

Adobe CMap and CIDFont
Files Specification

Technical Specification #5014

Version 1.0

16 October 1995

Adobe Developer Support

R

Software Fro em Ad bo
POST C IPRS T

PN LPS5014

Adobe Systems Incorporated

Corporate Headquarters

1585 Charleston Road PO Box 7900

Mountain View, CA 94039-7900

(415) 961-4400 Main Number

(415) 961-4111 Developer Support

Fax: (415) 969-4138

Adobe Systems Benelux B.V.

Europlaza

Hoogoorddreef 54a

1101 BE Amsterdam Z.O.

The Netherlands

+31-20-6511 355

Fax: +31-20-6511 313

Adobe Systems Eastern Region

24 New England

Executive Park

Burlington, MA 01803

(617) 273-2120

Fax: (617) 273-2336

Adobe Systems Co., Ltd.

Yebisu Garden Place Tower

4-20-3 Ebisu, Shibuya-ku

Tokyo 150

Japan

+81-3-5423-8169

Fax: +81-3-5423-8204



 1993, 1994 Adobe Systems, Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless other-
wise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Type Manager,
Adobe Type Manager-Japanese Edition, ATM, Display PostScript, and Poetica are trademarks of
Adobe Systems Incorporated registered in the U.S.A. and in other jurisdictions. FutoGoB101, FutoM-
inA101, Jun101, Ryumin Light KL, Gothic BBB Medium, and Skiksei Kaisho CBSK1 are trademarks
of Morisawa and Company, Ltd. Apple and Macintosh are registered trademarks of Apple Computer,
Inc. Microsoft and Windows are registered trademarks of Microsoft, Inc. Fujitsu is a registered trade-
mark of Fujitsu Limited. NEC is a registered trademark of NEC Information Systems, Inc. Other brand
or product names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

List of Figures

 v

List of tables

 vii

Adobe CMap and CIDFont Files Specification

 1

1 Introduction 1
Compatibility 1
Copyrights for CID-Keyed Font Programs 2
Overview 2

2 CMap and CIDFont Resource Architecture 3
Terminology 3
Native Support Versus Compatibility Mode 4
The Character Collection 5
Version Control 5
The CIDFont File 6
The CMap File 6

3 CIDFont Tutorial 8
CIDFont File Components 8
CIDFont Example 10

4 CIDFont Reference 26
CIDFont Organization 26
CIDFont Resource Keys 27
Defining the CIDFont Resource 31

5 CMap Tutorial 32
CMap File Components 33
First Example: Stand-Alone CMap File 33
Closing the CMap File and Creating the Resource Instance 45
Second Example: A CMap File That Uses Another 46
CMap File Naming Convention 48

6 Rearranged Font Tutorial 48
Rearranged Font Components 49
Rearranged Font Example 50

7 CMap Reference 59
CMap File Nomenclature and Lexical Elements 60
Operator Summary 62

iv (16 Oct 95)

CMap File Overview 63
Operator Details 63

Appendix A:
Installing CID-Keyed Fonts
on PostScript Interpreters

 73

A.1 Introduction 73

A.2 PostScript Interpreter Requirements 73

A.3 Categories of Installation Files 74

A.4 Installation Environment 74

A.5 Prior to Installation 77

A.6 Installation of Category A Files 78

A.7 Installation of Category B Files 80

Appendix B:
ATM-J Compatibility
for CID-Keyed Fonts

 81

B.1 Installing CID-Keyed Fonts on the Macintosh 81
CIDFont Files 81
CMap Files 82

B.2 Naming Conventions 82

B.3 Parsing Considerations 82

B.4 Miscellaneous Notes for Macintosh ATM before version 3.5 84

B.5 Miscellaneous Notes for Macintosh ATM version 3.5 84

Appendix C:
Obtaining
CID Information

 85

C.1 Support for CID-keyed Font Development 85

Appendix D:
Font Naming and Unique ID Numbers

 87

D.1 CID Font Naming 87

D.2 Calculating Unique IDs 88
Assigning the ID Count 88

D.3 Miscellaneous Notes 90

Appendix E:
Changes since Earlier Versions

 91

E.1 Changes in the 16 October 1995 version: 91

Index

 93

v

List of Figures

Figure 1 Character Codes to CIDs and Glyphs 6
Figure 2 CIDMap, FDArray, and charstring data 10
Figure 3 Internal organization of the CIDMapOffset string 20
Figure 4 Empty intervals 22
Figure 5 Relationship of SubrMap to subroutine data length 25
Figure 6 Codespace ranges for the 83pv-RKSJ-H charset encoding 41

vi List of Figures (16 Oct 95)

vii

List of tables

Table 1 Relationship of input code to selector 61
Table 2 PostScript language lexical elements 61

Table C.1 Whom to contact at Adobe Systems 85
Table D.1 UIDOffset values 89

viii List of tables (16 Oct 95)

1

Adobe CMap and CIDFont
Files Specification

1 Introduction

Character codes and character names are both widely used in PostScript



language programs to access font glyphs. This document introduces another
character-access type, the

character identifier

, abbreviated as

 CID

. This doc-
ument explains what a CID is, and describes the files that use CIDs. These
files are used together to produce a font called a

CID-keyed font

, so named
because the glyphs are accessed by CID.

This section describes the compatibility issues for CID-keyed fonts, explains
that CID-keyed fonts are copyrightable, and provides an overview for the rest
of the document. After reading this section, you should be ready to start
learning about CID-keyed font files and how they are used.

Note This version of this document, dated 16 October 1995, provides a completely
rewritten version of Appendix A — Installing CID-Keyed Fonts on a Post-
Script Interpreter. Other minor changes are noted in Appendix E.

1.1 Compatibility

The PostScript interpreter has undergone continual enhancement since its
debut in late 1984. During this time, Adobe Systems has changed both the
PostScript interpreter implementation and the features of font formats. These
changes are generally compatible with all versions of the PostScript inter-
preter. Features introduced by this specification are likewise compatible.

There are several parts of this document dealing with compatibility concerns.
In particular, Appendix A, “Installing CID-Keyed fonts on PostScript Inter-
preters,” describes how CID-keyed font files are installed for use with both
embedded interpreters such as those found in printers and imagesetters, as
well as with host-based interpreters such as DPS

(Display PostScript) and
CPSI (Configurable PostScript Interpreter). Appendix B,“ ATM



-J Compat-
ibility with CID-Keyed Fonts,

”

describes how CID-keyed font files are
installed for use with the Adobe Type Manager



 product, Japanese edition.

2 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Any future extensions to Adobe



 CID-keyed font files will be designed so
that those extensions can be ignored by the current generation of interpreters.
New extensions will often take the form of new dictionary entries; other
extensions may define additional procedures. As long as interpreters for CID-
keyed font software are written to ignore such possible future extensions, cor-
rect font interpretation will result. Future extensions will be thoroughly
described in revisions of this document.

Some CID-keyed font rendering software (such as ATM-J) takes advantage
of a particular stylized use of the PostScript language. As a result, CID-keyed
font files must also adhere to these PostScript language usage conventions.
The syntax resulting from these conventions is considerably more restricted
than that of the PostScript language; CID-keyed fonts can be read and exe-
cuted by PostScript interpreters, but not all PostScript language usage is
acceptable in CID-keyed fonts. These restrictions will be noted wherever
necessary in this document, particularly in Appendices A and B.

1.2 Copyrights for CID-Keyed Font Programs

Because CID-keyed fonts are computer programs, they are copyrightable to
the same extent as other computer software. The ideas expressed by copy-
righted works are not protected; however, the particular expression is. In the
case of CID-keyed font programs, this means that while the typeface shapes
are not protected, the program text is.

Unauthorized duplication of a CID-keyed font program is a violation of
copyright law. Such unauthorized activities include verbatim copying and
distribution, as well as less obvious activities such as modification and trans-
lation of the program from one form or format into another.

Adobe Systems’ CID-keyed font programs are licensed for use on one or
more devices (depending on the terms of the particular license). These
licenses generally permit the use of a licensed program in a system that trans-
lates a CID-keyed font program into some other format in the process of ren-
dering, as long as a copy of the program (even in translated form) is not
produced.

The personal computer industry and its customers have benefitted greatly
from copyright protection. Copyright protection gives the developer of a
CID-keyed font program the incentive to create excellent typeface programs.
In turn, the user of CID-keyed font programs can expect to have available the
finest typeface software to choose from.

1.3 Overview

The remaining chapters of this document summarize the various components
of a CID-keyed font and how they work together.

2 CMap and CIDFont Resource Architecture 3

• Section 2 provides an overview of the CID-keyed font architecture.

• Section 3 explains how the component CIDFont is put together.

• Section 4 is a reference section of CIDFont operators and syntax.

• Section 5 discusses how the component CMap is built.

• Section 6 discusses producing rearranged fonts.

• Section 7 is a reference section of CMap operators and syntax.

• Appendix A provides details for installing CID-keyed fonts on PostScript
interpreters such as printers and DPS.

• Appendix B provides details for installing CID-keyed fonts on a host for
use with ATM-J.

• Appendix C provides information on getting a registry and vendor regis-
tration, unique IDs, and other useful technical notes from Adobe Devel-
oper Relations.

• Appendix D provides information on naming conventions and how to uti-
lize UniqueID numbers for CID-keyed fonts.

• Appendix E lists changes since earlier versions of this document.

2 CMap and CIDFont Resource Architecture

This section provides a conceptual overview of CMaps and CIDFonts. After
reading this section, you should understand the terms to be used in this docu-
ment and know what CMaps and CIDFonts are and how they interact.

2.1 Terminology

A

character

 is an abstract notion denoting a class of shapes declared to have
the same meaning or form. A

glyph

 is a specific instance of a character. For
example, consider the class of shapes named “ampersand” and “fi ligature”
along with a few instances of each class:

Character Glyphs

Class of Shape

ampersand

fi ligature

Sample Instances of the Character

4 Adobe CMap and CIDFont Files Specification (16 Oct 95)

A

character collection

, another abstract notion, is a collection or group of
distinct characters. A

character identifier

, or

CID

, is a concrete notion in
which an integer is associated with a character from a character collection.
When the characters in a character collection are distinctly numbered with
CIDs from 0 to

n

 – 1 for a character collection of

n

 characters, the character
collection is called an

ordered character collection

.

A

character code

 is that portion of a string used by

show

 (or other similar
operator) that corresponds to a character. A

CID-keyed font

 is a font program
that maps character codes to CIDs, and uses CIDs to access glyph data. There
are two parts to a CID-keyed font: a CMap resource and a CIDFont resource.
The CMap, or character code map, maps character codes to glyph selectors.
For CIDFonts, this selector is a CID. The CIDFont uses CIDs to access glyph
data. These components are used to access glyph data as the following dia-
gram depicts:

The CMap can also map character codes to two other glyph selector types.
The first is a character code and can occur when the font resource is other
than CIDFont. The second is a

character name

, a PostScript languag name
object that uniquely identifies a character, and can also occur when the font
resource is other than CIDFont.

Note that a CMap specifies a subset of a character collection to be used,
called a

character set

, or

charset

. In addition, the CMap imposes an encoding
on that subset. A font resource can be referenced by different CMaps, each of
which defines a different charset and encoding. Likewise, many font
resources can be referenced by a single CMap, accessing different glyphs for
the same character instantiated in each font resource.

2.2 Native Support Versus Compatibility Mode

This document introduces a new set of PostScript language commands (pro-
cedures or operators) that are defined in a procset resource. PostScript inter-
preters that have built-in support for these commands are considered to
provide

native-support

 for font programs that use them. Other PostScript
interpreters can be provided with PostScript language procedures that emu-
late the same outward behavior of these commands. These interpreters are
said to be operating in

compatibility mode

. At the time of this writing, com-
patibility mode supports only the CID glyph selector for CID-keyed font pro-
grams.

character code
CMap

resource

CIDFont

resource
glyph data

CID

2 CMap and CIDFont Resource Architecture 5

A

file

 is an external representation of a resource, such as a CMap program or
a CIDFont program, and is distinct from the internal virtual memory (

VM

)
representation that results when such a file is parsed by a font interpreter.
While both native-support interpreters and those operating in compatibility
mode use the same CMap and CIDFont files, the structures created in VM
may be very different. Native-support interpretation of CMap and CIDFont
resource files materialize more-or-less directly as dictionary objects in VM,
which the PostScript interpreter uses directly. In compatibility mode, execu-
tion of the CIDMap and CIDFont files results in the construction of a com-
posite font hierarchy, which bears little resemblance to the structure of the
CMap and CIDFont files and whose structure is undocumented. For more
information, read Appendix A,

Installing CID-Keyed Fonts on PostScript
Interpreters

.

2.3 The Character Collection

The first step in building CID-keyed fonts is to decide on the members of a
character collection, and impose an order on them. The CIDs that identify the
members of a character collection are used to order the collection. Hereafter,
assume

character collection

 means

ordered character collection.

Note A CID-keyed font must be based on one and only one character collection.
All CID-keyed fonts based on a particular character collection use

identical

CID index values to access corresponding glyph data.

The CID index value of 0 is always used to refer to the character meaning
“the undefined or ‘notdef’ character.” This CID is used when the CMap file
does not explicitly indicate a mapping for a character code.

2.4 Version Control

Both the CIDFont and the CMap must use CIDs from compatible character
collections. The identification of the character collection is accomplished by
placing version control information into each CIDFont and CMap file. To
identify a character collection uniquely, three components are needed:

• a

registry

 name is used to identify an issuer of orderings;

• an

ordering

 name is used to identify an ordered character collection; and,

• a

supplement

 number is used to indicate that the ordered character collec-
tion for a registry, ordering, and

previous

 supplement has been changed to
add

new

 characters assigned CIDs beginning with the next available CID.

These three pieces of information taken together uniquely identify a character
collection. In a CIDFont, this information declares what the character collec-
tion is. In a CMap, this information specifies which character collection is

6 Adobe CMap and CIDFont Files Specification (16 Oct 95)

required for compatibility. A CMap is compatible with a CIDFont if the reg-
istry and ordering are the same. If the supplement numbers are different,
some codes may map to the CID index of 0. Details about how this version
information is specified and its impact on CIDFont and CMap files are found
in the sections that follow.

2.5 The CIDFont File

The CIDFont file contains glyph data that are indexed by CID. If the CIDFont
file is missing glyph data for a particular CID, the CID with an index value of
0 (which must have glyph data) is used.

The CIDFont file contains character instances, or glyphs. In the example
below, note that CID 7 refers to different shapes in the CIDFonts, but always
means “ampersand.” Likewise, CID 112 refers to another class of shapes, but
always means “fi ligature.”

2.6 The CMap File

The CMap file is used to determine which CID is referenced by a particular
character code. Many CMap files can be used with a CIDFont file. Each
CMap file specifies a particular subset of the character collection, the

charset

,
that it will use. Various subsets of a character collection may be wanted for
several reasons, for example:

• Different platform vendors have defined their own system-specific charac-
ter sets. By producing a character collection of the union of all character
sets, CID-keyed fonts are portable across different platforms.

• Variations of a font are needed. For example, in Japanese or Chinese text,
writing may be horizontal or vertical.

The following figure shows some sample character codes, the corresponding
CIDs that result when the character codes are translated by two CMaps, and
the glyphs associated with the CIDs for two CIDFonts.

Figure 1

Character Codes to CIDs and Glyphs

Character CID CIDFont 1 CIDFont 2 CIDFont 3

7

112

ampersand

fi ligature

2 CMap and CIDFont Resource Architecture 7

The row with character code <82A8> represents the most typical situation in
which two CMap files refer to the same data. Most CMap files for a character
collection differ in relatively few mappings of character codes to CIDs.

The row with character code <57> illustrates a difference between two CMap
files based on the platform. The CMap 1, 83pv-RKSJ-H, intended for use on
Macintosh platforms, uses proportionally spaced Roman characters, while
the CMap 2, Ext-RKSJ-V, intended for use on PC platforms, uses half-width
Roman characters.

The rows with character codes <8179> and <817A> illustrate where varia-
tions of a font are required. CMap 1 is used to access the horizontally written
characters from a font, while CMap 2 is used to access those that are written
vertically.

The rows with character codes <8D7B> and <E1E6> demonstrate how char-
acters are swapped depending on the platform. This typically occurs when
old-style characters are to be superseded, but the old-style characters are yet
to be maintained in the charset, though not in the primary character code
position. The row with character code <92CD> shows how characters can be
replaced.

Code

<82A8>

<57>

<8179>

<817A>

<8D7B>

<E1E6>

<92CD>

<81F6>

CMap 1

83pv-RKSJ-H

CMap 2

Ext-RKSJ-V

CID CIDCIDFont 1 and 2 CIDFont 1 and 2

851

56

690

691

2030

5853

3051

777

851

286

7915

7916

5853

2030

7747

0

8 Adobe CMap and CIDFont Files Specification (16 Oct 95)

The row with character code <81F6> demonstrates that CMap files can map
character codes to a notdef character. While in CMap 1 the character code
<81F6> maps to the “double dagger” character (CID 777 in the example), the
same character code maps to the default notdef character (CID 0) in CMap 2.
In both CIDFont examples shown, the default notdef character is the same as
the “full-width space” character, with glyphs consisting of horizontal dimen-
sion only. These CIDFonts could just as well have used any other glyph as
instances of the default notdef character.

Note For information on the the CMap files for the Japanese language group to
which specific characters map, obtain the document

CID-Keyed Japanese
Font Glyph Complement,

Adobe Technical Note #5078, as is listed in
Appendix C.

3 CIDFont Tutorial

This section describes CIDFont files from the perspective of the font devel-
oper who wishes to build a character collection in the form of a CIDFont file.
While several files comprise a complete CID-keyed font, font vendors prima-
rily interested in supporting the standard character sets and encodings of the
Japanese language group need only develop the CIDFont file.

After reading this section, you should be able to understand the example and
use it, along with other sections from this document, as a starting point to
construct different CIDFont files.

3.1 CIDFont File Components

As explained in section 2, a CIDFont file is a PostScript language font
resource specifically designed to accommodate a large collection of charac-
ters, and may have imposed on it diverse encoding requirements representing
one or more character sets within the collection.

CIDFont files

are like

 other PostScript font resources in the following ways:

• CIDFont files are PostScript language programs that adopt a restrictive
syntax—as is the case with Type 1 font programs.

• CIDFont files contain collections of traditional Type 1 or Type 3 character
descriptions and the hinting information needed to rasterize them.

• The CIDFont files have a font type. The fonts described in this document
are of

CIDFontType

 0. Other

CIDFontType

 designations are reserved.

• CIDFont files can be used from disk or ROM, or loaded into VM.

CIDFont resources

differ

 from other types of PostScript font resources in the
following ways:

3 CIDFont Tutorial 9

• Glyph data (also called

character descriptions

 or

charstring data

) in
CIDFonts are always referenced using character IDs.

• Encoding information is described in the CMap file—not in the character
collection.

