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We measure the top quark mass using 19 tt̄ candidate events in which both W bosons from top
quarks decay into leptons (eν, µν, or τν). These “dilepton” events were collected by the Collider De-
tector at Fermilab in 197 pb−1 of Run II Tevatron data produced by pp̄ collisions at

√
s = 1.96 TeV.

Only one of the two leptons is required to be identified as an electron or a muon candidate, while
the other is just a well measured charged particle. We employ the Neutrino Weighting Algorithm
to reconstruct the 19 events according to the tt̄ decay hypothesis and we measure a top mass of
168.1+11.0

−9.8 (stat) ± 8.6(syst) GeV/c2.

Preliminary Results
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I. INTRODUCTION

The top quark is about 35 times heavier than any other quark in the Standard Model (SM). Even though its
mass is a free parameter in the model, it is linked with the mass of the W and Higgs bosons. Since the Higgs still
eludes experimental observation, the measurement of the top quark mass, in conjunction with a precise W mass
measurement, serves as a constraint to the Higgs mass, which in turn benefits Higgs search strategies. Once all three
masses are accurately known, they will provide a stringent consistency check of the SM.

Top quarks were first observed by the CDF and D0 collaborations [1] in events produced at pp̄ collisions at the
Fermilab Tevatron collider. The main mechanism of producing top quarks at pp̄ collisions of

√
s = 1.96 TeV is pp̄ → tt̄

production via quark-antiquark annihilation (∼ 90%) or gluon-gluon fusion. According to the SM, each top quark
decays almost 100% of the time to Wb, with the b quark hadronizing into a jet of particles. Each of the two W ’s can
either decay to quarks or to a lepton-neutrino pair. The decay mode of the W ’s sets the characteristics of the tt̄ event
and, consequently, the event selection strategy.

In this article we present a measurement of the top quark mass using tt̄ “dilepton” candidate events in which
both W bosons from top quarks decay into leptons (eν, µν, or τν). Such a measurement is important in order to
check consistency with top mass measurements obtained using events from other tt̄ decay modes. Since all top mass
measurements assume a sample composition of tt̄ and SM background events, any discrepancy among the measured
top masses could indicate the presence of non-SM events in our sample(s). We employ the Neutrino Weighting
Algorithm (NWA) to reconstruct each dilepton event according to the tt̄ decay hypothesis, with each event yielding
a most probable top mass. We then use an unbinned likelihood method to find the top mass hypothesis which best
explains the observed data values as a mixture of background and tt̄ signal events. The NWA was the method used
in Run I to obtain the final published results by CDF [2] and one of the two methods used by D0 [3]. It is therefore
a natural baseline for Run II measurements.

II. DATA SAMPLE & EVENT SELECTION

We use two-lepton events collected by the Collider Detector at Fermilab in 197 pb−1 of Run II Tevatron data
produced by pp̄ collisions at

√
s = 1.96 TeV. The CDF detector is described in detail in Ref. [4].

The signature of tt̄ decays in the dilepton channel is two jets from the b quarks, two leptons and missing energy
from the unobserved neutrinos. We follow the “LTRK” event selection, which is one of the two selections used for the
top cross section measurement in the dilepton decay channel [5]. This selection allows a greater signal acceptance,
but also results in a worse background contamination. Because measurements of the top quark mass in the dilepton
channel are statistically limited, we base our decision for using the LTRK selection on the fact that the expected
(i.e., a-priori) statistical uncertainty for this selection is overall smaller than the uncertainty expected from the other
(so-called “DIL” [5]) selection. The LTRK selection is described in detail in Ref. [5] and here we just mention the
basic requirements.

The data are collected with an inclusive lepton trigger that requires events with an electron or muon with ET > 18
GeV (pT > 18 GeV/c for the muon) [6]. If the electron candidate is in 1.2 < |η| < 2.0 (in the end-plug calorimeter
region), it is required to have ET > 20 GeV and the event have 6ET > 15 GeV. From this inclusive lepton dataset we
select events offline with an electron ET (muon pT ) greater than 20 GeV. Such an electron (muon) is required to be

“isolated’, that is, to be no more than 10% extra energy (momentum) measured in a cone of ∆R ≡
√

(∆η)2 + (∆φ)2 ≤
0.4 around the lepton. We do not attempt to identify the other lepton as an electron or muon; we just require a
well-measured isolated track with pT > 20 GeV/c in |η| < 1. We also require candidate events to have 6ET > 25
GeV and at least two jets with ET > 20 GeV in |η| < 2. The extra jets could be produced from initial or final-state
radiation. In this analysis we assume that the two highest ET jets in the event are the b jets.

After all selection criteria are applied, we have 19 candidate tt̄ events, out of which 6.9 ± 1.7 are expected to be
background events [5]. The main sources of background to the tt̄ dilepton topology are estimated to be: i) 4.2 ± 1.6
Drell-Yan events (Z/γ → `+`−X, where ` = e, µ, or τ), ii) 1.5± 0.5 “fake” events, where a W + jets event is selected
due to a jet mimicking the signature of a lepton, and iii) 1.2 ± 0.3 diboson events (WW , WZ and ZZ).
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III. METHOD FOR TOP MASS MEASUREMENT

A. Top mass reconstruction with the Neutrino Weighting Algorithm

The top mass measurement in the dilepton channel is an unconstrained problem because there is no one-to-one
correspondence between observables and decay particles; the measured 6ET is due to two neutrinos. In order to solve
the problem we have to make assumptions (the top mass being one of them) and find how well they fit the observations
in the event at hand. Assuming each event is a tt̄ dilepton decay, we obtain a distribution of probability vs. top mass
hypothesis, by integrating out all other assumptions.

In the Neutrino Weighting Algorithm we assume we know: i) the top mass, ii) the W mass (we use 80.5 GeV/c2),
iii) the η’s of the two neutrinos, and iv) the lepton-jet pair which originated from the top quark decay, e.g., `+−jet1.
Then, we apply energy-momentum conservation on the t-side and obtain up to two possible solutions for the 4-vector
(ν) of the neutrino. We repeat on the t̄-side and we end up with up to four possible pairs of neutrino-antineutrino
solutions (ν, ν̄). Each of the four solutions is assigned a probability (weight, wi) that it describes the observed missing
Ex and Ey within uncertainties σx and σy, respectively:

wi = exp(− (6Ex − P ν
x − P ν̄

x )2

2σ2
x

) · exp(−
(6Ey − P ν

y − P ν̄
y )2

2σ2
y

) (1)

We use σx = σy = 15 GeV, which is obtained by a tt̄ Monte Carlo sample generated with mt = 175 GeV/c2 and,
independently, by using the individual resolutions of the observed objects (electron/muon, track, jets and unclustered
energy in the calorimeters).

Given the assumed top mass and the neutrino η values, any of the four solution pairs (ν, ν̄) could have occurred in
nature. So, we just add up the four weights:

w(mt, ην , ην̄ , `−jet) =
4

∑

i=1

wi (2)

Not knowing which are the true neutrino η’s in our event, we repeat the above steps for many possible (ην , ην̄)
pairs. Monte Carlo tt̄ simulations indicate that the neutrino and antineutrino η’s are uncorrelated and distributed
Gaussianly around 0 with a width of 1. We scan the neutrino η distributions from -3 to +3 in steps of 0.1 and
each (ην , ην̄) pair is assigned a probability of occurrence P (ην , ην̄) derived from the aforementioned Gaussian. Then,
each trial (ην , ην̄) pair contributes to the event weight according to its weight (Eq. 2) and probability of occurrence,
P (ην , ην̄):

w(mt, `−jet) =
∑

ην ,ην̄

P (ην , ην̄) · w(mt, ην , ην̄ , `−jet)

Since we do not distinguish b jets from b̄ jets, the problem is solved with both possible lepton-jet pairings and the
two resulting weights w(mt, `−jet) are added up. Thus, the final weight is only a function of the top mass, with all
other unknowns integrated out:

W (mt) =

`+−jet2
∑

`+−jet1

w(mt, `−jet)

We try top masses from 100 GeV/c2 to 500 GeV/c2 in 1 GeV/c2 steps. Finally, the weight distribution from each
event is normalized to one. For simplicity, we pick one indicative top mass from each event; we use the top mass
which best explains the event as a tt̄ dilepton decay.

B. Probability density functions for Signal and Background events.

We use fully simulated Monte Carlo events of tt̄ signal and background processes to build “template” distributions
of the top masses reconstructed as explained above. Parameterizing these templates we construct probability density
functions (p.d.f’s) for signal and background events to be used in the likelihood.

