (15)

H200 "L2 : L2 Reject

H000 "L1 : Null (16)

H200 "L2 : L2 Reject

H000 "L1 : Null (17)

H200 "L2 : L2 Reject (18)

H000 "L1 : Null (18)

H200 "L2 : L2 Reject (19)

H000 "L1 : Null (19)

H200 "L2 : L2 Reject (20)

H000 "L1 : Null (20)

H200 "L2 : L2 Reject

H000 "L1 : Null (21)

H200 "L2 : L2 Reject

H000 "L1 : Null (22)

H200 "L2 : L2 Reject

H000 "L1 : Null (23)

H200 "L2 : L2 Reject

H000 "L1 : Null (24)

H200 "L2 : L2 Reject

H000 "L1 : Null (25)

H200 "L2 : L2 Reject

H000 "L1 : Null (26)

H200 "L2 : L2 Reject

H000 "L1 : Null (27)

H200 "L2 : L2 Reject

H000 "L1 : Null (28)

H200 "L2 : L2 Reject

H000 "L1 : Null (29)

H200 "L2 : L2 Reject

H000 "L1 : Null (30)

H200 "L2 : L2 Reject

H000 "L1 : Null (31)

H200 "L2 : L2 Reject

H000 "L1 : Null (32)

H200 "L2 : L2 Reject

H000 "L1 : Null (33)

H200 "L2 : L2 Reject

H000 "L1 : Null (34)

H200 "L2 : L2 Reject

H000 "L1 : Null (35)

H200 "L2 : L2 Reject

H000 "L1 : Null (36)

H200 "L2 : L2 Reject

H000 "L1 : Null (37)

H200 "L2 : L2 Reject

H000 "L1 : Null (38)

H200 "L2 : L2 Reject

H000 "L1 : Null (39)

H200 "L2 : L2 Reject

H000 "L1 : Null (40)

H200 "L2 : L2 Reject

H004 "L1 : L1A Buffer 0 (41)

H200 "L2 : L2 Reject

H004 "L1 : L1A Buffer 1 (42)

H200 "L2 : L2 Reject

H004 "L1 : L1A Buffer 2 (43)

H200 "L2 : L2 Reject

H004 "L1 : L1A Buffer 3 (44)

H200 "L2 : L2 Reject

�

APPENDIX C

TSIE State Diagram

�
� EMBED Visio.Drawing.3 ���

�
The above state diagram shows a more detailed view of how the TSIE state machine works than that presented in section 11.

Basically, states S0 through S3 generate the SYNC/L1R sequence. The TSIE stays in this loop until the trigger signal or restart signal is detected.

States S4 and S5 read data out of Fifo A (the “data readout” sequence) and sends it to the Taxi. In the same way, states 9 and 10 reads the data out of Fifo B (the “halt/reset/run” sequence) and sends it to the Taxi.

Some signals are asserted when the state machine enters a certain state and are cleared when the state machine enters the next state. For example, the read strobe for Fifo A (“rstrobe_a”) is generated when the state machine enters state S4.

All output functions of the TSIE are fully synchronous and are driven by the same 33ns clock (“x4clock”) as the state machine.

In some cases, a flag is set when the state machine enters one state, and this flag causes a output function on the next rising edge of the state machine clock. For example, TXBIT is set when the state machine enters state S10 and the Taxi strobe to be generated when the state machine enters the next state. This way, the state machine can generate a Taxi strobe when we enter S9 from S10, but not when we enter S9 from S0.

The state machine bounces back and forth between states S9 and S10 in order to generate the Halt/Reset/Run sequence that has been stored in Fifo B. The Fifo read strobe is asserted when the state machine in S9. When the state machine makes its transition to S10, it sets the TXBIT if bit 9 of the data word just read out is equal to “0”. The data word is stored in a temporary register at the same time.

Assuming that the Fifo is not yet empty, the state machine will go back to state S9, initiating the next read strobe for Fifo B. If the TXBIT is set (bit 9 in the data word was “0”) a Taxi strobe (“txstrobe”) will be generated and the last data word read out will be written to the Taxi. If the TXBIT was not set no Taxi strobe is generated. This causes the Taxi to generate an empty data frame, called “sync”.

This allows the user to download a sequence of any TSI words, including syncs, to Fifo B for the Halt/Reset/Run sequence.

The state machine makes a transition to state S10, and back to S9… and so on. Eventually, there will be no more data left in Fifo B and the state machine will make a transition from state S10 to S11 to S0. The state machine will generate a Taxi strobe in S11, assuming that TXBIT was set in S10.

The S4…S5 loop works the same way as S9…S10, except that the data is read from Fifo A instead of Fifo B.

