Run II Searches for Supersymmetry

Dave Toback
Texas A&M University
June 17th 2004
HCP2004
Structure

- SUSY searches at the Tevatron focus on mSUGRA/MSSM, GMSB and RPV
- Present every Run II result from first 200 pb\(^{-1}\)

- Minor excesses or interesting events which I’ll be keeping my eye on as the dataset doubles, quadruples or goes up an order of magnitude
- New world’s best limit
- Hot off the presses result
Overview of Results

• CHAMP Searches
• Jets + Met Searches
• Multi-lepton Searches
• Diphoton+Met Searches
CHArged Massive Stable Particles

- Search for long-lived charged particles using Time-of-Flight system
- Particles behave like slow, but high P_T muons
- $2.9 \pm 0.3\text{(stat)} \pm 3.1\text{(sys)}$ expected from instrumental mis-measurement
- Observe 7
 - Small excess...Lots more data already taken and being analyzed

Track $P_T > 18$ GeV
$L = 53$/pb

Cut on TOF (nsec)

Final Cut here

Dave Toback
Texas A&M University
CHAMPS: Results and Limits

- Lots of theories predict CHAMPS
 - Stop
 - Staus
 - Charginos
 - Sleptons
- New limits on Stop at 107 GeV which is the new world limit
- Nice complement to the Run I decay based searches for stop

Excluded by Aleph

L = 53/pb
Search for New Physics in Jets+Met

• Direct searches for Squarks and Gluinos in jets+met final state

• Two searches at the Tevatron with preliminary results
 - Light-quark jets+Met
 - Heavy flavor jets+Met

• Extend sensitivity beyond LEPs kinematic reach
Light-quark jets + Met

- Squarks and Gluinos produce acoplaner jets + Met

- Require:
 - At least two large jets
 - Total $H_T > 275$ GeV
 - Met > 175

- 2.67 ± 0.95 expected

- 4 events observed in the data

Background predictions dominated by EWK not QCD

Final Cut here
The interesting event on the tail

Kinematics:
- 2 big jets: $E_T=289$ GeV and 117 GeV
- 2 little jets: E_T of 14 GeV and 11 GeV
- $M_{et}=381$ GeV

Expect 1 event above 300 GeV; $\sim \frac{1}{4}$ above 350 GeV

Background dominated by $Z\rightarrow \nu \nu +$ jets

Doesn't particularly look like signal or background
Limits on Squarks & Gluinos

• Set limits in mSUGRA scenario

• New limit at 333 GeV (for a squark mass of 292) extends previous world’s best

mSUGRA model with $M_0 = 25$ GeV/c2, $A_0=0$, $\tan B = 3$, $\mu<0$, varying $M_{1/2}$

DØ Run II Preliminary

Excluded by CDF Run I

Dave Toback
Texas A&M University

9

HCP 2004
June 17th 2004
Search for Sbottom Squarks

- Gluinos decay into Sbottom quarks and produce b-jets and Met
- Two separate analyses:
 1. Single-tag + Met:
 Back = 16.6 ± 3.6
 Observe 21
 2. Double-tag + Met:
 Back = 3.4 ± 1.1
 Observe 4
- Backgrounds dominated by Top quark pairs

CDF Preliminary
L = 156/pb

Final Cut here

Dave Toback
Texas A&M University

HCP 2004
June 17th 2004
New limits are not sensitive to when Sbottom mass is close to the LSP mass.

LEP sensitivity is still best there.

Gluino production allows significant extension of the best limits at high mass Sbottom and low mass neutralinos.

CDF Preliminary

χ^0 Mass (GeV) vs Sbottom Mass (GeV)

CDF Run I

CDF Run II

Gluino Mass (GeV) vs Sbottom Mass (GeV)
Multi-lepton final states have been a staple of SUSY searches for many years

- Low mass indirect searches in $B_s \rightarrow \mu \mu$
- High mass resonance searches for RPV Sneutrinos
- Chargino/Neutralino Pair-production and decay
\[\text{\begin{align*}
\text{BS} & \rightarrow \mu \mu^*
\end{align*}} \]

- Indirect search for SUSY via loop diagrams which affect the branching ratio by one to three orders of magnitude.
- Search in 4\sigma mass window around known world average and optimize using topology cuts
- 1.1\pm0.3 events expected
- 1 Event observed

:\text{\begin{align*}
\text{CDF Run II Preliminary}
B^0_{s(d)} & \rightarrow \mu^+ \mu^-
L & = 171/\text{pb}
\end{align*}} \]

Accepted for publication in PRL
Limits and SUSY Interpretation

- $\text{BR}_{\text{SM}}=3.5\times10^{-9}$
- Previous best limit at 2.0×10^{-6} (CDF Run 1)
- New Limit: $\text{Br}(B_S \rightarrow \mu\mu)=7.5\times10^{-7}$ → World's best
- Many models to interpret this constraint
 - (Blow up of example from A. Balyaev)

![Graph](image-url)
High Mass Resonance Searches

- People have been looking at ee and $\mu\mu$ for many years for Z', E6, Higgs, Technicolor etc. (See talk by M. Gold for data)

- CDF now interprets it's results in terms of RPV Sneutrino production and decay.

- First limits for large masses

CDF Preliminary $L = 200$/pb
Chargino/Neutralino Pair Production

- Chargino/Neutralino pair production can produce three leptons + Met
- Since the end of Run I, LEP has significantly improved the limits
- Three new results in this mode:
 - Same sign muons
 - Two electrons + lepton
 - Electron + Muon + lepton

Gold plated signature of mSUGRA for low tan\(\beta\)
Like-Sign Muons

Increase acceptance by only requiring two out of three leptons
Reduce background by requiring them to be same-sign
• $P_T > 11 \text{ GeV}$
• $P_T > 5 \text{ GeV}$
• $M_{\mu\mu} < 80 \text{ GeV}$

Predict 0.13 ± 0.06
Observe 1 interesting event

• Backgrounds dominated by WZ (0.07) and bb (0.04)
• No third lepton candidate → bb?
Electron+Muon+lepton

Require:
- Electron > 12 GeV
- Muon > 8 GeV
- Met > 15

Look for a third isolated track: e, μ or τ

Predict 0.5 ± 0.2

0 observed

P_T of Third Track > 3 GeV

L = 158/pb
Two-electrons+lepton

Two high P_T isolated e's, a 3rd lepton (high P_T isolated track) and Met

Predict $0.3^{+0.4}_{-0.3}$
Observe 1 event

Met x Pt(3rd Track) >250 GeV2

Electron $E_T = 33$ GeV and 26 GeV
Track $P_T = 8.6$ GeV
Met = 52.1 GeV

Background dominated by WW, but is likely $W\gamma$ where the photon converted
Combine results to set limits

- All three searches are optimized for the region above the LEP limits

- Combined result produces the most stringent limits from the Tevatron to date

- Significant improvement over Run I results, but no extension of the exclusion region from LEP (yet)
GMSB Searches in Two Photons+Met

- In Run I CDF found an eeγγ+Met candidate event.
- Extensive searches for similar events at LEP and the Tevatron produced no other interesting events.
- New results from CDF and Dzero which optimized for GMBS χ^0 → γG scenario.
GMSB $\gamma\gamma + \text{Met}$

CDF (202/pb)

- $E_T > 13$ GeV, $\ln \eta < 1.1$
- Predict 0.6 ± 0.5
- 0 Observed

Dzero (185/pb)

- $E_T > 20$ GeV, $\text{Met} > 40$ GeV
- Predict 2.5 ± 0.5
- 1 Observed

Dave Toback
Texas A&M University

June 17th 2004
Limits on GMSB with $\tilde{\chi}^0 \rightarrow \gamma \tilde{\gamma}$

CDF (202/pb)

Dzero (185/pb)

New world best limit!

$\Lambda > 78.8$ TeV

Chargino mass > 192 GeV

Neutralino Mass > 105 GeV

Dave Toback
Texas A&M University
Interesting Event

• Event is in data since the previous result, but is interesting nonetheless
• E_T of photons: 69 & 27 GeV
• E_T of electron 24 GeV
 - All well measured & Well separated
• $\text{Met}=63$ GeV

$W_{\gamma\gamma}$?

Cousin of CDF $ee_{\gamma\gamma}\text{Met}$?

If all “$ee_{\gamma\gamma}\text{Met}$” favored SUSY parameter space is nearly excluded, then what is it?
Conclusions

• It’s an exciting time to be at the Tevatron as it is the high energy frontier for the next N years.

• Preliminary results on the first 200 pb\(^{-1}\) are starting to come rapid-fire with first publications already submitted & accepted.

• Many of these results are the world’s most sensitive.

• Results on the next 200 pb\(^{-1}\) are in the pipeline.

• The detectors and the Tevatron continue to improve and provide new sensitivity.

• Lots of interesting things to keep our eyes on in the coming year…