Because the exact VM representation of CIDFonts and the mechanism by
which they are created and used may change over time, the CIDFont and
CMap file strategy outlined here intentionally separates font development
from the creation of composite font structures in VM. Composite font struc-
tures become a function of special operators and procsets supplied by Adobe;
the developer is freed to enhance the fonts themselves.

A CIDFont file consists of two parts. Part one is a PostScript language pro-
gram that defines a

CIDFont resource instance

. Part two is a collection of
glyph data along with some additional data. The underlying type of the
resource instance is a dictionary object.

Part two, the glyph data, either resides in a file system or in VM. The file
system can be disk-based, ROM-based, or cartridge-based; such forms vary
only in regard to performance issues. This document generally assumes a file
system format that is disk-based for glyph data, but other formats are possible
and even likely. Where important, differences from other formats are noted.

Figure 2 is a data flow diagram of the internal organization of a CIDFont. In
VM, the CMap resource produces a character ID for use by the CIDFont
resource. The character ID acts as an index into the

CIDMap

, which is in turn
used to locate other pieces of information. Each interval of the

CIDMap

 also
has two parts. The first part is an index into the

FDArray

, which is an array of
font dictionaries. The second part is an offset into the charstring data. Char-
string data, subroutine information (if any), and data from the appropriate
member of the

FDArray

 of font dictionaries, are required to rasterize a glyph.

10 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Figure 2

CIDMap, FDArray, and charstring data

3.2 CIDFont Example

This section presents a CIDFont example, including a font dictionary in the

FDArray

. The example is first given in full, and then is analyzed in detail in
the sections that follow. Where statements or data have been omitted, they are
replaced with explanatory text within brackets like this:

<< text here omitted >>

A CIDFont file is a program written in the PostScript language. Section 4
explains the syntax, and tells which entries are required and which are
optional. The ordering of the key-value pairs in the dictionary portion of the

CIDFont Resource

Part 1

PostScript
Language
Program

CIDFont
Resource

Part 2

Glyph Data

Includes:
CIDMap
SubrMaps
Subroutines
Charstrings

Always
loaded
into
VM

May
remain
on
disk

FDArray

CID
0

1

2

CIDMap

Charstrings

SubrMap

Subroutines

FD 0
FD 1
FD 2

To rasterizer

Font
Dictionary
Information

Character
Description

3 CIDFont Tutorial 11

file (the part loaded into VM) is unimportant; in the portion of the file that
usually remains on disk (charstrings, subroutines, and their offset maps),
offset information is very important. Because the data section is offset-based,
do not alter this section of a CIDFont resource casually—you may risk
making hundreds of offsets incorrect.

Example 1:

Example CIDFont file, including font dictionary

%!PS-Adobe-3.0 Resource-CIDFont

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

%%BeginResource: CIDFont Ryumin-Light

%%Title: (Ryumin-Light Adobe Japan1 0)

%%Version: 1

/CIDInit /ProcSet findresource begin

20 dict begin

/CIDFontName /Ryumin-Light def

/CIDFontVersion 1 def

/CIDFontType 0 def

/CIDSystemInfo 3 dict dup begin

 /Registry (Adobe) def

 /Ordering (Japan1) def

 /Supplement 0 def

end def

/FontBBox [-180 -293 1090 1010] def

/UIDBase 27611 def

/XUID [1 11 27611] def

/FontInfo 2 dict dup begin

 /Notice ((c) Copyright 1993 Adobe Systems Incorporated. All

Rights Reserved.) def

 /FullName (Ryumin-Light) def

end def

/CIDMapOffset 0 def

/FDBytes 1 def

/GDBytes 3 def

/CIDCount 8284 def

/FDArray 3 array

dup 0

%ADOBeginFontDict

14 dict begin

 /FontName /Ryumin-Light-Proportional def

 /FontType 1 def

 /FontMatrix [0.001 0 0 0.001 0 0] def

 /PaintType 0 def

 %ADOBeginPrivateDict

12 Adobe CMap and CIDFont Files Specification (16 Oct 95)

/Private 25 dict dup begin

/MinFeature {16 16} def

/lenIV 1 def

/LanguageGroup 1 def

 /BlueValues [-14 0 662 682 448 458] def

/BlueScale 0.0396271 def

 /BlueFuzz 1 def

 /BlueShift 7 def

/StdHW [85] def

/StdVW [85] def

/StemSnapH [85] def

/StemSnapV [85] def

 /OtherSubrs

 [{} {} {}

 { systemdict /internaldict known not

 { pop 3 }

 { 1183615869 systemdict /internaldict get exec dup

 /startlock known

 { /startlock get exec }

 { dup /strlck known

 { /strlck get exec }

 { pop 3 }

 ifelse

 }

 ifelse

 }

 ifelse

 } bind

 {} {} {} {} {} {} {} {} {}

 { 2 { cvi { { pop 0 lt { exit } if } loop } repeat }

 repeat } bind

] def

/password 5839 def

 /SubrMapOffset 33140 def

 /SDBytes 3 def

 /SubrCount 5 def

 end def

%ADOEndPrivateDict

currentdict end

%ADOEndFontDict

put

dup 1

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>

currentdict end

%ADOEndFontDict

put

dup 2

%ADOBeginFontDict

14 dict begin

3 CIDFont Tutorial 13

<< Font dictionary omitted >>

currentdict end

%ADOEndFontDict

put

def

%%BeginData: 4325480 Binary Bytes

(Binary) 4325452 StartData

<<CIDMap omitted>>
<<SubrMap omitted>>
<<charstrings omitted>>
<<Subroutine Information omitted>>

%%EndData

%%EndResource

%%EOF

Comment Conventions

A CIDFont file must begin with the comment characters

%!

; otherwise it may
not be given the appropriate handling in some operating system environ-
ments. The first line of the example consists of the following comment:

%!PS-Adobe-3.0 Resource-CIDFont

The remainder of the line (after the

%!

), identifies the file as a CIDFont
resource that conforms to the PostScript language document structuring con-
ventions version 3.0. Document structuring conventions are explained in the

PostScript Language Reference Manual, Second Edition

.

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

The

%%Include

 construct tells spooler and similar software to determine
whether the required resource is available. If the resource is not already avail-
able in VM—but is available for downloading—then the spooler should
include that resource in-line in the job stream being sent to the interpreter.

The

%%BeginResource

 comment informs spoolers and resource managers
that the information which follows is a resource. There is a corresponding

%%EndResource

 comment at the end of the file. The

%%BeginResource

line also states the type of resource (

CIDFont

) and its name (

Ryumin-Light

).

%%BeginResource: CIDFont Ryumin-Light

The %%Title comment again states the CIDFont name, and provides the Reg-
istry and Ordering strings, and the Supplement number.

%%Title: (Ryumin-Light Adobe Japan1 0)

14 Adobe CMap and CIDFont Files Specification (16 Oct 95)

The %%Title comment has the following structure:

%Title: (<CIDFontName> <registry> <ordering> <supplement>)

where CIDFontName identifies the CIDFont file, and the remaining fields
<registry>, <ordering>, and <supplement> duplicate version control infor-
mation present elsewhere in the file (primarily as a convenience to parsers).
<registry> and <ordering> are strings that can consist of alphanumerics and
the underscore character. No white space is allowed within the string. <sup-
plement> is an integer.

The %%Version comment provides the version number of this CIDFont file.
This number is an integer; Adobe recommends that it be the same number
that is defined for /CIDFontVersion later in the file.

%%Version: 1

Note The %%Version comment is optional. Adobe encourages its use as an aid to
installation software and for future file maintenance.

Additional comments are permitted as long as they conform to the document
structuring conventions.

CIDInit Procset Execution Environment

Immediately after the header information and before the definition of the
CIDFont proper, a findresource is done on the procset CIDInit, which is one
of the system support files installed on the host or printer hard disk. This
ensures that the routines necessary to process CIDFont files are first read into
VM. An end operator corresponding to this begin appears near the end of the
file.

/CIDInit /ProcSet findresource begin

Appendix A contains an explanation of the CIDInit procset and system sup-
port files. Adobe provides these files to developers. See Appendix C for infor-
mation about how to obtain these and other development files.

CIDFont Resource Dictionary

The line

20 dict begin

defines and pushes a dictionary onto the dictionary stack. CIDFont is a
resource category with an underlying type of dictionary; each CIDFont file
defines an instance of that category. The StartData line near the end of the

3 CIDFont Tutorial 15

example file actually registers the font as a resource instance. Resource cate-
gories and their instances are explained in the PostScript Language Reference
Manual, Second Edition.

Note Because some of the entries described below and in section 4 are optional,
the size of dictionary you define may be different from the 20-entry dictionary
presented in this example. Level 1 implementations of the PostScript lan-
guage generate a dictfull error if you attempt to define an entry into a dictio-
nary that is already full. No error is generated in Level 2 interpreters. For
future extensibility Adobe advises, as was done here, that you define a dictio-
nary containing room for three or four additional entries.

CIDFont Name, Version, and Type

The line beginning with /CIDFontName formally defines the name of the
CIDFont file. It is the instance name passed to the resource machinery of the
PostScript interpreter. Adobe recommends that this be the same name used in
the %%Title comment.

/CIDFontName /Ryumin-Light def

The line beginning with /CIDFontVersion formally defines the version
number of this CIDFont file. If present, this must be the same version number
used in the %%Version comment.

/CIDFontVersion 1 def

The line beginning with /CIDFontType defines changes to the internal organi-
zation of CIDFont files or to the semantics of CIDFont dictionary keys. The
CIDFontType of the CIDFonts described in this document is 0. The value of
CIDFontType is an integer.

/CIDFontType 0 def

The CIDFontName and CIDFontType are required to be present in the
CIDFont file; the CIDFontVersion is optional.

Version Control

Version control information is included in the dictionary structure in Exam-
ple 2::

Example 2: CIDSystemInfo

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

16 Adobe CMap and CIDFont Files Specification (16 Oct 95)

This three-element dictionary contains the set of information used for version
compatibility checking between CIDFont and CMap files. In addition, each
component of the system has its own version field to reflect changes within
that component, for example, /CIDFontVersion.

Registry, Ordering, and Supplement entries are required in every CIDFont.
There is no length limitation on version control strings (other than the Post-
Script language limitation of 65535 characters). Version control strings must
consist only of alphanumeric characters and the underscore character (_). No
white space is permitted.

Registry

Registry is a string value assigned only by the Unique ID coordinator at
Adobe Systems. The Registry string identifies an issuer of orderings and is
typically a font vendor. For example, the Registry for Adobe Systems is
Adobe.

Note See Appendix C for specific information about obtaining Registry strings.

Ordering

The Ordering string uniquely names an ordered character collection within a
Registry. For example, an Ordering string within the Adobe Registry is
Japan1 and refers to an ordered character collection of 8284 characters.

Different Registries may have identical Ordering strings and operate simulta-
neously on the same PostScript interpreter because the Registry and Ordering
strings, taken together, uniquely identify the character collection.

Supplement

The Supplement integer identifies whether additions have been made to a
character collection. The first time a collection is produced by a developer, it
should have the Supplement integer 0. As a developer produces incremental
additions to that collection, the Supplement number should also be increased
by 1 with each release.

Supplement numbers indicate only that additions have been made to the char-
acter collection. These additions must follow all previously assigned CID
index values. To rearrange or delete characters from a character collection
requires defining a new Ordering.

Nonmatching System Information

If the Registry and Ordering strings are identical, a CIDFont and a CMap can
be used together. If the Registry and Ordering strings do not match, the two
files cannot be used together.

3 CIDFont Tutorial 17

A CMap file and a CIDFont file may have Registry and Ordering strings that
match yet have differing Supplement numbers. This may occur if either a
CIDFont file or a CMap file has been upgraded, but the other has not.

• When Supplement numbers also match, every mapping in the CMap file
results in CIDs that are valid in the CIDFont.

• When the Supplement number in the CMap file is less than the Supple-
ment number in the CIDFont file (the CIDFont file is later than the CMap),
every mapping in the CMap file results in CIDs that are valid in the
CIDFont. However, the CIDFont will have extra CIDs available that
cannot be produced by the earlier CMap file.

• When the Supplement number in the CMap file is greater than the Supple-
ment number in the CIDFont file (the CIDFont file is earlier than the
CMap), some mappings from the later CMap file result in CIDs that are
not valid in the CIDFont file. CID 0, the default notdef character, is used in
this event.

FontBBox

FontBBox is a required key that defines in an arbitrary space of 1000/em a
box large enough to enclose any of the characters in the CIDFont.

Every glyph in the character collection corresponds to one or another of the
font dictionaries in the FDArray, and each of the font dictionaries has a Font-
Matrix key. That FontMatrix key controls the character space for all characters
using that font dictionary. Typically, the FontMatrix is 1000 units to the em—
but not necessarily so. Because FontMatrix may not always be 1000 units to
the em, FontBBox is defined in an arbitrary space that does consist of 1000
units to the em. See the PostScript Language Reference Manual, Second Edi-
tion or Adobe Type 1 Font Format for an explanation of FontBBox.

/FontBBox [-180 -293 1090 1010] def

Unique Identification Numbers

The CIDFont file defines two types of unique ID numbers. Unique ID num-
bers are necessary so that fonts can be cached between jobs. The first type of
unique ID has a UIDBase value in the CIDFont file and a UIDOffset value in
the CMap file. The second type has an XUID (extended unique ID) number in
the CIDFont file only. The XUID number is a Level 2 feature; it is ignored by
Level 1 interpreters. Unique IDs are explained in more detail in section “Cal-
culating Unique IDs in Appendix D.

The first type (UIDBase + UIDOffset) is intended for Level 1 interpreters with
composite font extensions or for Level 2 interpreters that do not offer native
mode support for CID-keyed fonts (as defined in Section 2). The XUID

18 Adobe CMap and CIDFont Files Specification (16 Oct 95)

method is intended for Level 2 interpreters that can offer native mode sup-
port. Adobe recommends using both types of unique ID numbers for back-
ward compatibility as well as for continued future compatibility. Both types
of unique ID numbers are optional.

Unique ID Type: UIDBase

The line

/UIDBase 27611 def

sets the starting or base value for a group of unique ID numbers for the
CIDFont. Each CMap file has an entry that gives the offset from this base for
its particular character set and encoding. When a CID-keyed font is created in
VM, the base and offset values are used to create unique ID numbers “on the
fly” as required. Both parts work together to ensure that there is no collision
between an ID assigned to a CIDFont and an ID assigned to any other font
program.

Note UIDBase numbers are assigned by Adobe Systems. UIDOffset numbers are
calculated by the font developer. The typical maximum count of consecutive
numbers available for a CIDFont is 2,000; larger and smaller ranges are
available on request.

Unique ID Type: XUID

An XUID (extended unique ID) is an entry whose value is an array of integers.
This array identifies a font by the entire sequence of numbers in the array.
The line

/XUID [1 11 27611] def

defines an XUID array. The XUID array in the CIDFont file has no relationship
to the XUID in the CMap file.

The first element of an XUID array must be a unique organization identifier,
assigned by Adobe Systems. Appendix C explains how to obtain such an
identifier. In the example, the value 1 identifies the organization as Adobe
Systems. The remaining elements, and the allowed length of XUIDs starting
with that organization ID, are the responsibility of the organization to which
the organization ID has been assigned. An organization can establish its own
registry for managing the space of numbers in the second and subsequent ele-
ments of XUID arrays.

The organization ID value 1000000 is reserved for private interchange in
closed environments. XUID arrays starting with that number may be of any
length.

3 CIDFont Tutorial 19

FontInfo

The FontInfo dictionary is optional and contains information for PostScript
language programs using the CIDFont resource, or as human-readable docu-
mentation. The PostScript Language Reference Manual, Second Edition
describes the various FontInfo keywords that are valid and how they are used
by application programs.

Example 3: FontInfo dictionary

/FontInfo 2 dict dup begin

/Notice ((c) Copyright 1993 Adobe Systems Incorporated. All

Rights Reserved.) def

/FullName (Ryumin-Light) def

end def

Accessing Charstring Data

As stated before, there are two parts to the CIDFont file: a PostScript lan-
guage program, and a data section. The data section can contain four blocks:

• a CIDMap that associates a font dictionary index with a glyph descriptor
value used to access charstring data with each CID,

• one or more SubrMaps that associate a descriptor used to access subrou-
tine data with each subr index,

• the subroutines used by the charstring data, and

• the charstrings that contain glyph descriptions.

This section describes the format of the CIDMap and how it is used to access
charstring data.

CIDMap Format

Example 4: provides information necessary to access and interpret the
CIDMap.

Example 4: CIDMap offset

/CIDMapOffset 0 def

/FDBytes 1 def

/GDBytes 3 def

/CIDCount 8284 def

The CIDMapOffset is the byte location relative from the start of the data sec-
tion of the CIDFont file. See the section “Defining the CIDFont Resource and
the Data Section,” for a more precise definition of the start of the data section.

20 Adobe CMap and CIDFont Files Specification (16 Oct 95)

The keywords FDBytes and GDBytes have values corresponding to the
number of bytes used to store the font dictionary (FD) index and the glyph
descriptor (GD) value, respectively, for each CID in the CIDMap. The sum
of these two byte lengths is the length of one interval in the CIDMap, and is
used in conjunction with a CID to determine how many bytes from the begin-
ning of the CIDMap to locate the interval containing the data for that CID.

If FDBytes is equal to 0, the CIDMap contains no FD indices, and the FD
index of 0 is assumed.

The GD value is an offset relative from the start of the data section to the
desired charstring. Figure 3 shows how these intervals are organized.

Figure 3 Internal organization of the CIDMapOffset string

Note All Japanese language fonts Adobe has produced to date use one byte to
index into the FDArray and three bytes of offset information per character
description. Your values may differ.

Because the length of a charstring for a given CID is defined as the difference
between its GD value and the value of the successor GD, charstrings must be
contiguous and in increasing order. As a consequence of this, it is possible to
omit glyphs for CIDs from a CIDFont by making their GD value and succes-
sor GD values the same. An interval for a CID having this property is called
an empty interval.

....

FD Index for CID 1

GD Value:
to charstring for CID 1

FDBytes = 1 GDBytes = 3 FDBytes = 1 GDBytes = 3

Interval 0 Interval 1

FD Index: index into
FDArray for CID 0

GD Value: offset
to charstring for CID 0

01 01 c8 20 03 01 c9 3e

3 CIDFont Tutorial 21

Also note that to compute the length of the last charstring, an extra interval is
needed which follows the interval for the last CID. This interval is called the
last interval. The GD value for the last interval must be one more than the
final byte of the charstring for the last CID. The FD index for the last interval
is undefined if FDBytes is greater than 0.

The first CIDMap interval, which is indexed by CID 0, contains the FD index
and GD value for the default notdef character. All CIDFonts must include a
default notdef character—the appearance of the glyph assigned to CID 0 or
pointed to by CID 0 in each CIDFont, as with other glyphs, is left to the font
designer. Section 5 discusses in detail the circumstances in which the CMap
resource instance decodes character codes to the character ID of 0.

The keyword CIDCount defines how many CIDs are defined in the character
collection. A CIDCount of n indicates CIDs from 0 to n – 1, and a CIDMap
will have n + 1 intervals, including the last interval.

Building Subset CIDFonts

It is sometimes especially useful to build a CIDFont containing a subset of all
the glyphs for its character collection. Such a font is called a subset font. For
example, a font vendor might want to build a Kana subset of a full Japanese
language font. Or, a developer might want to omit certain infrequently used
glyphs. Glyph data might not be available for some characters in a character
collection; still it might be desirable to build such a CIDFont.

In these cases, an empty interval is used to indicate that glyph data is missing.
For example, in Figure 4, the second font is missing the “B” glyph.

22 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Figure 4 Empty intervals

In the figure, the “full” font on the left has a character collection of three
characters, and has a CIDMap that has intervals corresponding to each char-
acter, and one additional (last) interval. It also has two font dictionaries in its
FDArray.

The “subset” font also has a character collection of three characters, though
the glyph for “B” is not present. This font also has a CIDMap that has inter-
vals corresponding to each character, and an additional (last) interval.
Because only one font dictionary was needed in the subset font, the optimiza-
tion of setting FDBytes to 0 was used. Notice that although the GD values for
both intervals 1 and 2 are the same, the computed lengths for the charstring
data indicate that interval 1 is an empty interval (the length of the charstring
equals 0), while interval 2 has glyph data (the length of the charstring equals
50).

If the CID references an empty interval, the appropriate notdef character will
be selected instead.

FDArray: Overall Structure

The FDArray is an array of font dictionaries. A font dictionary contains essen-
tial hinting information that is used, along with a charstring, to render a
glyph. An entry in each font dictionary that stores this information is another
dictionary called Private. Given the large collection of characters possible in
a CIDFont, it is likely that there will be groups of glyphs that are similar and
which can be hinted alike. Such groups reference the same font dictionary.

Note Although the font dictionaries in the FDArray contain most of the essential
entries of a well-formed font dictionary (as defined in Adobe Type 1 Font
Format), these are not font dictionaries on which to do a findfont, define-
font, or other such operations.

/FDBytes 1 def
/FDArray 2 dict begin
... end

/FDBytes 0 def
/FDArray 1 dict begin
... end

CID/
Interval FD GD Character

CID/
Interval GD Character

0
1
2
3

0
1
0
0

100
200
350
400

“A”
“B”
“C”
--

0
1
2
3

100
200
200
250

“A”
--
“C”
--

Length = 0
Empty interval implied

3 CIDFont Tutorial 23

The example following shows the overall structure of an FDArray and omits
individual font dictionary content which was shown at the beginning of sec-
tion 3.2, “CIDFont Example,”.” This array contains three font dictionaries,
but another CIDFont may have more or fewer according to the number of hint
groups needed.

Example 5: FDArray

/FDArray 3 array

dup 0

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>
currentdict end

%ADOEndFontDict

put

dup 1

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>
currentdict end

%ADOEndFontDict

put

dup 2

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>
currentdict end

%ADOEndFontDict

put

def

Every charstring must reference one of the font dictionaries defined in this
array, and every CIDFont must have an FDArray with at least one font dictio-
nary.

Each font dictionary in a CIDFont of CIDFontType 0 is a font dictionary as
described in the PostScript Language Reference Manual, Second Edition,
with certain exceptions. These font dictionaries may be Type 1 or Type 3 font
dictionaries, but must not include the following entries:

Type 1 Exceptions

Encoding Array Should not be present in an FDArray font dictio-
nary because the CMap file controls encoding.

Charstring Dictionary Should not be present in an FDArray font dictio-
nary because charstring information appears in a data block near the end
of the CIDFont file.

24 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Subrs Array Should not be present in an FDArray font dictio-
nary because subroutine information appears in a data block near the end
of a CIDFont file along with charstrings and offset and index information.

Type 3 Exceptions

Encoding Array Should not be present in an FDArray font dictio-
nary because the CMap file controls encoding.

Handling Subroutine Information

The information that is handled by the Type 1 Subrs array must be organized
differently in a CIDFont. In Type 1 font programs, Subrs subroutines for
charstrings are defined in the Private dictionary, but they are stored in the data
section of CIDFonts. OtherSubr subroutines are defined in the Private dictio-
nary of CIDFonts.

Within the Private dictionary of the example are defined three keywords with
values such as in Example 6::

Example 6: Three keywords in the Private dictionary

/SubrMapOffset 33140 def

/SDBytes 3 def

/SubrCount 5 def

The SubrMapOffset is the byte offset relative from the start of the data section
of the CIDFont to the beginning of the SubrMap, a sequence of intervals con-
taining Subroutine Descriptor (SD) values used to access subroutine data. SD
values are typically offsets to subroutine data, but in some data organizations
may be indices.

The keyword SDBytes defines the number of bytes needed to store the SD
value, and is the length of one interval in the SubrMap. If these three entries
are not present in the Private dictionary, there are no subroutines.

The SubrMapOffset, SDBytes, and subroutine index determine how many
bytes from the beginning of the SubrMap are needed to locate the interval
containing the SD value for that subroutine index. The length of a subroutine
for a given subroutine index is defined as the difference between its SD value
and that of the successor SD value; therefore, a last interval for SubrMaps is
needed, just as with the CIDMap. Figure 5 shows how the SubrMap relates to
the length of subroutine data.

3 CIDFont Tutorial 25

Figure 5 Relationship of SubrMap to subroutine data length

Because the subroutine information appears in a font dictionary, and because
there can be more than one font dictionary in the FDArray, it follows that
there can be more than one SubrMap. If there is more than one SubrMap,
Adobe recommends that they be organized contiguously; the value of Sub-
rMapOffset in each font dictionary points to the start of the SubrMap for that
particular font dictionary. There is only one Subroutine data section, the sub-
routine information within it organized contiguously.

Defining the CIDFont Resource and the Data Section

Having all components defined for the CIDFont resource, it is necessary to
register that resource, signal the end of the PostScript language program, and
begin the data section. This is accomplished with the StartData procedure, as
in Example 7.

The comment %%BeginData and its corresponding %%EndData bracket the
data section of the file for parsers, spoolers, and ATM-J. See the PostScript
Language Reference Manual, Second Edition for more specific information
about the %%BeginData comment.

The data following the StartData procedure name includes the CIDMap, the
SubrMaps, the subroutine data, and the charstring data (typically in that

Subroutine Index 0 Subroutine Index 1 Subroutine Index 2

Interval 0 Interval 1 Interval 2

00 82 2B 00 82 37 00 82 3D

33140 33143 33146 33149

subroutine length = 823D16 – 823716 = 6

Equivalent PostScript code:

0 1 CallOtherSubr return
33335 (= 823716) 33341 (=823D16)

C4 68 10 05 6A 5C

SubrMap

Subroutine
Data

26 Adobe CMap and CIDFont Files Specification (16 Oct 95)

order) and begins one byte following the procedure name. If the first argu-
ment to StartData is Binary, then this byte must be a space character (0x20).
If the first argument is Hex, then any white space characters may be used.

Example 7: The StartData procedure

%%BeginData: 4325480 Binary Bytes

(Binary) 4325452 StartData

<<Data begins one space following StartData>>
<<CIDMap omitted>>
<<SubrMap omitted>>
<<Subroutine Information omitted>>
<<charstrings omitted>>
%%EndData

%%EndResource

Note The StartData procedure that comes “stock” with the compatibility mode
CIDInit procset is designed for file-based CIDFonts. If you need to load a
CIDFont into VM, Adobe will provide a different version of StartData.

The StartData procedure is defined by the CIDInit procset. StartData regis-
ters the CIDFont resource. /CIDFontName is the key associated with this
instance.

The comment %%EndResource ends the file.

4 CIDFont Reference

This section summarizes information presented in section 3 and provides
additional information on topics not covered there. Primarily, it documents
information about each keyword in the PostScript language portion of a
CIDFont file. The detailed explanation is presented in alphabetical order by
keyword name.

4.1 CIDFont Organization

A CIDFont has two parts: a PostScript language program section and a data
section. The PostScript portion produces a CIDFont resource instance, which
is a dictionary object, and defines a variety of keys. The data section contains
charstrings, their subroutines, and data used to access them.

Keyword Organization

This section provides a list of CIDFont dictionary keys (with the exception of
CIDInit, and StartData, which are procedure names); some keys are optional.
In a file, each key takes a value, and must be properly defined as a member of
a dictionary. See the sample file in Section 3 for an example of constructing a
CIDont resource using these keys.

4 CIDFont Reference 27

CDevProc (optional)
CIDInit (required) Procedure name
CIDFontName (required)
CIDFontVersion (optional)
CIDFontType (required)
CIDSystemInfo (required)
FontBBox (required)
UIDBase (optional)
XUID (optional)
FontInfo (optional)
CIDMapOffset (required)
FDBytes (required)
GDBytes (required)
CIDCount (required)
FDArray (required)
StartData (required) Procedure name

The first part of the file (up to but not including the data section) is a self-con-
tained PostScript language program. It ends with StartData, and produces a
CIDFont resource instance in VM. The data section is not placed in VM and
remains on disk.

Data Section

The data section can contain four items:

• A CIDMap, which contains information about the location of each char-
string in the CIDFont and the font dictionary that corresponds to it.

• One or more SubrMaps, which contain information about the location of
each subroutine used by the characters in the font. SubrMaps are optional,
depending on whether the font dictionaries in the FDArray require subrou-
tines.

• The subroutines used by the glyph descriptions. Subroutines are optional,
depending on whether the font dictionaries in the FDArray require them.

• The charstrings, which contain the glyph descriptions.

4.2 CIDFont Resource Keys

This section summarizes in alphabetical order the keys that are understood in
a CIDFont resource dictionary. The type of each key (for example, integer)
appears after its name, along with whether that key is required in the CIDFont
file.

28 Adobe CMap and CIDFont Files Specification (16 Oct 95)

CDevproc procedure optional

The CDevProc procedure algorithmically derives global changes to a font’s
metrics. See the PostScript Language Reference Manual, Second Edition for
more extensive information about using CDevProc in font programs.

CIDCount integer required 3.2.9

The CIDCount key provides the number of valid character IDs in the
CIDFont. Valid CIDs are in the range of 0 to CIDCount – 1, inclusive.

CIDFontName name required 3.2.4

This keyword sets the name of the CIDFont resource instance. That name is
the key subsequently used to identify this resource instance. It is very
important for CIDFontName to conform to the naming conventions for
CIDFonts. Naming conventions are discussed in Appendix D.

CIDFontType integer required 3.2.4

The CIDFontType keyword tells what is in the font resource, how it is orga-
nized, and how it is represented. All CIDFonts described in this document
have a CIDFontType of 0. Other CIDFontType values are reserved.

CIDFontVersion integer optional 3.2.4

The CIDFontVersion formally defines the version number of this CIDFont
file. This should be the same version number used in the %%Version com-
ment.

CIDMapOffset integer required 3.2.9

The CIDMapOffset is the byte offset of the CIDMap relative from the start of
the data section of the CIDFont file. See section 4.3, “Defining the CIDFont
Resource,” for a more precise definition of the start of the data section.

CIDSystemInfo dictionary required 3.2.5

The CIDSystemInfo dictionary is required. It is important in maintaining ver-
sion control among the component files that make up the CID-keyed font.
The string keywords to this dictionary have the standard PostScript language
limit of 65535 bytes; however they may contain only alphanumeric charac-
ters and the underscore (_) character—white space is not permitted. See sec-
tion 3, “CIDFont Tutorial,” for examples of how to use the CIDSystemInfo
keywords.

The CIDSystemInfo dictionary must contain the following three keywords.

4 CIDFont Reference 29

Registry string required

Registry is a string value assigned by the Unique ID Coordinator at Adobe
Systems. An example of the Registry keyword and value is:

/Registry (Adobe) def

Ordering string required

The Ordering string uniquely identifies the ordered glyph collection of the
CIDFont within its Registry. Two different Registry values may have the
same Ordering string. An organization is responsible for maintaining its own
set of Ordering strings. An example of the Ordering keyword and value is:

/Ordering (Japan1) def

Supplement integer required

The Supplement integer identifies any additions to the glyph collection of a
CIDFont. Such additions must not alter the existing ordering of the collection
(in which case, the Ordering string would change).

FDArray array required 3.2.10

The FDArray is an array of font dictionaries. A font dictionary contains essen-
tial hinting information which is used, along with a charstring, to render a
glyph.

Every charstring must reference one of the font dictionaries defined in this
array, and every CIDFont must have an FDArray with at least one font dictio-
nary.

The value for FDBytes determines how many bytes are used as an index into
the FDArray and, hence, the range of font dictionaries that can be referenced.
For example, With an FDBytes value of 1, a CIDFont’s FDArray can have up
to 256 referenced font dictionaries (numbered 0 to 255).

eexec encryption is not required for CIDFontType 0 fonts.

See section 3 for a complete discussion of how the font dictionaries in the
FDArray access subroutines.

FDBytes integer required 3.2.9

FDBytes has a value corresponding to the number of bytes used to store the
font dictionary (FD) index for each CID in the CIDMap. If FDBytes is equal
to 0, the CIDMap contains no FD indices, and the FD index of 0 is assumed.

30 Adobe CMap and CIDFont Files Specification (16 Oct 95)

FontBBox array required 3.2.6

FontBBox is a required key that defines in an arbitrary space of 1000/em a
box large enough to enclose any of the characters in the CIDFont. See the
PostScript Language Reference Manual, Second Edition or Adobe Type 1
Font Format for an explanation of FontBBox.

FontInfo dictionary optional 3.2.8

This keyword holds the font name, weight, and any copyright notice. See
PostScript Language Reference Manual, Second Edition, and Adobe Type 1
Font Format for more information about the FontInfo dictionary keyword.

GDBytes integer required 3.2.9

GDBytes has a value corresponding to the number of bytes used to store the
glyph descriptor (GD) value for each CID in the CIDMap. The GD value is
an offset relative from the start of the data section to the desired charstring.

UIDBase integer optional 3.2.7

UIDBase complements an entry in the CMap file (UIDOffset). Together, their
data make up a two-part system based on both the CIDFont and the CMap
files for assigning unique IDs in VM. See section 5 for an explanation of how
both values work together.

UIDBase is a number in the range 0 to 16,777,215 (or 224 – 1), and is assigned
by Adobe Systems. See Appendix C for specific information about obtaining
UIDBase numbers from Adobe Systems.

Note: UIDBase (and UIDOffset) are useful only in compatibility mode. Adobe
suggests including them for backwards compatibility.

XUID integer optional 3.2.7

An XUID (extended unique ID) is an entry whose value is an array of integers.
This array identifies a font by the entire sequence of numbers in the array. For
example, the line

/XUID [1 11 27611] def

defines an XUID array. The XUID array in the CIDFont file has no relationship
to the XUID in the CMap file.

Note: XUID is useful only in native mode. Adobe strongly suggests including
an XUID to help ensure future compatibility.

4 CIDFont Reference 31

4.3 Defining the CIDFont Resource

The StartData procedure registers the CIDFont resource, proceduralizes how
the data section of the CIDFont file is handled by the PostScript interpreter,
and signals the beginning of the data section of the CIDFont. The data section
consists of the CIDMap, charstrings, any SubrMaps, and any Subrs. The
StartData procedure is defined in the CIDInit procset.

The syntax of StartData is

(<string>) <int> StartData

where the value of <string> can be Binary or Hex to specify how the data is
encoded, and the value of <int> is the number of bytes of data after decod-
ing. This data must begin one byte after the StartData procedure call is
encountered in the data stream or file. If the first argument to StartData is
Binary, then this byte must be a space character (0x20).

If StartData is executed when using a CIDFont from a file-based system, it

• defines the CIDFont resource,

• removes the CIDFont instance from the dictionary stack,

• executes a currentfile closefile,

• removes the CIDInit procset instance from the dictionary stack.

If StartData is executed when a CIDFont is to be loaded into VM, it

• creates one data object in the CIDFont resource dictionary to hold the data.
This object is made up of one or more PostScript language string objects,
depending on the size of the data.

• creates a second object in the CIDFont resource dictionary to act as a
CIDMap analog. The GD value in this object is an index, rather than an
offset.

• defines the CIDFont resource.

• removes the CIDFont instance from the dictionary stack.

• removes the CIDInit procset instance from the dictionary stack.

StartData allows data to be organized as binary or as ASCII hexadecimal
values. ASCII hexadecimal is useful for transmitting data when using binary
might cause problems. Loading a CIDFont onto an file-based system, how-
ever, must result in the data section of a file being organized in a binary
format, even if the data is transmitted as ASCII hexadecimal.

32 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Data encoded as ASCII hexadecimal is converted to binary as follows. For
each pair of ASCII hexadecimal digits (0-9 and A-F or a-f), one byte of
binary data is produced. All white space characters—tab, carriage return,
linefeed, formfeed, and null—are ignored. The character > indicates end of
data (EOD); if the data section is ASCII hexadecimal, it must end with this
end-of-data character. Any other characters cause an ioerror. If the decoding
filter encounters EOD when it has read an odd number of hexadecimal digits,
it behaves as if it has read an additional zero digit.

Here are two examples of using the StartData procedure.

Example 8 Using the StartData procedure

%%BeginData: 2484 Binary Bytes

(Binary) 2460 StartData

<<2460 binary bytes of data omitted>>
%%EndData

%%BeginData: 4942 Binary Bytes

(Hex) 2460 StartData

<<2460 pairs of ASCII hex data omitted>>
<<+ 1 EOD marker>>
%%EndData

The %%BeginData comment states the number of binary bytes in the data
section, plus (in this case) 24 and 22 additional bytes. The difference between
the comment value and the value used in the procedure call is the number of
characters in the procedure call line itself (plus one). This is so parsers and
spoolers can have an accurate character count based on the location of the
comment, and so the actual byte count of the data (which starts after the pro-
cedure call) can be accurate, too.

In the ASCII example, there are 2460 pairs of values, for a total of 4920
bytes. The offset for the call (21) plus the EOD marker (1) make for the dif-
ference as shown.

Of course, the number of additional bytes in any particular situation may be
different from this example, depending on whether the StartData procedure
takes the (Binary) or (Hex) string argument, and on the number of characters
that make up the integer argument.

5 CMap Tutorial

A CMap file defines the relationship between a character code and the char-
acter description delivered by the CIDFont program to the rasterizer.

The specific set of characters to which a CMap refers is called a character set
or charset. Various CMap files specifying different charsets can refer to the
same CIDFont; similarly, the same CMap file can refer to various fonts. The

5 CMap Tutorial 33

mapping of input code to character ID defines the encoding imposed on the
charset. A CMap file is an ASCII text file; its format is a subset and extension
of the PostScript language, with its own syntactical rules.

It is unlikely that a font developer will need to build a CMap file for Japanese
language fonts. Adobe Systems makes available CMap files for the most
common charset and encoding combinations, as defined by Japanese national
standards groups. However, a developer will need to build a CMap file when
creating a font for a charset or encoding not provided by Adobe.

This tutorial covers the mapping of character codes to CIDs for a single
CIDFont. CMaps are more general than this; they can also map to codes or
names in a base font, and they can map a single space of codes into character
selectors for multiple fonts and CIDFonts. However, compatibility mode
restricts a CMap to a single CIDFont. As native mode devices become more
available, additional documentation will describe the extensions necessary to
support it.

5.1 CMap File Components

A CMap file specifies the character descriptions to which an input code maps.
The character may be identified by a character ID, a character name, or a
character code. The file contains header comments, information for ensuring
compatibility with CIDFont files, caching identification data, the writing
mode, a definition of codespace (the set of valid input codes), and code map-
ping information.

When executed, a CMap file creates a PostScript language resource instance
of type CMap in VM. The resource is implemented as a dictionary. See the
PostScript Language Reference Manual, Second Edition for more informa-
tion about resource instances and their types.

Two examples of a CMap file follow in this section. Each is complete. The
first is “stand-alone,” in that it does not use information from any other CMap
file. The second example incorporates information from another CMap file in
order to make its own definition of the input codes and the corresponding
glyphs smaller.

5.2 First Example: Stand-Alone CMap File

This example is a full and complete CMap file that does not use information
from any other CMap files. Where something has been omitted, there is
explanatory text between brackets, << like this >>.

Example 9 Stand-alone CMap file

%!PS-Adobe-3.0 Resource-CMap

%%DocumentNeededResources: procset CIDInit

34 Adobe CMap and CIDFont Files Specification (16 Oct 95)

%%IncludeResource: procset CIDInit

%%BeginResource: CMap 83pv-RKSJ-H

%%Title: (83pv-RKSJ-H Adobe Japan1 0)

%%Version: 1

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

/CMapName /83pv-RKSJ-H def

/CMapVersion 1 def

/CMapType 0 def

/UIDOffset 0 def

/XUID [1 10 25324] def

/WMode 0 def

4 begincodespacerange

 <00> <80>

 <8140> <9ffc>

 <a0> <df>

 <e040> <fbfc>

endcodespacerange

1 beginnotdefrange

<00> <1f> 1

endnotdefrange

100 begincidrange

<20> <7e>1

<8140> <817e> 633

<8180> <81ac> 696

<81b8> <81bf> 741

<81c8> <81ce> 749

<< 90 ranges missing >>

<9540> <957e> 3475

<9580> <95fc> 3538

<9640> <967e> 3663

<9680> <96fc> 3726

<9740> <977e> 3851

endcidrange

100 begincidrange

<9780> <97fc> 3914

<9840> <9872> 4039

<989f> <98fc> 4090

5 CMap Tutorial 35

<9940> <997e> 4184

<9980> <99fc> 4247

<< 90 ranges missing >>

<ed83> <ed83> 7934

<ed84> <ed84> 992

<ed85> <ed85> 7935

<ed86> <ed86> 994

<ed87> <ed87> 7936

endcidrange

17 begincidrange

<ed88> <ed8d> 996

<ed8e> <ed8e> 7937

<< 13 ranges missing >>

<ee9a> <ee9a> 768

<ee9b> <ee9c> 7631

endcidrange

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

Comment Conventions

A CMap file must begin with the comment characters %!; otherwise it may
not be given the appropriate handling in some operating system environ-
ments. The first line in the file is

%!PS-Adobe-3.0 Resource-CMap

The remainder of the line (after the %!) identifies that file as a CMap resource
that conforms to the PostScript language document structuring conventions
version 3.0. Document structuring conventions are explained in the Post-
Script Language Reference Manual, Second Edition.

In VM, the CMap uses a procset from a system support file named CIDInit.
Appendix A explains about system support and other files that may be
required by a particular PostScript interpreter. For the benefit of parsers and
spoolers, a CMap file carries the header lines

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

36 Adobe CMap and CIDFont Files Specification (16 Oct 95)

%%DocumentNeededResources indicates that an external resource is
needed by this document; in this case, the procset CIDInit. %%IncludeRe-
source tells any handling software that if the resource is not available on the
PostScript interpreter, it should be included in-line if possible.

The %%BeginResource comment informs spoolers and resource managers
that the information that follows is a resource. There is a corresponding
%%EndResource comment at the end of the file. The %%BeginResource
line also states the type of resource (CMap) and its name (83pv-RKSJ-H).

%%BeginResource: CMap 83pv-RKSJ-H

The %%Title comment again states the CMap name, and provides the Regis-
try and Ordering strings, and the Supplement number.

%%Title: (83pv-RKSJ-H Adobe Japan1 0)

The %%Title comment has the following structure:

%Title: (<CMapName> <registry> <ordering> <supplement>)

where CMapName identifies the CMap file, and the remaining fields registry,
ordering, and supplement duplicate version control information present else-
where in the file (primarily as a convenience to parsers). The variables regis-
try and ordering are strings that can consist of alphanumerics and the
underscore character. No white space is allowed within the string. The vari-
able supplement is an integer.

The %%Version comment provides the version number of this CMap file.
Adobe recommends that it be the same number that is defined for CMapVer-
sion later in the file.

%%Version: 1

Additional comments are permitted as long as they conform to the document
structuring conventions.

Initializing the CID Procset

Immediately after the header information and before the definition of the
CMap proper, a findresource operation is run on the file CIDInit, which is
one of the system support files installed in the file system. This ensures that
the routines necessary to process CMap files are first read into VM. An end
operator corresponding to this begin appears near the end of the file.

/CIDInit /ProcSet findresource begin

Appendix A contains an explanation of the CIDInit (and other) system sup-
port files.

5 CMap Tutorial 37

CMap Resource Dictionary

After the CID procset has been initialized, the file defines a PostScript lan-
guage resource instance whose underlying type is a dictionary. The line

12 dict begin

begins this dictionary. The line that uses the operator defineresource near
the end of the file registers the CMap as a resource instance.

Note To accommodate structures that are built in VM, Adobe recommends that you
allocate five more elements to this dictionary than those that appear to be
directly consumed by the code. Using fewer elements than this may result in a
dictfull error on Level 1 interpreters. No such error occurs on Level 2 inter-
preters.

Establishing the CMap

After the CMap resource dictionary has been established, the definition of the
CMap can take place. The process adds several key-value pairs to the CMap
resource dictionary that are not apparent from the PostScript language code
in the CMap file, and which explain the extra dictionary elements in the pre-
ceding line.

The CMap is begun with the line

begincmap

There is a corresponding endcmap operator near the end of the file that com-
pletes the task of building the resource.

Version Control

The first of the dictionary objects is CIDSystemInfo which contains the ver-
sion control information. CID-keyed fonts implement version control to
ensure compatibility between this CMap file and the CIDFont files used with
it.

CIDSystemInfo can be defined as either a dictionary or an array of dictionar-
ies. When CIDSystemInfo is defined as a dictionary, the dictionary must con-
tain three key-value pairs that compose the version control information;
Registry, Ordering, and Supplement. The values of Registry and Ordering are
character strings. Supplement has an integer value.

The following is used in the example of an stand-alone CMap file, showing
CIDSystemInfo being defined as a dictionary.

Example 10 CIDSystemInfo as dictionary

/CIDSystemInfo 3 dict dup begin

38 Adobe CMap and CIDFont Files Specification (16 Oct 95)

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

When CIDSystemInfo is defined as an array of dictionaries, each dictionary in
the array must contain three entries described above. The example below
shows CIDSystemInfo being defined as an array containing two dictionaries.

Example 11: CIDSystemInfo as an array of dictionaries

/CIDSystemInfo 2 array dup

[

0 3 dict begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def put

1 3 dict begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 1 def

end def put

]

def

It is important that the Registry and Ordering strings of the CMap file match
those of the CIDFont file with which it works. “Version Control” in the sec-
tion 2 provides an explanation of how these values are obtained. That section
includes a discussion of what can happen when the Supplement values of a
CMap file and a CIDFont don’t match.

CMap Name, Version, and Type

The line beginning with CMapName formally defines the name of the CMap
file. It is the instance name passed to the resource machinery of the PostScript
interpreter. Adobe strongly recommends that this be the same name used in
the %%Title comment.

/CMapName /83pv-RKSJ-H def

The line beginning with CMapVersion formally defines the version number of
this CIDFont file. If present, this must be the same version number used in
the %%Version comment.

/CMapVersion 1 def

The line beginning with CMapType defines changes to the internal organiza-
tion of CMap files or the semantics of CMap operators. The CMapType of
CMaps described in this document is 0. The value of CMapType is an integer.

/CMapType 0 def

5 CMap Tutorial 39

The CMapName and CMapType are required to be present in the CMap file;
the CMapVersion is optional.

Unique Identification Numbers

The CMap file contains two types of unique ID numbers. Unique ID numbers
are necessary so that caching can take place between jobs. The first type of
unique ID uses the UIDOffset value in the CMap file and a corresponding
UIDBase value in the CIDFont file. This process is explained in more detail
in Appendix D. The second method uses an XUID (extended unique ID)
number which is not related to a similar number in the CIDFont file. The
XUID number is a Level 2 feature; it is ignored by Level 1 interpreters.

Unique ID Type: UIDOffset

The line

/UIDOffset 0 def

sets the offset of unique ID numbers for the character set described by this
file. Each CMap file must have its own set of unique ID numbers different
from those of other CMap files that reference the same character collection.
See section 3 for information about UIDBase.

Note UIDBase numbers are assigned by Adobe Systems. UIDOffset numbers are
calculated by the font developer. The typical maximum count of consecutive
numbers available for a CIDFont is 2,000; larger and smaller ranges are
available on request.

Unique ID Type: XUID

An XUID (extended unique ID) is an entry whose value is an array of integers.
This array identifies a font by the entire sequence of numbers in the array.
The line

/XUID [1 10 25324] def

defines an XUID array.

The first element of an XUID array must be a unique organization identifier,
assigned by Adobe Systems. Appendix C explains how to obtain such an
identifier. Section 3 discusses XUID numbers for CIDFont files; that informa-
tion is also valid here.

40 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Writing Mode

The WMode dictionary entry controls whether the CID-keyed font writes hor-
izontally or vertically. It indicates which set of metrics will be used when a
base font is shown. An entry of 0 defines horizontal writing from left to right;
an entry of 1 defines vertical writing from top to bottom. Other values for
WMode are reserved.

/WMode 0 def

WMode in the CMap overrides any WMode in any font or CIDFont referred
to by the CMap file.

Codespace

The CMap file fully describes the potential set of valid input character code
values. Input codes may consist of one, two, three, or more hexadecimal
bytes, expressed between < > brackets, Ranges need not be contiguous, but
cannot overlap. The codespace definition unambiguously specifies which
input codes consist of one byte, which consist of two, and so forth. The defi-
nition of codespace must precede any code mappings, including any not-
defs—this is one of the few strict organizational requirements of the CMap
file.

The following example shows the definition of codespace for the first exam-
ple:

Example 12 Codespace

4 begincodespacerange

<00> <80>

<8140> <9ffc>

<a0> <de>

<e040> <fbec>

endcodespacerange

The line

4 begincodespacerange

defines four codespace entries. The codespace entries themselves consist of
pairs of hexadecimal numbers in the form <low-end> <high-end>.

A set of codespace ranges can have up to and including 100 definition lines.
This (and other similar limitations) helps avoid stack overflow errors on ear-
lier interpreters. If a CMap requires more than 100 lines to define its
codespace ranges, it can use several sets of 100 or fewer.

5 CMap Tutorial 41

Codespace is not necessarily linear; the number of bytes required to express
the limits of the codespace range also indicates the dimensionality of that
range. Figure 6 shows how the codespace definition in this example com-
prises two single-byte linear ranges of codes (<00> to <80> and <A0> to
<DF>) and two double-byte rectangular ranges of codes (<8140> to <9FFC>
and <E040> to <FBFC>). The first two-byte region comprises all codes
bounded by first-byte values of 81 through 9F and second-byte values of 40
through FC. Thus, the input code <86A9> is within the region because both
bytes are within bounds. That code is valid. The input code <8210> is not
within the region, even though its first byte is between 81 and 9F, because its
second byte is not within bounds. That code is invalid. The second two-byte
region is similarly bounded.

Note Overlapping codespaces are not permitted.

Figure 6 Codespace ranges for the 83pv-RKSJ-H charset encoding

In this example, the codespace range from <00> to <80> consists of single-
byte codes. In the Japanese language font Ryumin-Light-83pv-RKSJ-H, these
are proportionally spaced Roman characters. The codespace <8140> to

00

FF
00 FF

First
Byte

Second
Byte

81

40

8140

9F

9FFC

E0

E040

FB

FC

FBFC

86A9
(valid)

8210
(invalid)

One-Byte
Region

One-Byte
Region

00

80

A0

DF

7F

7F

Two-Byte Region

Two-Byte Region

42 Adobe CMap and CIDFont Files Specification (16 Oct 95)

<9FFC> consists of full-width Kanji characters. The range <A0> to <DF>
contains half-width Kana, and the range <E040> to <FBFC> contains
another set of full-width Kanji.

Code Mappings

A CMap file maps input codes within the codespace to a character selector
and component font index that actually accesses the glyph. The component
font index identifies the specific font, and the character selector identifies the
character within that font that is to be displayed. A character selector can be a
character ID for a CIDFont, a character code, or a glyph name—the latter two
are for accessing Type 1 and Type 3 fonts that may be part of a CID-keyed
font. For most purposes, this combination of character selector and compo-
nent font index is transparent, and it is useful to think of them as one item.

As shown in Example 13, the cidrange sections associate the beginning and
ending of a range of acceptable character codes, expressed as hexadecimal
strings, with the starting CID for that range. Code mappings can also associ-
ate input codes with character codes or glyph names, if needed.

Example 13 Code mappings

100 begincidrange

<20> <7e> 1

<8140> <817e> 633

<8180> <81ac> 696

<81b8> <81bf> 741

<81c8> <81ce> 749

<< 90 ranges missing >>

<9540> <957e> 3475

<9580> <95fc> 3538

<9640> <967e> 3663

<9680> <96fc> 3726

<9740> <977e> 3851

endcidrange

100 begincidrange

<9780> <97fc> 3914

<9840> <9872> 4039

<989f> <98fc> 4090

<9940> <997e> 4184

<9980> <99fc> 4247

<< 90 ranges missing >>

<ed83> <ed83> 7934

<ed84> <ed84> 992

<ed85> <ed85> 7935

<ed86> <ed86> 994

<ed87> <ed87> 7936

endcidrange

5 CMap Tutorial 43

17 begincidrange

<ed88> <ed8d> 996

<ed8e> <ed8e> 7937

<< 13 ranges missing >>

<ee9a> <ee9a> 768

<ee9b> <ee9c> 7631

endcidrange

As with codespace ranges, there can be up to 100 code mapping ranges in
each set. When more than 100 are required, the CMap uses several sets. The
first line of each mapping states how many sets of input codes and starting
CIDs there are in the range—in the case of this example, a total of 217 in
three ranges of 100, 100, and 17. Succeeding lines within each range state a
specific starting input code, a specific ending input code, and the starting CID
for that range. The starting and ending input codes appear as hexadecimal
strings expressed within <> brackets; the CID is a decimal number with no
brackets.

There are 94 input codes between <20> and <7E>. Because the starting CID
is (decimal) 1, input code <20> corresponds to character ID 1, <21> corre-
sponds to 2, <22> corresponds to 3, and so forth. Input code <7E> corre-
sponds to character ID 94.

There are three important requirements of code mappings:

• Code mappings (unlike codespace ranges) may overlap, but succeeding
maps superceded preceding maps.

• The domain of the code mappings must lie entirely within the codespace.

• The domain of the code mappings may be multidimensional if the
codespace is multidimensional.

The operator endcidrange finishes code mapping for ranges of input.

Notdef Ranges

Input codes may be presented to the CMap resource instance that do not map
to valid character IDs according to the information in the codespace and code
mapping definitions. These are handled by showing notdef characters. The
default notdef character is always accessed by CID 0. Every CID-keyed font
must have a default notdef character. However, a developer can assign valid
input codes to the default notdef character and to notdef characters other than
the default.

44 Adobe CMap and CIDFont Files Specification (16 Oct 95)

• As shown in Figure 6, an input code that falls outside of valid codespace is
invalid. When an input code is presented to the CMap resource instance
that does not map to a valid codespace, the default notdef character will be
substituted and shown.

• If the Supplement numbers do not match between CIDFont and CMap
resources, an input code may be presented that does not map to an existing
character; in this case the default notdef character will be substituted and
shown.

• If the input code is for an empty interval (as explained in section 3), the
notdef character may be the default or one assigned by the developer,
depending on the notdef mapping.

• A developer can also explicitly assign a notdef to one or more valid input
codes.

Note The name .notdef is the glyph name of a character required to be present in
Type 1 and Type 3 fonts. The term “notdef,” as used in the context of this doc-
ument, is a generic name Adobe uses to describe a glyph that will be shown if
some encoding does not result in a showable combination of component font
index and glyph selector.

The example shows how a developer can map valid input codes to specific
notdef characters.

1 beginnotdefrange

<00> <1f>1

endnotdefrange

The first line states how many ranges of notdef definitions there are—in the
case of this example, there is one. As with codespace ranges and code map-
pings, up to and including 100 notdef ranges can be specified in each set,
with several sets of 100 or fewer permitted.

The two hexadecimal strings (<00> and <1f>) state the bounds of the range
of input codes. The decimal number states the single character ID to which
all codes in that range are mapped if a notdef must be shown. For example, if
a character ID falling within the notdef range is presented to the CMap
resource instance, which for some reason (such as an empty interval) cannot
show a glyph, then the notdef character defined here will be shown instead.
Developer-defined notdefs such as this operate only when a CID that falls in
range cannot otherwise produce a glyph; they can thus coexist with ranges of
valid mappings.

5 CMap Tutorial 45

Note Notdef characters are selected from the same collection as all other charac-
ters. The character corresponding to character ID 1 is a notdef character—
and happens also to be the first character in the code mapping range <00> to
<1f>.

The ability to specify several notdef characters is useful for fonts such as
those of the Japanese language, where there are several character subsets of
various widths. Adobe CMap files, for example, include half-width kana,
full-width Kanji, and proportional roman characters. Each subset has one
notdef character of its own, specifically the half-width space, that full-width
space, and the proportional space.

5.3 Closing the CMap File and Creating the Resource Instance

The last five lines of the CMap file explicitly end the CMap information,
establish the CMap resource, and formally close the file.

Example 14 The end of the CMap file

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

The operator endcmap corresponds to the operator begincmap that appears
at the beginning of the file. The two operators bracket the CMap information.

The line

CMapName currentdict /CMap defineresource pop

explicitly states the encoding for this CMap file, defines it as a VM resource,
and pops it from the stack. The argument CMapName is the instance key,
defined earlier in the file. The argument CMap is the resource category. See
Appendix D for important information about CMap naming conventions.

The two end operators correspond (respectively) to the dict begin line and
the CIDInit procset invocation.

The comment

%%EndResource

is a comment that defines the end of the file in accordance with the document
structuring conventions. It is useful if this CMap file is concatenated with
other files in a job stream.

46 Adobe CMap and CIDFont Files Specification (16 Oct 95)

The comment

%%EOF

formally signals the end of the file.

5.4 Second Example: A CMap File That Uses Another

One CMap resource instance can use the VM structures already created by
another instance. This second example (Example 15) shows how this is done.
Most of the 8000-plus Kanji characters are the same whether written horizon-
tally or vertically; a few are different. This example shows a complete CMap
file for a vertical Japanese font that uses the characters already mapped for a
horizontal font, and which then goes on expressly to map only those charac-
ters that are different.

Example 15 CMap file that uses another CMap file

%!PS-Adobe-3.0 Resource-CMap

%%DocumentNeededResources: procset CIDInit

%%DocumentNeededResources: CMap Ext-RKSJ-H

%%IncludeResource: procset CIDInit

%%IncludeResource: CMap Ext-RKSJ-H

%%BeginResource: CMap Ext-RKSJ-V

%%Title: (Ext-RKSJ-V Adobe Japan1 0)

%%Version: 1

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

/Ext-RKSJ-H usecmap

/CMapName /Ext-RKSJ-V def

/CMapVersion 1 def

/CMapType 0 def

/UIDOffset 800 def

/XUID [1 10 25316] def

/WMode 1 def

1 begincidrange

<8141> <8142> 7887

endcidrange

35 begincidchar

5 CMap Tutorial 47

<8143> 8286

<8144> 8274

<814a> 8272

<8387> 7936

<838e> 7937

<< 30 ranges missing >>

endcidchar

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

The header for a CMap file that uses another is the same as that for a standal-
one CMap file, with the addition of a %%DocumentNeededResources and
an %%IncludedResources comment referring to the CMap being used. A 12-
element dictionary is also established and the begincmap operator is issued.

The important operator in Example 15 is usecmap. It appears in the line

/Ext-RKSJ-H usecmap

You can express the same resource instances in VM without using this opera-
tor (by duplicating the contents of the other file in line), but some implemen-
tations can make more efficient use of CMap resources when one file uses
another than if each file were to be defined separately.

The usemap operator allows one resource instance to refer to the VM struc-
tures already created by another. The amount of VM saved is related to the
relative sizes of the files. If one file creates a structure with 217 CID ranges
(comprising over 8200 characters), and another file can use them by remap-
ping only 37 characters, as in Example 15, VM savings can be substantial.
The usemap operator must appear before any range operation.

After the line with the usecmap operator are lines for defining CMapName
(note the -V to denote the vertical orientation of this CMap file), CMapVer-
sion, UIDOffset, and XUID—all following the same syntax and usage as with
a stand-alone CMap file.

The WMode entry gives the writing mode of the using file. The using file
adopts the codespace, character mappings, and notdefs of the CMap being
used unless they are specifically redefined. It causes an error to try to redefine
the adopted codespace.

48 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Example 15 redefines a single two-character range of input codes using the
begincidrange and endcidrange operators and 35 individual characters
using the begincidchar and endcidchar operators.

The resource instance is created by Example 16:

Example 16 Creating the resource instance

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

which state the instance key and the resource category, as do the similar lines
in the first example.

5.5 CMap File Naming Convention

While it is expected that the CMap files provided by Adobe Systems will be
adequate for the majority of CID-keyed fonts, some font developers will need
to develop their own CMap files. To ensure that CMap file names are unique,
Adobe Systems recommends that the file name use the developer’s Registry
name as a prefix to the CMap file name.

It is recommended that the Registry name that is registered with Adobe Sys-
tems be limited to two or three characters. It is important to keep it short
since the CMap file name will appear in the font menu, where there may be
system-imposed length constraints. The Registry name should consist of only
alphabetic characters and numbers. For example, a font developer who has
registered the string ABC might name their custom CMap file: ABC-H

Note Since the names of CMap files developed by Adobe Systems are expected to
be useful to and shared by other Asian font developers, applications software
developers should not expect to see Adobe’s Registry name as a prefix for
CMap file names.

6 Rearranged Font Tutorial

Because they have many characters, Japanese fonts can occupy several mega-
bytes of disk space. Often, a developer will want to produce a set of similar
fonts, each font differing from others by such details as the style of propor-
tional Roman characters, the weight of Kana, or the inclusion of special gaiji
characters not available in the original font.

6 Rearranged Font Tutorial 49

A rearranged font can produce the effect of multiple versions of the same
original (or template) font, but without the storage overhead of an extra ten or
twenty megabytes. It produces this effect by “borrowing” characters from
other fonts. Rearranged fonts are small in size; Adobe has found that they
typically occupy fewer than 30 kilobytes each.

Rearranged fonts can make use of CID-keyed fonts, existing composite fonts
(also called Japanese Type 1 fonts), Roman Type 1 fonts, and Type 3 fonts. A
software developer can create a rearranged font from an existing font without
being concerned with the format of the font programs that make up the rear-
ranged font. A developer will need to know the character set and encoding of
the font programs from which characters are being borrowed.

This section describes how to produce rearranged fonts, from the standpoint
of the developer who wishes to produce a collection of fonts as variations on
a single template font. After reading it, a developer should be able to con-
struct a rearranged font that incorporates glyphs from several existing fonts.

6.1 Rearranged Font Components

A rearranged font consists of a CMap file that uses two special commands:
beginrearrangedfont and endrearrangedfont. The rearranged font file uses
a slightly different header from a CMap file, and uses an additional comple-
ment of CMap operators to accomplish the rearrangement.

In the rearranged font are named a template font and one or more component
fonts. The template font provides the structure on which the rearranged font
is built, and the component fonts provide the borrowed characters.

Rearranged fonts themselves contain no character data. They describe the
fonts from which the template font is to borrow certain characters, and how
those characters are to be mapped to input codes within the rearranged font’s
codespace. A rearranged font is thus a recipe for creating a new font. The
effect of executing a rearranged font is to create a composite font in VM. The
rearranged font behaves in just the same way as any other CIDFont: the name
of the rearranged font appears on font menus, the font can be downloaded to
a printer, and it can be used with ATM-J.

There are two major restrictions on the use of rearranged fonts.

• Although a rearranged font file uses CMap operators, its mapping is spe-
cific to the template font being rearranged; it does not have the “general-
ized” nature of a CMap file (which may be used with many different CID-
keyed fonts).

• All component fonts of a rearranged font must be available to the Post-
Script interpreter at findfont time.

50 Adobe CMap and CIDFont Files Specification (16 Oct 95)

6.2 Rearranged Font Example

This section presents an example of a rearranged font. Where statements or
data have been omitted, they are replaced with explanatory text within brack-
ets, like this:

<< text here omitted >>
Like a CMap file, a rearranged font file is a program written in the PostScript
language. The order and syntax of entries is important; Section 7 describes
them in detail.

The example shows several of the rearrangements a developer might want to
make to an existing Japanese language font. It starts with a font named
Jun101-Light-83pv-RKSJ-H. The Jun101-Light “starting” font is referred to
as the template font, because the rearrangements are built on it.

Example 17 is a rearranged font; it makes the following four changes:

1. It replaces the single-byte proportional Roman characters of Jun101-
Light-83pv-RKSJ-H with characters from the Type 1 font Poetica-Chan-
ceryIV.

2. It replaces the punctuation characters of Jun101-Light-83pv-RKSJ-H with
the punctuation characters of ShinseiKai-CBSK-83pv-RKSJ-H.

3. It replaces the Hiragana and Katakana characters of Jun101-Light-83pv-
RKSJ-H with characters from FutoGoB101-Bold-83pv-RKSJ-H and
FutoMinA101-Bold-83pv-RKSJ-H.

4. It adds one row of gaiji from the Type 1 font HSMinW3Gai30.

The template font defines the codespace of a rearranged font. Codespace is
explained in section 5. Characters from all component fonts must conform to
the input codespace of the template font. For example, if the codespace of the
template font has no valid codes assigned between <8100> and <81FF>,
then the input code <8121> (which may be valid in a JIS-encoded font) will
be interpreted as <81> <21> in the rearranged font. As is shown later in the
example, input codes for the borrowed characters from a component font
must be mapped to input codes that are valid for the template font.

Example 17 A rearranged font

%!PS-Adobe-3.0 Resource-Font

%%ADOResourceSubCategory: RearrangedFont

%%DocumentNeededResources: procset CIDInit

%%+ font Jun101-Light-83pv-RKSJ-H

%%+ font Poetica-ChanceryIV

%%+ font ShinseiKai-CBSK1-83pv-RKSJ-H

%%+ font FutoGoB101-Bold-83pv-RKSJ-H

%%+ font FutoMinA101-Bold-83pv-RKSJ-H

6 Rearranged Font Tutorial 51

%%+ font HSMinW3Gai30

%%IncludeResource: procset CIDInit

%%IncludeResource: font Poetica-ChanceryIV

%%IncludeResource: font HSMinW3Gai30

%%BeginResource:Font Jun101-Light-K-G-R-83pv-RKSJ-H

%%Version: 1

/CIDInit /ProcSet findresource begin

%%ADOStartRearrangedFont

/Jun101-Light-K-G-R-83pv-RKSJ-H

[/Jun101-Light-83pv-RKSJ-H

 /Poetica-ChanceryIV

 /ShinseiKai-CBSK1-83pv-RKSJ-H

 /FutoGoB101-Bold-83pv-RKSJ-H

 /FutoMinA101-Bold-83pv-RKSJ-H

 /HSMinW3Gai30

] beginrearrangedfont

% substitute Roman characters with JIS reencoding

1 beginusematrix [1 0 0 1 0 0.15] endusematrix

1 usefont

5 beginbfchar

<27> /quotesingle

<5c> /yen

<60> /grave

<7e> /tilde

<7f> <7f>

endbfchar

4 beginbfrange

<00> <26> <00>

<< 2 ranges omitted >>
<61> <7d> <61>

endbfrange

% substitute punctuation

2 usefont

8 beginbfchar

<815c> <815c>

<< 6 ranges omitted >>
<eb63> <eb63>

endbfchar

14 beginbfrange

<8141> <8147> <8141>

<< 12 ranges omitted >>
<eb8c> <eb8d> <eb8c>

endbfrange

% substitute hiragana

3 usefont

20 beginbfrange

52 Adobe CMap and CIDFont Files Specification (16 Oct 95)

<8152> <8153> <8152>

<< 18 ranges omitted >>
<ed80> <ed96> <ed80>

endbfrange

% substitute katakana

4 usefont

14 beginbfrange

<8154> <8155> <8154>

<< 12 ranges omitted >>
<ec9f> <ecf1> <ec9f>

endbfrange

% substitute single row of gaiji characters

5 usefont

1 beginbfrange

<f000> <f0ff> 0

endbfrange

endrearrangedfont

end

%%EndResource

%%EOF

Comment Conventions

A rearranged font resource file must begin with the comment characters %!;
otherwise it may not be handled correctly in some operating system environ-
ments. The first two lines in the file are

%!PS-Adobe-3.0 Resource-Font

%%ADOResourceSubCategory: RearrangedFont

The remainder of the first line (after the %!) identifies that file as a rearranged
font resource that conforms to the PostScript language document structuring
conventions version 3.0. Document structuring conventions are explained in
PostScript Language Reference Manual, Second Edition.

The following comment lines state that the CIDInit procset is required, and
lists the set of Japanese fonts from which characters are borrowed.

Example 18 Fonts used in the rearranged font

%%DocumentNeededResources: procset CIDInit

%%+ font Jun101-Light-83pv-RKSJ-H

%%+ font Poetica-ChanceryIV

%%+ font ShinseiKai-CBSK1-83pv-RKSJ-H

%%+ font FutoGoB101-Bold-83pv-RKSJ-H

%%+ font FutoMinA101-Bold-83pv-RKSJ-H

%%+ font HSMinW3Gai30

6 Rearranged Font Tutorial 53

The %%Include construct in the lines following tells spooler and similar soft-
ware to determine whether the required resource is available. If the resource
is not already available in VM—but is available for downloading—then the
spooler should include that resource in-line in the job stream being sent to the
interpreter.

%%IncludeResource: procset CIDInit

%%IncludeResource: font Poetica-ChanceryIV

%%IncludeResource: font HSMinW3Gai30

The %%BeginResource comment informs spoolers and resource managers
that the information that follows is a resource. There is a corresponding
%%EndResource comment at the end of the file. The %%BeginResource
line also states the type of resource (RearrangedFont) and its name (Jun101-
Light-K-G-R-83pv-RKSJ-H). Suggestions for how to name fonts appear in
Appendix D.

%%BeginResource: Font Jun101-Light-K-G-R-83pv-RKSJ-H

The %%Version comment provides the version number of this CMap file.

%%Version: 1

Additional comments are permitted as long as they conform to the document
structuring conventions.

Initializing the CID Procset

Immediately after the header information and before the definition of the
rearranged font, a findresource is executed on the file CIDInit, which is one
of the system support files installed on the host or printer hard disk. This
ensures that the routines necessary to process the rearranged font file are
present in VM. An end operator corresponding to this begin appears at the
end of the file.

/CIDInit /ProcSet findresource begin

Appendix A contains an explanation of the CIDInit (and other) system sup-
port files.

Component Fonts

The fonts that comprise a rearranged font are called component fonts. The
beginrearrangedfont operator defines which fonts become component fonts
and states the name of the resultant rearranged font. There is a corresponding
endrearrangedfont operator near the end of the file.

54 Adobe CMap and CIDFont Files Specification (16 Oct 95)

The beginrearrangedfont operator takes two operands: a name object that is
the name of the rearranged font and a component fonts array that is a list of
component fonts, portions of which comprise the rearranged font. All
component fonts for a rearranged font must be present on a PostScript
interpreter when the font is executed. In the example, the
beginrearrangedfont statement looks like this:

Example 19 Component fonts of the rearranged font

%ADOStartRearrangedFont

/Jun101-Light-K-G-R-83pv-RKSJ-H

[/Jun101-Light-83pv-RKSJ-H

/Poetica-ChanceryIV

/ShinseiKai-CBSK1-83pv-RKSJ-H

/FutoGoB101-Bold-83pv-RKSJ-H

/FutoMinA101-Bold-83pv-RKSJ-H

/HSMinW3Gai30

] beginrearrangedfont

The first line, /Jun101-Light-K-G-R-83pv-RKSJ-H, is the name of the
rearranged font that results from executing this file. See Appendix D for sug-
gestions about font naming, which is very important to the proper execution
of CID-keyed fonts.

The array operand begins with the name of the template font. All rearrange-
ments are performed on a logical copy of this font. Succeeding elements of
the array are font names, each of which contain characters that will be bor-
rowed for the specific rearrangements described.

Because this operand of beginrearrangedfont is an array, each component
font can be referred to by its position in the array, with the template font
considered to be font 0. The usefont operator, and the beginusematrix and
endusematrix operators (which appear several lines later in the file), refer to
the fonts in this array by number. The beginrearrangedfont component fonts
array must be specified before any usefont, beginusematrix, or
endusematrix operator is used.

Note If you wish to use the same component font in two (or more) different ways, it
must appear in the beginrearrangedfont array more than once. For exam-
ple, if you wish to use a component font both with and without a transforma-
tion matrix, that font must appear twice in the array. This is because the
usefont, beginusematrix, or endusematrix operators identify a component
font by its position in the array, and all instances of the font at that position
are modified accordingly. To use a component font both with and without a
matrix, therefore, requires two separate instances of that font in the array.

In this example:

6 Rearranged Font Tutorial 55

• The name of the resulting rearranged font is Jun101-Light-K-G-R-83pv-
RKSJ-H.

• The template font is Jun101-Light-83pv-RKSJ-H.

• Proportional Roman characters are borrowed from Poetica-ChanceryIV.

• Punctuation characters are borrowed from ShinseiKai-CBSK1-83pv-RKSJ-
H.

• Hiragana characters are borrowed from FutoGoB101-Bold-83pv-RKSJ-H.

• Katakana characters are borrowed from FutoMinA101-Bold-83pv-RKSJ-
H.

• New gaiji characters are borrowed from HSMinW3Gai30.

Replacing and Adjusting Roman Characters

The rearranged font in this example specifies that the Roman characters in the
template font should be replaced by characters from the Poetica-ChanceryIV
Type 1 font, and that the borrowed Roman characters should be adjusted by
changing their baseline. The default value for the Roman character baseline
in a Japanese font is 120/1000 em. This value might be inappropriate for the
substitute Roman characters in a particular font. You may also wish to change
the baseline for the default Roman characters. In the example, the baseline
used to position the characters in relation to the Japanese characters is to be
raised by 150/1000 em. The following code performs this adjustment:

1 beginusematrix [1 0 0 1 0 0.15] endusematrix

The first argument is the index of the font in the component fonts array to
which the matrix adjustment should be applied (in this case, the first element
in the array, Poetica-ChanceryIV). Every character borrowed from that partic-
ular component font will use the transformation specified by the matrix.

The effect of the beginusematrix and endusematrix operators is equivalent
to applying makefont to the base font, using the same matrix. That is, the
resulting FontMatrix is the result of concatenating the font’s original Font-
Matrix with the matrix specified by beginusematrix and endusematrix, in
that order. (Matrix multiplication is not commutative.)

The beginusematrix and endusematrix operators also can be used with
characters from a Japanese language font, for example, to achieve rotation, or
artificial skewing or obliquing. The matrix commands are not restricted to
proportional Roman characters; this example, however, uses them that way.

56 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Because the template font is shift JIS-encoded, the Type 1 proportional
Roman characters also will be shift JIS-encoded. When a Roman font is shift
JIS-encoded, a small number of characters differ from the standard ASCII
encoding—the backslash becomes the yen sign, and the shift JIS tilde is used
in place of the ASCII tilde.

The usefont operator specifies the font in the component fonts array from
which characters are borrowed; in this case, the first element in the array,
Poetica-ChanceryIV.

1 usefont

All operators in the file that follow, until any succeeding usefont, now
borrow characters only from font 1 in the component fonts array—Poetica-
ChanceryIV.

Note Because of the many begin and end forms of CMap operators, this document
uses a tilde ~ to denote that the begin and the end prefixes are left off. For
example, both the beginusematrix and the endusematrix operators can be
referred to together as the ~usematrix operators. This form is not used when
only one or the other operator is meant.

A usefont must appear before any ~bfchar or ~bfrange operator is specified.

The code mappings that follow the usefont explicitly identify by input code
the Roman characters that are to be substituted in the template font, and the
individual characters—and ranges of characters—from the component font
that are to be used to replace them. All input codes must be valid in the
codespace of the template font. Input can be single codes or ranges of codes,
and the outputs can be character codes or names.