The TXBIT works in a similar fashion during the S0…S3 loop. Because the txbit is cleared in state S0, no Taxi strobe is generated in S1. We latch the data for a L1 Reject (“L1R”) equal to hex 0x008 in S2, but a Taxi strobe is only generated in S3 if the TXBIT was set in S2. The TXBIT is set when we enter S2 if the L1R_ENABLE bit is set in the control register. So, we either get SYNC/L1R or SYNC/SYNC , depending upon the state of the L1R_ENABLE bit in CSR10.

Another function that has to be generated by the state machine is “retransmit” or simply “rt”. When this is asserted and cleared, the read pointer in the Fifo is restored to a previously stored state, allowing the data in the Fifo to be sent over again. There is one “rt” signal for each of the two Fifos, RT_A and RT_B.

RT_A is generated when the state machine enters S6. The state machine has been bouncing between S4 and S5 and Fifo A is now empty. Either we have LOOP_EN set and we want to retransmit the data in FIFO_A in an infinite loop, or we have just executed the data readout sequence in response to a Trigger and want to make sure that the fifo is ready for the next one. In the first case, the state machine goes from S6 to S7 and back to S4, transmitting the contents of Fifo A again. This only stops when the user clears the TSIE_ENABLE bit in the control register. In the second case, the state machine goes from S6 to S0, where it will wait for the next Trigger or Restart signal.

RT_B is asserted when the state machine enters S11 and cleared when it goes to S0. This restores Fifo B after sending the Halt/Reset/Run sequence and prepares the Fifo for the next Restart signal.

Note that since the state machine makes a transition every 33ns and the Taxi chip is clocked every 66ns, every other state is designated for generating the Taxi strobe (“txstrobe”). The state machine has been designed so that it makes an even number of transitions from any state that generates txstrobe to any other state (or the same state) which generates a txstrobe.

�

APPENDIX D

Comparing V6 and V7 Control Functions

�
�
Unchanged Registers and Fields � EMBED ShapewareVISIO20 ���

Moved Registers and Fields

� EMBED ShapewareVISIO20 ���

New Registers and Fields

� EMBED ShapewareVISIO20 ���

Control Fields with Changed Behavior

� EMBED ShapewareVISIO20 ���

Fifo Status Decoding

� EMBED ShapewareVISIO20 ���

�
Notes:

1. Clock Source Selection and Activation

The Testclk V4 derives its 132ns clock from the onboard oscillator. This oscillator is turned on only when the [cable_clk_en] or [bkpln_clk_en] bits are set. In addition to controlling whether the CDF clock is available to the front panel connector and/or the CDF backplane, when both of these bits are clear no clock is available to the TSI emulator or the TSI emulator Taxi chip, resulting in an invalid TSIE data link.��The Testclk V6 derives its 132ns clock from the onboard crystal oscillator or the 53 Mhz Nim compatible accelerator clock. Which source was active is controlled by the [ext_clk_en] (external clock enable). The [cable_clk_en] and [bkpln_clk_en] bits still control whether the CDF clock is available on the front panel connector or CDF backplane, but do not turn the onboard oscillator on or off.��The Testclk V7 derives its 132ns clock from 1) the onboard oscillator, 2) the 53 Mhz Nim compatible accelerator clock or 3) the 132ns CDF clock compatible input. Which source is active is controlled by the 2 bit [clock_mode] field. The [ext_clk_en] bit is still available, but is a read-only status bit. It cannot be used to control which clock source is active.

2. Fifo A and Fifo B

The Testclk V6 uses an 8k Fifo (the “TSIE Fifo”) to store the TSI data that used to respond to the “Trigger” input. The TSI sequence used to respond to the “Restart” input is hard-wired into the TSIE State Machine.��In contrast, the Testclk V7 uses one Fifo (“Fifo A”) to respond to the Trigger input and a second Fifo (“Fifo B”) to respond to the Restart input. Fifo A and Fifo B have separate Reset and Fifo Status functions. The location of the Reset, Fifo Status, read and write addresses for Fifo A are the same as the corresponding functions for the TSIE Fifo in Testclk V6.��The interpretation of the Fifo status in the Testclk V7 is different than that in the Testclk V6. The reason for this is that Cypress declared the CY470 memory chip to be obsolete, so it had to be replaced with the CY460 in the newer version of the board.

3. Onboard Jumpers

There are fewer jumpers on the Testclk V7 than the Testclk V6, and their meanings are of course changed. The meanings of the new jumpers are listed in Appendex E.�

APPENDIX E

Testclk V7 Jumpers

�
�
Testclk V7 Jumpers

� EMBED ShapewareVISIO20 ����

APPENDIX F

Front Panel Bus Monitor

�
�
Front Panel Bus Monitor

� EMBED ShapewareVISIO20 ����

ETT/CDF Upgrade Group	TESTCLK V7

�PAGE �2�

�PAGE �35�

