Testing of SAM metadata declaration

This note describes the testing of the SAM metadata declaration. The python script used for the testing can be found in appendix A. The client used was version 7_2_0, the user integration sam db server was used v7_3_0 running on cdfsam05.fnal.gov. The caf-int SAM station (version v6_0_2_1 on cdfsam09.fnal.gov).

The test jobs were submitted to the fncdf CAF (running 1000 Virtual Machines on ~ 30 PC’s). The load on the PC’s is low as is shown in figure 1.

[image: image1.png]
Figure 1: CPU useage of CAF worker node during testing of SAM metadata declaration

Testing methodology:

 Between 1 and 10 simultaneous CAF jobs were submitted each job with 50 sections. Each job section declared the metadata for 41 files with a 15 sleep between each metadata declaration. The time of each metadata declaration was recorded along with the length of time it took to complete the command. The testing took place on August 12-14 2005 and August 17 2005. Figure shows the number of sections used by these jobs:

[image: image2.png]
Figure 2: Number of running sections during declare metadata testing

Test Results for one job running simultaneously with 50 sections:

[image: image3.png]
Figure 3: Excution time of declare metadata command for 1 simultaneous jobs with 50 sections.

[image: image4.png]
Figure 4: Command bandwidth is defined as number of commands per minute weighted by 1/ command duration – for 1 simultaneous job w/ 50 sections

[image: image5.png]
Figure 5 Number of declare commands per minute for 1 simultaneous job with 50 sections

[image: image6.png]
Figure 6: Profile histogram of avg command execution time as a ftn of time during test for 1 simultaneous job with 50 sections

Test Results for: Two simultaneous jobs w/ 50 sections each:

[image: image7.png]
[image: image8.png]
[image: image9.png]
[image: image10.png]
Test Results for: Three simultaneous jobs w/ 50 sections each:

[image: image11.png]
[image: image12.png]
[image: image13.png]
[image: image14.png]
Test Results for: Four simultaneous jobs w/ 50 sections each:

[image: image15.png]
[image: image16.png]
[image: image17.png]
[image: image18.png]
Test Results for: Five simultaneous jobs w/ 50 sections each:

[image: image19.png]
[image: image20.png]
[image: image21.png]
[image: image22.png]
Test Results for: Ten simultaneous jobs w/ 50 sections each:

[image: image23.png]
[image: image24.png]
[image: image25.png]
[image: image26.png]
Test Results for: 1 job w/ 75 sections;

[image: image27.png]
[image: image28.png]
[image: image29.png]
[image: image30.png]
Conclusions:

As the number of simultaneous metadata declaration increases, the amount of time to execute the declare metadata increase. Once the maximum is reached it can take a while to process all of the requests. The command bandwidth plots show that the number of completed declarations per minute drops and the requests appear to queue. The final test with 75 sections running at once (each section with 200 file metadata declarations with a sleep of 15 seconds between each declaration shows that the system can operate with reasonable performance.

Appendix A – list of python script to test SAM metadata declaration.

#!/usr/bin/env sampy

#

#
 declare-metadata.py

#

script to do a declare of dummy metadata many times as a test.

#

import string

import sys

import os

import getopt

import commands

import time

import SAM

from Sam import sam

from SamFile.SamDataFile import SamDataFile

from SamException import SamExceptions

from SamStruct.SamBoolean import SamBoolean

from SamStruct.DbServantConnectionInfoList_v2 import DbServantConnectionInfoList_v2

import stat

from time import gmtime, strftime, localtime

#

first check that sam environment has been setup

#

job_start=time.time()

job_starttime=time.clock()

job_start_string = '%s' % strftime("%Y-%m-%d %H:%M:%S", localtime(job_start))

print 'Job declaring started: %s ' % (job_start_string)

try:

sam2 = os.environ['SETUP_SAM']

except:

print "Error: sam not set. 'setup sam' before running me"

sys.exit(1)

dbservername = os.environ['SAM_DB_SERVER_NAME']

job_elapsed_time = 0

#sam_station=os.environ['SAM_STATION']

#sam_project=os.environ['SAM_PROJECT']

#sam_dataset=os.environ['SAM_DATASET']

#

parse the options

#

file_limit=1000

try:

optlist, args = getopt.getopt(sys.argv[1:], 'f', ['file_limit='])

except getopt.GetoptError, e:

sys.exit(1)

for key, value in optlist:

if key == '--file_limit':

file_limit=long(value)

print 'Number of metadata declares = %d' %(file_limit)

#

Establish create the bulk of the dummy metadata ====================

#

build metadata

metadata = {}

metadata['fileType'] = SAM.DataFileType_PhysicsGeneric

metadata['fileSize'] = '99999KB'

metadata['fileContentStatus'] = 'good'

metadata['group'] = 'cdf'

metadata['params'] = {}

global

metadata['params']['global'] = {}

metadata['params']['global']['description'] = 'This is a dummy description to fill space'

cdf

metadata['params']['cdf'] = {}

metadata['params']['cdf']['dataSet'] = 'metadata-declare-test'

metadata['params']['cdf']['html'] = None

metadata['params']['cdf']['analysis_group'] = 'test'

metadata['dataTier'] = 'unknown'

metadata['firstEvent'] = '1'

metadata['lastEvent'] = '9999'

metadata['eventCount'] = '9999'

metadata['startTime'] = '%s' % strftime("%d-%b-%Y", gmtime())

metadata['endTime'] = '%s' % strftime("%d-%b-%Y", gmtime())

metadata['appFamily'] = 'file-import'

metadata['appName'] = 'file-import'

metadata['appVersion'] = '1.00'

metadata['datastream'] = 'unidentified'

==

and here is the loop over the files

==

file_number=0

while file_number <= file_limit:

create the dummy file name

 timestamp = strftime("%Y%m%d%H%M%S", gmtime())

filename = 'test_' + os.environ['CAF_JID'] + '_' + os.environ['CAF_SECTION'] + '_' + timestamp

metadata['fileName'] = filename

 file_number = file_number + 1

task_start=time.time()

starttime = time.time()

fileId = sam.declareFile(metadata=metadata)

stoptime=time.time()

elapsed_time = stoptime-starttime

starttime_string = '%s' %strftime("%Y%m%d %H%M%S",localtime(task_start))

print 'declareFile %s %.3f' %(starttime_string,elapsed_time)

now sleep for 15 seconds

 time.sleep(15)

#

get the total elapsed time etc.

#

job_stop=time.time()

job_stoptime=time.time()

job_stoptime_string = '%s' %strftime("%Y-%m-%d %H:%M:%S",localtime(job_stop))

job_elapsed_time = job_stop-job_start

print 'declare-metadata finished at %s - it took %.3f secs to run python script ' %(job_stoptime_string,job_elapsed_time)