The first five single character substitutions implement the shift JIS reencod-
ing. For example the input code <5c> in the template font is made to corre-
spond to the yen symbol and so on. The beginbfchar and endbfchar
operators bracket one or more single characters being drawn from a Type 1 or
Type 3 base font (hence the bf). The first element on each line is the input
code of the template font; the second element is the code or name of the char-
acter in the Type 1 font that will correspond to that code in the rearranged
font.

Example 20 Base font characters used in the rearranged font

5 beginbfchar

<27> /quotesingle

<5c> /yen

<60> /grave

<7e> /tilde

<7f> <7f>

endbfchar

6 Rearranged Font Tutorial 57

The remaining four range substitutions complete the Roman character substi-
tution. The first and second elements in each line are the beginning and
ending valid input codes for the template font; the third element is the begin-
ning character code for the range of proportional Roman characters being
assigned to that template input range.

Example 21 Ranges of base fonts

4 beginbfrange

<00> <26> <00>

<28> <5b> <28>

<5d> <5f> <5d>

<61> <7d> <61>

endbfrange

Note Roman characters placed in a Japanese font that has the 83pv-RKSJ-H char-
acter set and encoding fall in the range of <00> to <7f>.

Replacing Punctuation Characters

After the proportional Roman characters have been added to the rearranged
font, the operator

2 usefont

signifies that operations are now to be performed on font 2 of the component
fonts array—in this case, ShinseiKai-CBSK1-83pv-RKSJ-H.

The code mappings which in Example 22 explicitly identify the punctuation
characters to be substituted in the template font, and the individual characters
and ranges of characters from the component font which will be used to
replace them.

Example 22 Substituting punctuation characters

8 beginbfchar

<815c> <815c>

<< 6 ranges omitted >>
<eb63> <eb63>

endbfchar

14 beginbfrange

<8141> <8147> <8141>

<< 12 ranges omitted >>
<eb8c> <eb8d> <eb8c>

endbfrange

58 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Replacing Hiragana and Katakana Characters

The next code fragment from the example substitutes the Hiragana characters
in the template font with the same Hiragana characters from another font.
Typically, this type of rearrangement substitutes characters of a different
style—say, Kana Large or Kana Old Style—from those that are already
included in the template font.

The usefont operator indicates that rearrangements are to be drawn from
font 3 of the component fonts array, /FutoGoB101-Bold-83pv-RKSJ-H.

3 usefont

The code mappings that follow explicitly identify the ranges of Hiragana
characters to be replaced in the template font and the corresponding ranges in
the component font from which characters are to be borrowed.

Example 23 Replacing Hiragana

20 beginbfrange

<8152> <8153> <8152>

<< 18 ranges omitted >>
<ed80> <ed96> <ed80>

endbfrange

The usefont operator again points to font 4 in the component fonts array, /
FutoMinA101-Bold-83pv-RKSJ-H. This time, the rearranged font file substi-
tutes the full set of Katakana characters in the template font.

The code mappings that follow explicitly identify the ranges of Katakana
characters to be replaced in the template font and the corresponding ranges in
the component font from which characters are to be borrowed.

Example 24 Replacing Katakana

4 usefont

14 beginbfrange

<8154> <8155> <8154>

<< 12 ranges omitted >>
<ec9f> <ecf1> <ec9f>

endbfrange

Adding Gaiji Characters

Most character set and encoding combinations used in Japan today reserve a
number of rows for gaiji characters. The size and portion of the code space
available for such gaiji characters varies with character set and encoding
combination. The Apple Macintosh 83pv-RKSJ combination, for example,
reserves 12 rows (<F0>-<FB>) for gaiji characters. Each row can contain up
to 188 characters.

7 CMap Reference 59

The usefont operator selects font 5 in the component font array, in this case /
HSMinW3Gai30, a Type 1 font that contains a selection of gaiji characters.

5 usefont

The code mappings that follow explicitly identify the ranges of UserGaiji
space into which to substitute the gaiji characters borrowed from that compo-
nent font.

1 beginbfrange

<f000> <f0ff> 0

endbfrange

The range <f000> to <f0ff> provides 256 character positions—the same
number of character positions available in a typical Roman font. The most
effective way to add gaiji is to “drop in” the 256-character gaiji font into the
UserGaiji row. Thus, character 32 in the gaiji font in this situation appears at
position <f020>.

Building the Font

The endrearrangedfont operator ends the rearranged font information and
defines the new Japanese font in VM by performing the rearrangements as
described, and registering the resulting Japanese font for system use.

The comment %%EndResource conforms to the document structuring con-
ventions.

The operator end concludes the procset initiated after the header.

endrearrangedfont

end

%%EndResource

%%EOF

7 CMap Reference

This section contains detailed information about the operators that can be
used in a CMap file. It is divided into four parts.

First, there is a discussion of file nomenclature and lexical elements. Second,
there is a summary of operators, organized into groups of related functions.
The summary is intended to help locate the operators needed to perform spe-
cific tasks. Third, there is a section that describes the organizational require-
ments of a CMap file. Fourth, there is a detailed description of all operators,
organized alphabetically by operator name. Because of the many begin/end
pairs of operators, operators are listed alphabetically under their begin ver-
sions.

60 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Note The word operators as used in this section refers to a set of executable com-
mands that are defined in the CIDInit procset resource. While they may look
like and have syntax similar to PostScript language operators, they are not
part of the PostScript language.

Each operator is presented in the following format:

operator operand1 operand2…operandn operator result1…resultm

A detailed explanation of the operator appears here.

Example

An example of the use of the operator appears here. The symbol ⇒ desig-
nates the values (if any) left on the operand stack by the example.

Errors

A list of possible errors that this operator might execute appears here. Please
note, however, that there are font interpreters that are not PostScript interpret-
ers; ATM-J, for example, is not a full PostScript interpreter. Only when exe-
cuting a CMap file containing errors on a PostScript interpreter will the file
produce predictable error behavior.

See Also

A list of related operators may appear here.

At the head of an operator description, operand1 through operandn are the
operands that the operator requires, with operandn being the topmost operand
on the stack. The operator pops these objects from the stack and consumes
them. After executing, the operator leaves the objects result1 through resultm
on the stack, with resultm being the topmost element.

7.1 CMap File Nomenclature and Lexical Elements

Section 5 discussed CMap files, which control the codespace and encoding of
a CID-keyed font. Section 6 explained rearranged fonts, which use CMap
commands and borrow characters from various CID-keyed fonts to create a
new font.

As used in Operator Summary and Operator Details, the nature of the source
and destination argument differs depending on whether the CMap commands
are acting as part of a rearranged font. These source and destination codes
also can be different in length within a single operation.

7 CMap Reference 61

srcCode

In CMap files, srcCode refers to the input codes that are to be mapped into a
variety of character selectors: dstCodes, dstCharnames, or dstCIDs. The
<xxxx> hexadecimal string notation specifies single- or multiple-byte input
codes, where each pair of hexadecimal digits represents a byte of the code.

When CMap commands are used as part of a rearranged font, srcCode(s)
refer to the character codes in the template font that will be replaced in the
rearranged font with characters borrowed from one of the component fonts.

dstCode or dstCharName

In CMap files, dstCodes, dstCharNames, or dstCIDs represent the selector
that will be used to extract a glyph from a font resource. Table 1 shows how
various selectors access a glyph.

Table 1 Relationship of input code to selector

Selector Font Type

CID (integer) CIDFont

Single-byte code (hex string) Type 1 font program

Name (name object) Type 1 font program

Single-byte code (hex string) Type 3 font program

Name (name object) Type 3 font program

Single-byte code (hex string) Type 0 font program

Double-byte code (hex string) Type 0 font program

When CMap commands are being used as part of a rearranged font, the dstC-
IDs, dstCodes, or dstCharNames specify those characters from the compo-
nent font that are to be selected and shared by the rearranged font. Table 2
shows the lexical elements that are supported in CMap files and rearranged
fonts.

Table 2 PostScript language lexical elements

Representation Meaning

%… comments

nnn integer and real numbers

/abc literal name objects

(abc) string objects

<xxxx> hexadecimal string notation

62 Adobe CMap and CIDFont Files Specification (16 Oct 95)

[...] array syntax

operator only the operators described in this section may be used

7.2 Operator Summary

Operators in CMap files fall into five groups, based on usage.

General Operators

/CMapName usecmap – uses another CMap’s VM resource
fontID usefont – specifies font used subsequently
fontID beginusematrix –

[a b c d tx ty] endusematrix – transformation matrix to use with font
int begincodespacerange –

srcCode1 srcCode2 endcodespacerange – sets valid input codes
– begincmap –
– endcmap – brackets CMap definition in file

Operators That Use Character Names
or Character Codes as Selectors

int beginbfchar –
srcCode dstCode or

srcCode dstCharname endbfchar – specifies one base font glyph
int beginbfrange –

srcCodeLo srcCodeHi dstCodeLo or
srcCodeLo srcCodeHi

[/dstCharname1…/dstCharnamen]
endbfrange – specifies range of base font glyphs

Operators That Use CIDs as Selectors

int begincidchar –
srcCode dstCID endcidchar – specifies one CIDFont character

int begincidrange –
srcCodeLo srcCodeHi dstCIDLo endcidrange – specifies range of CIDFont characters

notdef Operators

int beginnotdefchar –
srcCode dstCID endnotdefchar – specifies one notdef character

int beginnotdefrange –
srcCodeLo srcCodeHi dstCIDLo endnotdefrange – specifies range of notdef characters

Rearranged Font Operators

While not actually CMap operators, rearranged font operators are listed here
for completeness.

/newFontName [component fonts array] beginrearrangedfont – identifies fonts used in rearrangement

7 CMap Reference 63

– endrearrangedfont – font built on an existing template

7.3 CMap File Overview

Several parts of a CMap file must appear in a particular order. This section
provides that organizational information and a brief explanation of why the
ordering must take place. A CMap file must comply with the following rules:

1. Header comments must appear first. In particular, the first line of the file
must be constructed as explained in sections 5 and 6.

2. The CIDInit procset findresource call appears immediately after the
header information.

3. The begincmap operator must appear before any range operators. It and
the endcmap operator (see below) bracket the entire CMap dictionary.

4. The usecmap operator (CMap files that use another) appears after the
begincmap operator and before any range operators.

5. The begincodespacerange operator must be the first range operator in
the file. It must appear after the begincmap operator. It is implicit in a
CMap file that uses another and in a rearranged font.

6. The endcmap operator must be the final operator in the file. It and the
begincmap operator bracket the CMap dictionary.

7.4 Operator Details

This section contains detailed information about the operators supported in
PostScript language CMap files. If the characters (RF) appear at the far right
of the operator definition, it means that the operator applies exclusively to
rearranged fonts.

beginbfchar int beginbfchar –
endbfchar srcCode dstCode endbfchar–

srcCode /dstCharname endbfchar –

The beginbfchar and endbfchar operators map int number of individual
input codes (srcCode) to a corresponding number of individual character
codes (dstCode) or character names (dstCharname), where int can be ≤ 100.
The dstCode can be drawn from font programs of Type 0, 1, or 3; dstChar-
name can be drawn from font programs of Type 0 or 1. The base font that
contains the glyphs must have been specified by a previous usefont call.

srcCode and dstCode must be specified as hexadecimal strings. dstCharname
must be a PostScript language name object.

64 Adobe CMap and CIDFont Files Specification (16 Oct 95)

There can be a maximum of 100 lines in each ~bfchar set.

Use the ~bfchar operators when the mappings to be described are organized
noncontiguously, for example, when you want to define the relationship
between sets of individual input codes and individual glyphs rather than con-
tiguous ranges of codes and glyphs.

Example

2 usefont

4 beginbfchar

<27> /quotesingle

<5c> /yen

endbfchar

Errors

stackunderflow, syntaxerror, typecheck

See Also

beginbfrange, usefont

beginbfrange int beginbfrange –
endbfrange srcCodeLo srcCodeHi dstCodeLo endbfrange –

srcCodeLo srcCodeHi [/dstCharName1../dstCharNamen] endbfrange –

The beginbfrange and endbfrange operators map int number of ranges of
input codes to a corresponding range of character codes or names, where int
can be ≤ 100. The argument srcCodeLo is the start of a given range of input
codes; srcCodeHi is the end of that range. The argument dstCodeLo is the
start of the corresponding character code range; there is no need to specify
the upper limit of the range. Alternatively, an array of character names can be
specified to correspond to the range of input codes. All character names spec-
ified in this way must be fully enumerated.

Values for srcCodeLo and srcCodeHi must be in hexadecimal notation. The
dstCode can be drawn from font programs of Type 0, 1, or 3; dstCharname
can be drawn from font programs of Type 0 or 1. The base font that contains
the glyphs must have been specified by a previous usefont call.

There can be a maximum of 100 lines in each ~bfrange set.

Use the ~bfrange operator when the mappings to be described are organized
in contiguous ranges.

7 CMap Reference 65

Errors

stackunderflow, syntaxerror, typecheck

See Also

beginbfchar, usefont

begincidchar int begincidchar –
endcidchar srcCode dstCID endcidchar –

The operators begincidchar and endcidchar map int number of individual
valid input codes to a corresponding number of individual character IDs,
where int can be ≤ 100. The argument srcCode is an input code expressed as a
hexadecimal string; the argument dstCID is a character ID expressed as an
integer.

There can be a maximum of 100 entries in each ~cidchar set.

Use the ~cidchar operators when the mappings to be described are organized
noncontiguously, for example, when you want to define the relationship
between sets of individual input codes and individual character IDs rather
than contiguous ranges of codes and character IDs.

Errors

stackunderflow, rangecheck, typecheck

See Also

begincidrange

begincidrange int begincidrange –
endcidrange srcCodeLo srcCodeHi dstCIDLo endcidrange –

The begincidrange and endcidrange operators map int number of ranges of
input codes to a corresponding range of character IDs, where int can be ≤ 100.
The argument srcCodeLo is the start of a given range of input codes, and src-
CodeHi is the end of that range. The argument dstCIDLo is the start of the
corresponding range of character IDs; there is no need to specify the upper
limit of the range. Ranges may overlap, but succeeding ranges supercede pre-
vious ranges. Ranges should appear in ascending order. Values for srcCodeLo
and srcCodeHi must be in hexadecimal notation.

There can be a maximum of 100 entries in each ~cidrange set.

66 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Use the ~cidrange operators when the mappings to be described are orga-
nized in contiguous ranges.

Example

100 begincidrange

<20> <7e> 231

<8140> <817e> 633

<8180> <8188> 696

<8189> <8189> 7478

<818a> <81ac> 706

<< 90 ranges omitted >>

<e080> <e092> 5563

<e093> <e093> 7838

<ea80> <ea9c> 7443

<ea9d> <ea9d> 7886

<ea9e> <ea9e> 7473

endcidrange

Errors

stackunderflow, rangecheck, typecheck

See Also

begincidchar

begincmap – begincmap –
endcmap – endcmap –

These operators must enclose that portion of the CMap file that contains the
code mapping information. They produce objects in the CMap resource in
VM that will subsequently be used to map character codes to font IDs and
character selectors.

begincodespacerange int begincodespacerange –
endcodespacerange srcCodeLo srcCodeHi endcodespacerange –

These operators define as valid int number of ranges of input codes, where int
can be ≤ 100. The arguments srcCodeLo and srcCodeHi are expressed in hexa-
decimal notation.

Input codes can consist of one, two, three, or more hexadecimal bytes. The
number of bytes in the input code establishes the dimensionality of the
codespace range or region. For example, one-byte input codes describe a

7 CMap Reference 67

linear region of valid input codes, two-byte codes describe a rectangular
region of valid input codes, and so forth. Section 5 describes codespace more
extensively.

There can be a maximum of 100 entries in each ~codespacerange set.

Codespace regions need not be contiguous but cannot overlap. The definition
of the codespace must precede any mapping of input codes to characters.

In rearranged fonts, the codespace of the template font defines the codespace
for the rearranged font.

Example

4 begincodespacerange

<00> <80>

<8140> <9FFC>

<A0> <DF>

<E040> <FBFC>

endcodespacerange

Errors

stackunderflow, rangecheck, typecheck

beginnotdefchar int beginnotdefchar –
endnotdefchar srcCode dstCID endnotdefchar –

The operators beginnotdefchar and endnotdefchar map int number of indi-
vidual valid input codes to a corresponding number of individual character
IDs, where int can be ≤ 100. Each character ID references a notdef character. A
font developer can use the ~notdefchar operators to map otherwise valid
input codes to specific notdef characters within the CIDFont.

The argument srcCode is an input code expressed as a hexadecimal string;
the argument dstCID is a character ID expressed as an integer.

Every CID-keyed font must have at least one notdef character defined. This
notdef character is referred to by CID 0. Invalid input codes (input codes
which are outside of codespace) are automatically mapped to CID 0.

There can be a maximum of 100 lines in each ~notdefchar set.

The effect produced by showing a notdef character is left to the discretion of
the font designer.

Note: The conditions under which a notdef character is shown are discussed
in section 5.

68 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Errors

stackunderflow, rangecheck, typecheck

See Also

beginnotdefrange

beginnotdefrange int beginnotdefrange –
endnotdefrange srcCodeLo srcCodeHi dstCID endnotdefrange –

The operators beginnotdefrange and endnotdefrange map int number of
ranges of valid input codes to a corresponding number of character IDs,
where int can be ≤ 100. Each range of input codes maps to the same character
ID; if a character ID falling within the notdef range is presented to the CMap
resource instance, which for some reason (such as an empty interval) cannot
show a glyph, then the notdef character defined here will be shown instead. A
font developer can use the ~notdefrange operators to map ranges of other-
wise valid input codes to specific notdef characters within the CIDFont.

The argument srcCodeLo is the start of a range of input codes; srcCodeHi is
the end of that range. Input codes are expressed as hexadecimal strings.
dstCID is the character ID to which all input codes in the range are mapped.
It is expressed as a number.

Every CID-keyed font must have at least one notdef character defined. This
notdef character is referred to by CID 0. Invalid input codes (input codes that
are outside of codespace) are automatically mapped to CID 0. An undefined
CID may occur if Supplement numbers are not the same between a CMap
and a CIDFont file; a notdef character results.

There can be a maximum of 100 entries in each ~notdefrange set.

The effect produced by showing a notdef character is left to the discretion of
the font designer.

Note: The conditions under which a notdef character is shown are discussed
in section 5.

Example

2 beginnotdefrange

<00> <1f> 1

<fc> <ff> 231

endnotdefrange

7 CMap Reference 69

Errors

stackunderflow, rangecheck, typecheck

See Also

beginnotdefchar

beginrearrangedfont /newFontName [component fonts array] beginrearrangedfont – (RF)
endrearrangedfont endrearrangedfont –

The beginrearrangedfont and endrearrangedfont operators bracket the
definition of a rearranged CID-keyed font, and can appear only in CMap files
describing a rearranged font. Rearranged fonts are discussed in section 6.

The parameter newFontName is the name given to the resulting rearranged
font. The component fonts array is a list of fonts that contribute characters to
the rearranged font. The zero-th element of the component fonts array is the
template font, which controls the codespace of the rearranged font. Succeed-
ing elements of the array are font names, each of which contain characters
that will be borrowed for specific rearrangements.

The operators usefont and beginusematrix operate on fonts selected from
this array by position; each takes an integer argument that is an index into this
array.

Each of the fonts named in the component fonts array must be present on the
PostScript interpreter for a rearranged font to work.

If you wish to use the same component font in two (or more) different ways,
it must appear in the beginrearrangedfont array more than once. For exam-
ple, if you wish to use a component font both with and without a transforma-
tion matrix, that font must appear twice in the array.

To do a rearrangement, you must know the codespaces of the template font
and all component fonts.

Example

%ADOStartRearrangedFont

/Jun101-Light-K-G-R-83pv-RKSJ-H

[/Jun101-Light-83pv-RKSJ-H

 /Poetica-ChanceryIV

 /ShinseiKai-CBSK1-83pv-RKSJ-H

 /FutoGoB101-Bold-83pv-RKSJ-H

 /FutoMinA101-Bold-83pv-RKSJ-H

 /HSMinW3Gai30

] beginrearrangedfont

70 Adobe CMap and CIDFont Files Specification (16 Oct 95)

Errors

stackunderflow, syntaxerror, typecheck, VMerror

See Also

usefont, beginusematrix

beginusematrix fontID beginusematrix –
endusematrix [a b c d tx ty] endusematrix –

These operators bracket the specification of a transformation matrix to be
applied to the font within the component fonts array, specified by fontID.
They provide a mechanism to apply rotational, obliquing, narrowing, and
expanding transformations, and baseline translations to a given font. The
effect of the beginusematrix and endusematrix operators is equivalent to
applying makefont to the base font, using the same matrix.

The units of the transformation matrix are expressed in character coordinate
space. For example, to move a baseline up by .150 em, you would use the
matrix [1 0 0 1 0 0.15], with ty being 150/1000. See Adobe Type 1 Font
Format for a complete explanation of the FontMatrix.

The ~usematrix operators can only be used after the beginrearrangedfont
operator has already been called, which specifies the component fonts array
for a particular rearrangement. The fontID argument to beginusematrix is a
zero-based index into this array; however, the value of fontID must be greater
than 0 (the zero-th element is a template font). The ~usematrix operators fail
if there has been no prior call to beginrearrangedfont (syntaxerror) or if
fontID is out of range (rangecheck).

Example

This example substitutes the “A” hiragana and katakana characters in
Ryumin-Light-83pv-RKSJ-H with those of MyKana-83pv-RKSJ-H. The
baseline of MyKana-83pv-RKSJ-H is raised slightly using the ~usematrix
operators.

/MyKanjiFont

[/Ryumin-Light-83pv-RKSJ-H /MyKana-83pv-RKSJ-H] beginrearranged-

font

1 beginusematrix [1 0 0 1 0 0.1] endusematrix

1 usefont

2 beginbfchar

<82a0> <82a0> % hiragana-"A"

<8341> <8341> % katakana-"A"

endbfchar

endrearrangedfont

7 CMap Reference 71

Errors

stackunderflow, typecheck, syntaxerror, rangecheck

usecmap /CMapName usecmap

The usecmap operator allows one resource instance to refer to the structures
already created by another. The amount of VM saved can be substantial. The
argument /CMapName is the name of the CMap resource instance that is
being referred to. The usecmap operator incorporates the codespace and
code mappings from that file into its own.

The usecmap operator must precede any specification of code mappings.

If the CMap file being used contains character code mappings that have been
described in the using file, the definitions in the using file are ignored (essen-
tially, they are overridden). CMap files can be nested to five levels.

Errors

stackunderflow, typecheck, undefinedfilename, VMerror

usefont fontID usefont –

The usefont operator is used after the beginrearrangedfont operator to
specify a font to be used for a series of subsequent operations. The beginre-
arrangedfont operator specifies an array of component fonts for a particular
rearrangement. The fontID argument to usefont is a zero-based index into
this array (the zero-th element is the template font).

In compatibility mode operation, the usefont operator fails if there has been
no prior call to beginrearrangedfont (syntaxerror) or if fontID is out of
range (rangecheck).

Errors

stackunderflow, typecheck, rangecheck

72 Adobe CMap and CIDFont Files Specification (16 Oct 95)

73

Appendix A:
Installing CID-Keyed Fonts
on PostScript Interpreters

A.1 Introduction

This appendix describes how to install CID-keyed font resources, related
resources, as well as files that are related to row-organized fonts, on a
PostScript interpreter.

Fonts of

CIDFontType

0

 are designed to be installed into a file system, such as
that on an external storage device (hard disk) of a printer or host computer, or
to be downloaded to VM. CID-keyed fonts are generally installed by an
installation program. This appendix is intended for developers of such pro-
grams.

A.2 PostScript Interpreter Requirements

There are two requirements for an interpreter to be able to run CID-keyed
fonts of

CIDFontType

0

. The first requirement is that the PostScript inter-
preter must support Type 0, or

composite

 fonts. A PostScript interpreter can
support Type 0 fonts if it is a Level 1 interpreter with the Composite Font
extensions, or if it is a Level 2 interpreter.

Note While all Level 2 interpreters have the necessary language capability to
interpret CID-keyed fonts, the character caching capability of version 2010
PostScript interpreters may be inadequate for large Asian fonts. It is also
advised that software doing downloading or installation should check to
make sure the printer has at least 1 megabyte of RAM.

The second requirement is that the PostScript interpreter have access to a set
of CID-keyed fonts and a set of files referred to as the

CID Support Library

(CSL). Some of these other files are executed during

(Sys/Start)

 or

(Sys/
Bootlist)

 execution. Currently, there are about 40 files in the CSL, and the
contents of the files are explained in the

contents.txt

 file supplied with the
CSL.

The CID Support Library contents are of two types:

• CSL core modules

74 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (16 Oct 95)

• Language specific support. This part includes items such as CMap files for
each language, for example for the Adobe-Japan1-2, or Adobe-GB1-0
(Simplified Chinese) character collections.

The CID Support Library software is available to developers for bundling
with font installation programs, subject to certain licensing conditions. For
more information, contact the Adobe Developers Association.

A.3 Categories of Installation Files

The files which comprise an installable CID-keyed font and CID Support
Library which a font installation program might install, are known as

candi-
date files

. That is, they are candidates to be installed.

Files which already exist in the PostScript interpreter’s file system, and which
have the same name as candidate files, are called

target files

.

Target files may be partitioned into two categories:

A. Files to be modified, or added if not present.
B. Files to be replaced.

The first category consists of the target files:

(Sys/Start)
(Sys/Bootlist)

These are referred to as

Category A files

 throughout this appendix. These
target files may require modification. If none of the target files are present,
then a new candidate file may be installed.

The second category consists of all remaining target files. These files are
replaced or added as needed; they are never partially changed. These files are
referred to as

Category B files

 throughout this appendix.

The complete list of files in Category B may vary according to the particular
release of the CID Support Library. Please see the Release Notes for a given
release for the specific enumeration of these files.

A.4 Installation Environment

File Names

PostScript string syntax

is used in this document to refer to both candidate
and target file names. See the

PostScript Language Reference Manual,
Second Edition

 to determine how PostScript strings are interpreted as file
names.

 75

File Searching and Devices

When the installation algorithm described in this appendix refers to searching
for a file, it refers to locating a file when there may be many attached devices.
On PostScript interpreters, devices are prioritized for file searching. External
devices, such as printer hard disks are searched first; then cartridge devices
are searched second; finally, ROM devices are searched last. The specific
search order is determined by numbering each device (explained below),
where lower numbers indicate higher search priority. The first device checked
that has the searched file ends the search. The number of a device is deter-
mined as follows:

For Level 2 interpreters, the operator

currentdevparams

 returns a dictionary
having a key

/SearchOrder

 indicating the number for this device.

For Level 1 interpreters, the number is typically that of the SCSI identifica-
tion number. This is the same number that is reported during the

devforall

operator as in

 (%disk<n>%),

 where the

<n>

 is the SCSI ID.

CID Support Library Installation and Low-order Device

Installation of the CID Support Library can be performed to a specified
device or to the

low-order device

, which is the device with the highest search
order priority. This choice is to be made before employing the installation
algorithm described in the sections below. In the instructions that follow, the
specified device for installation is referred to as the

selected device

. In

all

cases, the selected device

must

 be a writable device.

If the selected device is not the low-order device, then the installation algo-
rithm must know whether or not all identically named files on lower-order
writable devices relative to that of the target file shall be deleted. This condi-
tion is called the

Deletion Toggle

 and is

true

 if deletion shall occur; other-
wise, it is

false

. This is necessary if the CID Support Library installation is
expected to run in the hardware configuration as of installation time. Were
this not to happen, the installed files on the selected device would never be
referenced because the identically named files on lower-order devices would
be found instead.

Naturally, files on read-only devices cannot be deleted; but, these files are
typically cartridge or ROM devices and are, therefore, found later than those
of the selected device. If there are read-only devices that have a higher search
priority than the selected device, these shall be changed to have a lower
search priority before employing the installation algorithm. If doing that is
not possible, then proper execution of the CID Support Library in the hard-
ware configuration, as of installation time, might not be possible. This cir-
cumstance is not expected to occur, but has been addressed here for
completeness.

76 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (16 Oct 95)

Sometimes the purpose of an installation is to put a complete CID Support
Library onto a specific device. This condition is called the

Search Target
Device Only Toggle

. If it is set to

true

, then the installation program shall
search for target files only on the current device. If

false

, it shall search for
target files on all devices, in search priority order.

Version Checking

Version checking is the process of determining whether or not a candidate file
will be installed. It consists of checking within the target file on the selected
device for DSC comments indicating the version number associated with that
file. If the target file is not on the selected device, but is on some other device,
then the file on the low-order device is used for version checking.

%%BeginResource: <category> (<assignedName>)

...

%%Version: <versionNumber> [<revisionNumber>]

...

%%EndResource

Each file of the CID Support Library shall contain lines as shown above. For
files that define PostScript language resources, the

<category>

 portion above
is the resource category; all other files use “

file

” as the

<category>

.

For files of Category A, the

<assignedName>

 is

(CID Support Library)

for

(Sys/Start)

 and

(CID Support Library Bootlist)

 for

(Sys/Bootlist)

. For files of
Category B, the

<assignedName>

 is the resource instance or name of the file.
Note that each occurrence of

<assignedName>

 is expressed as a PostScript
string object.

The

 %%Version

 comment identifies the version number for the block. This
comment line can appear anywhere within a block of code delimited by

%%BeginResource

 and

%%EndResource

The value of <versionNumber> is a real number, and the optional
<revisionNumber> is an integer. A typical example might be:

%%Version 1.1 2

Where 1.1 is the version number, and 2 is the revision number. If the revision
number is omitted, it is assumed to be zero. The revision number should be
taken into consideration if the version number of two files are identical. For
example:

%%Version: 1.402 2

or

 77

%%Version 1.402

are older than:

%%Version 1.402 3

The following examples show how a block of DSC comments describes a
resource with a version number.

%%BeginResource: file (CID Support Library)

...

%%Version: 1.01 2

...

%%EndResource

%%BeginResource: file (FS/Level2CID)

...

%%Version: 1.01 2

...

%%EndResource

%%BeginResource: CMap (83pv-RKSJ-H)

...

%%Version: 1.01 2

...

%%EndResource

Installation Software and File List

The list of files in Category B may vary for different releases of the CID Sup-
port Library. Installation software shall not depend on a specific list of files.
The list of Category A files is not expected to change.

A.5 Prior to Installation

Before performing the installation of the CID Support Library, the installa-
tion algorithm must determine the following information:

Deletion Toggle
Search Target Device Only Toggle
Selected Device

It is also important for the installation software to determine if there is suffi-
cient space on the selected device for the installation of the CID Support
Library.

78 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (16 Oct 95)

A.6 Installation of Category A Files

Determining the Target File

For Category A, the algorithm described below is to be performed. Note that
this algorithm selects one file to operate on, and that this operation is not
applied to every file in the category.

Determine the target file to be modified (select the first that applies):

1. If there is a

(Sys/Bootlist)

 file, then modify it using the resource identi-
fied by

%%BeginResource: file (CID Support Library Bootlist)

; else,
2. If there is a

 (Sys/Start)

 file, then modify it using the resource identified
by

%%BeginResource: file (CID Support Library)

.
3. If neither of the above files are found, then copy the entire candidate file

named

(Sys/Start)

 to the selected device. Take no further action for this
category.

Note If both files exist, only the one file selected as shown above is to be acted
upon; the other file will not be used or acted upon in any way.

Checking Version Information

Check the version information and determine if the file requires modification.
If it does, continue; otherwise, no further action is necessary for Category A
files.

Modifying the File

If the file contains the DSC comments:

%%BeginResource: file (CID Support Library)

...

%%EndResource

or, in case of

(Sys/Bootlist)

:

%%BeginResource: file (CID Support Library Bootlist)

...

%%EndResource

then, replace that portion of code with the code that is bracketed in the same
way in the candidate file. The replacement code must include the DSC com-
ments shown above.

If the file does not contain the DSC comments above, then the replacement
text is to be inserted according to the following heuristic:

 79

A. The DSC comments that follow may bracket the portion of the file that
may be modified by installation software:

%ADOBeginCustomStartup

...

%ADOEndCustomStartup

If only one of the comments is present in a file, then:

1. if the omitted comment is

%ADOBeginCustomStartup

, then the file
may be modified from the beginning of the file to immediately
before the

%ADOEndCustomStartup

 comment; and,
2. if the omitted comment is

%ADOEndCustomStartup

, then the file
may be modified from immediately following the

%ADOBeginCustomStartup

 comment to the end of file.

B. If the DSC comment

%ADOEndCustomStartup

 is in the file, then the
insertion is to appear immediately before this comment. If there is no
such comment, then the insertion is to occur as follows:

1. if the file is

(Sys/Bootlist)

, then the insertion is to occur immediately
before the last line of the file.

2. if the file is

(Sys/Start)

, then the insertion is to occur immediately
before the PostScript string token “

(Usr/Start)

”, if present. How-
ever, this is true only if that token is within the customizable portion
of the file. If there is no such string token, or if that token is not
within the customizable portion of the file, then the insertion is to
take place at the end of the customizable portion of the file. That is,
the insertion is to occur immediately before the comment

%ADOEndCustomStartup

, if present; otherwise, the insertion is to
occur after the last line of the file.

Note Presently, no product in the field has the DSC comments:

%ADOBeginCustomStartup

 and

%ADOEndCustomStartup

. The algorithm as
described by A and B above is a heuristic to be used when these comments
are not found. To ensure that the algorithm is deterministic, the files in Cate-
gory A can be preconditioned so that these comments are inserted. If an
insertion location other than that shown above is desired, the comments:

%%BeginResource: file (CID Support Library)

%%Version: 0.0

%%EndResource

or the comments:

%%BeginResource: file (CID Support Library Bootlist)

%%Version: 0.0

%%EndResource

80 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (16 Oct 95)

can be inserted in an existing (Sys/Start) file. Doing this will ensure that
replacement will occur in the location where these comments are found.

Example 25

Summary of Sys/Start modifications

<<Sys/Start header comments here >>

%%BeginResource: file AdobeCompositeFontSupport

/languagelevel where { pop languagelevel 2 ge } { false } ifelse

{{ (FS/Level2) } { (FS/Level1) } ifelse run } stopped clear

%%EndResource

%%BeginResource: file AdobeCIDKeyedFontSupport

{ /CIDInit /ProcSet findresource } stopped clear

{ /83pv-RKSJ-H /CMap findresource } stopped clear

%%EndResource

<<Remainder of unmodified Sys/Start file (if any) follows here >>

A.7 Installation of Category B Files

For Category B, the following algorithm is to be followed for each file in this
category:

1. Determine the file to be modified. (See

File Searching and Devices

above.)

2. Check the version information and determine if the file requires replace-
ment. If it does, continue; otherwise, no action for this file. Continue
checking other files for possible replacement.

3. If the file requires replacement, then it is to be removed and replaced
with the replacement file.

81

Appendix B:
ATM-J Compatibility
for CID-Keyed Fonts

This appendix explains how to install CID-keyed fonts on a Macintosh
computer for use with Adobe Type Manager software, Japanese Edition
(ATM-J). This appendix is specific to both Macintosh and ATM-J version 3.5
or greater.

B.1 Installing CID-Keyed Fonts on the Macintosh

When CIDFont and CMap files have been properly installed, ATM-J can
parse and make use of them directly, without recourse to other system
support files on the system such as those detailed in Appendix A.

As explained in section 2, the CIDFont file contains glyph data indexed by
character ID. The CMap file specifies the subset of that character collection
to be used, called the

character set

 (or

charset

). A CMap file also imposes an
encoding on that subset, in which character codes are mapped to CIDs.

B.1.1 CIDFont Files

As shown in section 3, a CIDfont file is essentially an ASCII text file with
character description and other data at the tail. When transferred to or created
on the Macintosh, it occupies the

data fork

 of a Macintosh file. For compati-
bility with ATM-J, a CIDFont

must

 occupy the data fork; ATM-J never refer-
ences the resource fork.

Note So that the correct file icon can be displayed on the desktop, the resource fork
of a CIDFont file should include BNDL, FREF, and ICN# resources. Each
CIDFont file installed on a Macintosh must also have its file type set to
LWFN. ATM-J never references the file creator’s signature.

For System 7.1 or later, install CIDFonts in the Fonts folder; for System 6.x,
install CIDFonts in the System folder. When searching for CIDFonts, ATM-J
looks first in the System folder, and then checks the Fonts and Extensions
folders, if present.

82 Appendix B: ATM-J Compatibility for CID-Keyed Fonts (16 Oct 95)

For ATM-J to recognize CID-keyed fonts, you must also install the corre-
sponding screen font resources. Screen font resources are described in tech-
nical documentation available from Apple Computer, Inc.

B.1.2 CMap Files

As with CIDfont files, a CMap file is an ASCII text file. When transferred to
or created on the Macintosh, it also must occupy the data fork of a Macintosh
file. ATM-J never references the resource fork, and it does not check the file
type or creator’s signature of CMap files. Adding specific resources to the
resource fork is not necessary.

In the past, Adobe composite fonts installed on the Macintosh resulted in the
creation of a

Common

 folder within the

System

 folder. This contains system
support files for composite fonts. Other folders within the

Common

 folder
include

:encodings
:charstrings
:Generic

Adobe recommends that during the installation process, CMap files be copied
to a folder called

CMaps

, within the

Common

 folder. ATM-J looks for CMaps
only in the

:Common:CMap

 folder; it expects the

Common

 folder to be
located in the

System

 folder.

Note So that the correct file icon can be displayed on the desktop, the resource fork
of a CMap file should include BNDL, FREF, and ICN# resources. Each
CMap file installed on a Macintosh must also have its file type set to LWFN.
ATM-J never references the file creator’s signature.

B.2 Naming Conventions

File naming is important to the Macintosh and to ATM-J. Font names must be
unique, and the Macintosh derives font names from filenames in a particular
fashion. For information on font naming conventions, see Adobe Technical
Note #5088,

Font Naming Issues

.

B.3 Parsing Considerations

ATM-J does not include a complete PostScript interpreter, and consequently
parses CIDFont and CMap files in a simple fashion. To remain compatible
with ATM-J, such files must strictly conform to the document structuring
conventions, the syntax and lexical conventions as explained in Sections 3
through 7, and the additional ATM-J parsing rules outlined here. All CIDFont
and CMap examples in this document do conform and exhibit the properties
necessary for them to be parsable by ATM-J.

 83

ATM-J (and other simplified PostScript language parsers) generally separate
the text of a CID-keyed font program into

tokens

 according to PostScript lan-
guage rules as defined in

PostScript Language Reference Manual, Second

Edition

. Comments are ignored when looking for tokens. Parsers such as
ATM-J check tokens for certain keywords when they occur at the “top level”
of code (not when they are contained in procedure bodies), and take action
based on those keywords. For these reasons, for CIDFont and CMap files to
be compatible with ATM-J, they must conform to these rules:

• Individual tokens and charstrings may not exceed 65535 characters in
length.

• Most keywords are names that are associated with values in a dictionary;
the initial portion of a CIDFont program is assumed to contain names to be
inserted into a CIDFont dictionary.

• If the keyword

eexec

 appears, the text following it

must

 be encrypted. No
assignments of values to names may occur in the plain text that follows the
encrypted portion. See

Adobe Type 1 Font Format

 for more information
about

eexec

 encryption.

• When a simple value (integer, real, string, or Boolean) is associated with a
name in a dictionary, that value must

follow

 the name immediately as the
next token.

For example, Boolean values may be only the tokens

true

 or

false

. Simple
values, such as integers, must explicitly be written after a name—they may
not be computed by a sequence of PostScript language constants and oper-
ators.

Right way:

/CIDFontType 1 def

Wrong way:

1 /CIDFontType exch def

Wrong way:

/CIDFontType 2 1 sub def

Even though both “wrong” ways are legal and equivalent PostScript
language code, they do not conform to the parsing rules required by
ATM-J.

• When an array is expected as a value, the array must immediately follow
the name to which it is assigned. An array must begin with either [or { and
terminate with the corresponding } or]. Numeric contents must occur as
single tokens within the array delimiters.

• When a

begin

 operator occurs to change the current dictionary, it must
end with one and only one occurrence of the corresponding

end

 operator.

Begins

 and

ends

 must be accurately paired.

84 Appendix B: ATM-J Compatibility for CID-Keyed Fonts (16 Oct 95)

B.4 Miscellaneous Notes for Macintosh ATM before
version 3.5

• ATM (before version 3.5) does not support CID fonts.

B.5 Miscellaneous Notes for Macintosh ATM version 3.5

• ATM-J supports Shift-JIS-encoded CMap files. It does not currently
support JIS or EUC-encoded CMaps.

• All double-byte characters must be of fixed width at 1000/em (full width).

• ATM-J does not support the

usecmap

 operator. Because of this, ATM-J
does not support the vertical variant CMaps (~V).

• ATM-J does not support CMap operators that specify characters by name.

• ATM-J currently does not support any CMap range operations in which
more than the last byte varies between two input codes. For ATM-J version
3.5 to work properly, only the last byte in a range operation can vary.

• When parsing rearranged fonts, ATM-J is particularly sensitive to the
following document structuring comments:

%ADOResourceSubCategory: RearrangedFont
%ADOStartRearrangedFont

These comments must be used as documented in Section 6.

85

Appendix C:
Obtaining
CID Information

C.1 Support for CID-keyed Font Development

Support for developing CID-keyed fonts is available from the Developer
Relations department of Adobe Systems. Please use the addresses on the
cover of this document.

All contact for development information should be with the Developer Rela-
tions department, but there are several sources of information within this
department. If you require a UniqueID number or information about
UniqueIDs, it is important to address correspondence or fax transmission to

Attention: Unique ID Coordinator

 within the Developer Relations group.

Table C.1 shows whom to contact at Adobe Systems for your CID-keyed font
development needs.

Table C.1

Whom to contact at Adobe Systems

Requirement Contact

UIDBase number Unique ID Coordinator

XUID organization number Unique ID Coordinator

Registry Strings Unique ID Coordinator

CIDInit Procset Developer Relations

System Support files Developer Relations

CJK Language CMap Files Developer Relations

All related technical notes and

character collection documents Developer Relations

86 Appendix C: Obtaining CID Information (16 Oct 95)

87

Appendix D:
Font Naming and
Unique ID Numbers

D.1 CID Font Naming

It is important that CID-keyed fonts be named in a way that helps the font
machinery find and execute them easily. This section explains the recom-
mended way to name CID-keyed fonts.

The

findfont

 operator looks for the name of a CID-keyed font in two pieces.
One piece is

CIDFontName

, which is looked for in the

CIDFont/

directory.
The other piece is the

CMapName

, which is looked for in the

CMap/

 direc-
tory. The two parts fit together like this:

<CIDFontName>– –<CMapName>

where

<CIDFontName>

 is the name of the CIDFont file and

<CMapName>

is the name of the CMap to be used with that CIDFont. The two parts are
separated by a delimiter, which should be a double hyphen. (For backwards
compatibility, a single hyphen is allowed, but Adobe encourages the use of
the double hyphen.) For example, the font

Ryumin-Light-90pv-RKSJ-H

 is
made up of the two files

Ryumin-Light

and

90pv-RKSJ-H

. Another font

Mincho-Light-- 83pv-RKSJ-H

 (note the use of the preferred double hyphen)
is made up of

Mincho-Light

and

90pv-RKSJ-H

.

The two filename parts are themselves made up of smaller elements, which
are outlined in Adobe Technical Note #5088,

Font Naming Issues

. The main
purposes of such a font naming strategy however, can easily be summed up:

• It ensures that complex CID-keyed font names work properly with the
redefined

findfont

 operator.

• It provides guidelines for names that impart information about the font and
its character set and encoding.

• It ensures that each font name is unique, which is necessary for correct
handling.

88 Appendix D: Font Naming and Unique ID Numbers (16 Oct 95)

In general, CIDFont names describe the glyphs that make up a particular col-
lection; CMap names describe a particular combination of character set and
encoding that is

font-independent

.

D.2 Calculating Unique IDs

Individual CMap files consume identification numbers based on the nature of
the ranges specified in the

codespace

 definition. Codespace represents the set
of valid input codes. See section 5 for an explanation of how codespace is
defined. Unique ID numbers have been pre-calculated for all standard Japa-
nese CMap files; a developer needs to figure the count only when creating a
new CMap. Further, calculating Unique IDs using

UIDBase

 and

UIDOffset

,
as shown here, is necessary only for compatibility mode operation; in native
mode operation, the CMap and CIDfont are identified by

XUID

, which
requires no calculation.

For this example, the ranges specified for codespace are assumed to be

<00>

to

<80>

,

<8140>

 to

<9FFC>

,

<A0>

 to

<DF>

, and

<E040>

 to

<FCFC>

.

Unique ID numbers are assigned on a per-row basis; the total count of ID
numbers consumed is equal to the count of one-byte ranges plus the count of
two-byte codes (within a given listed range) that differ only in the last byte.

Note There can be three-byte, four-byte, and greater ranges. However, the rule of
thumb is the same: the count of codes within a given listed range that differ
only in the last byte.

In this example, there are 62 unique ID numbers consumed. There are two
one-byte ranges (

<00>

 to

<80>

 and

<A0>

 to

<DF>

). Between

<8140>

 and

<9FFC>

 there are 31 ranges that differ only in the last byte.

<8140>

 to

<81FC>

 is the first such range,

<8240>

 to

<82FC>

 is the second, and so forth.
The range

<E040>

 to

<FCFC>

 includes 29 such ranges. The count of the
numbers consumed is therefore

2 + 31 + 29 = 62

.

D.2.1 Assigning the ID Count

Because additional characters may be added to a collection after its initial
production, Adobe encourages developers to “pad” the total count to allow
for future expansion. For example, while the CMap file

Ext-RKSJ-H

con-
sumes 62 identification numbers for caching, the number is “padded” to 70 to
accommodate future additions.

Note Padding is also a good idea because once a developer has established a

UID-
Offset

 for a font marketed in the field, that number cannot be changed.

 89

When assigning

UIDOffset

 values to a group of CMap files that refer to a
single CIDFont, enough room must be left between CMap files so that no
identification numbers overlap. If overlapping occurs, bitmaps cached by a
previous job may be obtained that reference the wrong glyph. This is a partic-
ular problem for service bureaus where cached characters might be written to
disk and remain there during subsequent jobs.

Table D.1 shows the standard CMap files for the CID-keyed Japanese charac-
ter collection provided by Adobe, their ID counts, and their

UIDOffset

 values.

Table D.1

UIDOffset values

IDs Count UID

Character Collection CMap for Required Used Offset

Adobe-Japan1-0 83pv-RKSJ-H 63 70 0

Ext-RKSJ-H 62 70 70

Add-RKSJ-H 62 70 140

RKSJ-H 62 70 210

H 94 100 280

EXT-H 94 100 380

NWP-H 94 100 480

Add-H 94 100 580

EUC-H 96 100 680

Add-RKSJ-V 5 10 780

Add-V 5 10 790

EUC-V 3 10 800

Ext-RKSJ-V 5 10 810

Ext-V 5 10 82 0

NWP-V 6 10 830

RKSJ-V 4 10 840

V 3 10 850

Hankaku 1 2 860

Hiragana 1 2 862

Katakana 1 2 864

Roman 1 2 866

WP-Symbol 1 2 868

Adobe-Japan1-1 90pv-RKSJ-H 63 70 870

90pv-RKSJ-V 4 10 940

Adobe-Japan1-2 90ms-RKSJ-H 62 70 950

90ms-RKSJ-V 7 10 1020

90 Appendix D: Font Naming and Unique ID Numbers (16 Oct 95)

D.3 Miscellaneous Notes

• In compatibility mode, CMaps can only refer to a single CID or base font.

• In compatibility mode, Codespaces cannot exceed two bytes.

91

Appendix E:
Changes since Earlier
Versions

E.1 Changes in the 16 October 1995 version:

• Section 5.5, CMap File Naming Conventions, was added to explain how to
ensure unique file names for custom CMap files.

• Appendix A was rewritten to reflect current installation techniques.

• Appendix D was added to contain the information on naming CID-keyed
fonts and using UniqueID numbers that was previously in Appendix A.

• The UIDOffset Values table, now in Appendix D, has additional values for
the Adobe-Japan1-1 and Adobe-Japan1-2 character collections

92 Appendix E: Changes since Earlier Versions (16 Oct 95)

93

Index

Symbols

%!, comment conventions 13, 35, 52
%%BeginResource, comment

conventions 13, 36, 53
%%DocumentNeededResources,

comment conventions 36, 47
%%EndData, comment conventions

25
%%EndResource, comment

conventions 26, 36, 53, 59
%%EOF, comment conventions 46
%%Include, comment conventions

13, 53
%%IncludedResources, comment

conventions 47
%%IncludeResource, comment

conventions 36
%%Title, comment conventions 13,

36
%%Version, comment conventions

14, 36, 53
%ADOStartRearrangedFont,

comment conventions 54
.notdef 44

A

Adobe Type Manager, Japanese
Edition, see ATM-J

ATM-J 2, 25, 49, 60
compatibility with CIDFonts 81
parsing rules 82

B

Base font
Type 1 and Type 3 in rearranged

font 56

beginbfchar 56, 63
beginbfrange 64
begincidchar 48, 65
begincidrange 48, 65
begincmap 37, 45, 47, 63, 66
begincodespacerange 63, 66
beginnotdefchar 67
beginnotdefrange 68
beginrearrangedfont 49, 53, 69
beginusematrix 54, 55, 70

C

candidate files 74
CDevproc 28
Character

code 4
codes 1, 4
collection 4, 5
definition 3
identifier (CID) 1, 4
name 4
names 1
selector 42
set 4, 32

Charset 4, 32
Charstring 19

data 9
definition of length 20

CID 0, default notdef character 5
CID procset, initializing 53
CID Support Library 73
CID Support Library installation 75
CIDCount 21, 28
CIDFont

and VM 9
CDevproc key 28
CIDCount key 28
CIDFontName key 28

94 Index (16 Oct 95)

CIDFontType key 28
CIDFontVersion key 28
CIDMapOffset key 28
CIDSystemInfo key 28
comment conventions 13
compatibility with ATM-J 81
conceptual overview 3
data section 19, 27
encoding 33
example 10–13
FDArray key 29
FDBytes key 29
FontBBox key 30
FontInfo key 30
GDBytes key 30
handling subroutines 24
installing 73
internal organization 9
keywords 26
like and unlike PostScript

language 8
Ordering key of CIDSystemInfo

29
Registry key of CIDSystemInfo

29
resource 4
resource instance 9
structural exceptions from Type 1

and Type 3 23
subset fonts 21
Supplement key of

CIDSystemInfo 29
tutorial 8
UIDBase key 30
XUID key 30

CIDFont file
contents 6
Macintosh implementation 81
Macintosh resource fork 81

CIDFontName 15, 26, 28
CIDFontType 8, 15, 23, 28, 73
CIDFontVersion 14, 15, 28
CIDInit 26, 36, 53

procset 14
system support file 35

CIDInit 26
CID-keyed font files, see CIDFont

and CMap
CIDMap 19, 27

and character ID 9
empty interval 22

first interval 21
last interval 21

CIDMapOffset 19, 28
cidrange 42
CIDSystemInfo 28, 37
CMap

character code map 4
conceptual overview 3
defined 32
installing 73
operators by group 62–63
resource 4, 45
resource dictionary 37
resource instance 33

CMap file 33, 45
comment conventions 35
errors and PostScript interpreter

60
Macintosh installation 82
Macintosh resource fork 82
naming convention 48
nomenclature 60
operator order 63
operators 59
purpose and contents 6
stand-alone 33–35
using another CMap file 46–47

CMapName 38, 45, 47
CMapType 38
CMapVersion 38, 47
Code mapping 42

range limitations 43
rearranged font 56
requirements 43

Codespace 33, 40, 88
limitation on ranges 40
requirements 40

Comment conventions
%! 35, 52
%%BeginResource 13, 36, 53
%%DocumentNeededResources

36, 47
%%EndData 25
%%EndResource 26, 36, 53, 59
%%EOF 46
%%Include 13, 53
%%IncludedResources 47
%%IncludeResource 36
%%Title 13, 36
%%Version 14, 36, 53
%ADOStartRearrangedFont 54

CIDFont file 13
CMap file 35

Compatibility mode 4, 26, 33, 90
Component font index 42
Component fonts 53

array 54
Component fonts, of rearranged font

49
Composite fonts 49, 73
Copyrights for CID-Keyed font

programs 2
CPSI (Configurable PostScript

Interpreter) 1
CSL (CID Support Library) 73

D

Data section of CIDFont, contents 27
defineresource 37
Deletion Toggle 75, 77
dictfull error 15, 37
Document structuring conventions

13
DPS (Display PostScript) 1

E

eexec 83
Empty interval 22, 44
Encoding of CIDFonts 33
endbfchar 56, 63
endbfrange 64
endcidchar 48, 65
endcidrange 43, 48, 65
endcmap 45, 63, 66
endcodespacerange 66
endnotdefchar 67
endnotdefrange 68
endrearrangedfont 49, 53, 59, 69
endusematrix 54, 55, 70
Errors

CMap file operators 60
dictfull 15, 37

F

FDArray 9, 17, 22, 25, 27, 29
structure of 22

FDBytes 20, 22, 29
file names 74
file searching 75

Index 95

findresource 14
findresource 14, 36, 53, 63
First interval of CIDMap 21
Font dictionary (FD) index 20
FontBBox 17, 30
FontInfo 30
FontInfo dictionary 19
FontMatrix 17

G

Gaiji characters
adding to rearranged font 58

GDBytes 20, 30
Glyph

data 9
definition 3
descriptor (GD) value 20
rasterizing requirements 9

I

Initializing the CID procset 36, 53
installation of category A files 78
installation of category B files 80
Installing

CIDFonts and CMaps 81
ioerror 32

J

Japanese Type 1 fonts, see Composite
fonts

K

Keywords in CIDFont, required and
optional 26

L

Last interval of CIDMap 21
Length of a charstring,definition 20

M

Macintosh
naming conventions for CIDFont

and CMap files 82

N

Naming conventions

CIDFonts and CMaps on
Macintosh 82

Native mode 33
support for CID-keyed fonts 17

Native support (native mode) 4
Notdef

characters 43
CID 0 as default 5
ranges 43
when characters shown 44

Notdef characters 22

O

Ordering 5, 13, 16, 29, 36
Organization of a CIDFont 9
OtherSubr 24

P

Private dictionary 22, 24
Procset, initializing 36

R

Rearranged font 61
adding gaiji characters 58
contents 49
defined 49
example 50–52
restrictions 49

Registry 5, 13, 16, 29, 36, 48
Resource instance

CIDFont 9
Roman characters, replacing in

rearranged font 55

S

SDBytes 24
Selected Device 77
selected device 75
Shift-JIS-encoded CMap files, and

ATM-J 84
show 4
StartData 14, 25, 26, 31

binary and hex arguments 26
examples 32
syntax 31

SubrMap 19, 24, 25, 27
SubrMapOffset 24, 25
Subroutine Descriptor (SD) values

24
Subroutine information in CIDFonts

24
Subrs 24
Supplement 5, 13, 16, 29, 36

no match between CIDfont and
CMap 16

System support files 14, 35

T

target files 74
Template font 49, 61

defined 49
Type 0 composite fonts 73
Type 1 fonts

part of a CIDFont 42
similarities to CIDFonts 8
structural exceptions in CIDFonts

23
Type 3 fonts

part of a CIDFont 42
similarities to CIDFonts 8
structural exceptions in CIDFonts

23

U

UIDBase 17, 18, 30, 39, 88
UIDOffset 17, 30, 39, 47, 88, 89

count 39
Unique ID 30, 39

calculating 88
count 88
numbers 17
obtaining 85

usecmap 47, 63, 71
ATM-J 84

usefont 54, 71
UserGaiji 59

V

Version Checking 76
Version control 5, 37

CIDFont and CMap files 15

W

WMode 40, 47
Writing Mode, WMode 40

96 Index (16 Oct 95)

X

XUID 17, 18, 30, 39, 47, 88
described 39
special value 1000000 18