For the signal, we use tt̄ dilepton events generated with “Tune A” PYTHIA version 6.203 [7] at top masses from
135 GeV/c2 to 225 GeV/c2 in 5 GeV/c2 increments. The CTEQ5L [8] Structure Functions are used to model the
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FIG. 1: Four signal templates (probability density per 5 GeV/c2) as a function of the most probable reconstructed top mass,
for generated top masses of 135, 165, 195 and 225 GeV/c2. Overlaid are the parameterized fitting functions using Eq. 3. The
vertical line indicates the generated top mass.

momentum distribution of the initial state partons. The obtained signal templates are parameterized as the sum
of a Gaussian and the function which when integrated gives the Gamma function. We thus get the signal p.d.f,
Ps(m;mtop), which represents the probability of reconstructing a top mass m when the true top mass is mtop:

Ps(m;mtop) = α5
α1+α1

2

Γ(1 + α1)
(m − α0)

α1 exp (−α2(m − α0))

+(1 − α5)
1

α4

√
2π

exp

(

− (m − α3)
2

2α2
4

)
(3)

where each of the 6 parameters αi are constrained to be linearly dependent on the generated top mass, such that we
in fact perform a 12-parameter fit on all templates simultaneously; i.e., αi = pi + pi+6(mtop − 175 GeV/c2). In Fig. 1
we see four of the signal templates with the parameterized fitting function.

For the background events, we create one representative background template by adding the individual templates
from each background source according to their expected yields. In doing so, we also take into account the NWA
acceptance; the inefficiency is introduced when none of the top masses tried explains the event as a tt̄ dilepton decay.
The weighted average NWA acceptance for background events is 96%, whereas the equivalent acceptance for signal
is 99.8%. Therefore, after the event selection and top mass reconstruction, we expect 6.6 ± 1.7 background events
in our data sample. We then obtain the background p.d.f, Pb(m), by fitting the combined background template (see
Fig. 2) to the functional form given in Eq. 3, but this time the parameters are made independent of mtop. The
templates from the various background processes are reconstructed from fully simulated Monte Carlo samples created
for the tt̄ dilepton cross section measurement [5]: the Drell-Yan events from PYTHIA, the Diboson from PYTHIA
and ALPGEN+HERWIG [9, 10], and the fakes from ALPGEN+HERWIG simulation of W (→ eν) + 3 partons.
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FIG. 2: The combined background template. Overlaid is the fitted probability density function.

C. The Likelihood function

We find the probability that our data are described as an admixture of background events and dilepton tt̄ decays
with top mass mtop, by employing the following likelihood function:

L(mtop) = Lshape(mtop) × Lnb
× L(ns+nb), with

Lshape(mtop) =

N
∏

i=1

nsPs(mi;mtop) + nbPb(mi)

ns + nb

,

− lnLnb
=

(nb − nexp
b )2

2σ2
nb

, and

L(ns+nb) =
e−(ns+nb)(ns + nb)

N

N !
(4)

where, i) the term Lshape determines the relative abundance of signal and background events, ns and nb, respectively,
by comparing the distribution of top masses mi in the data with the signal and background p.d.f’s, Ps(mi;mtop) and
Pb(mi), respectively; ii) the term Lnb

constrains (within uncertainty σnb
) the number of background events to the

a-priori estimate of nexp
b events; and, iii) the term L(ns+nb) imposes that the total number of signal and background

events (ns + nb) be in agreement with the event count, N , in the data sample.
The top mass hypothesis which minimizes −ln(L) is retained. At this stage, the best estimate of the statistical

uncertainty is the difference between this mass and the mass at −ln(Lmax) + 0.5.

IV. TESTING THE PROCEDURE WITH PSEUDO-EXPERIMENTS

We use pseudo-experiments to check if the methodology described above returns the expected top mass. For each
generated top mass from 150GeV/c2 to 210GeV/c2, we construct a set of 5000 pseudo-experiments. Each pseudo-
experiment is made up of top masses drawn randomly from the signal and background templates (e.g., Figs. 1 and 2).
The number of signal and background events in each pseudo-experiment is given by random Poisson values around
the a-priori estimates of 11.5 signal and 6.6 background events. These event yields correspond to (197 ± 12) pb−1 of
Run II data (from Table I of Ref. [5] and the aforementioned 96% NWA efficiency for background events). Then, the
likelihood function provides a “measured” top mass and a statistical uncertainty from each pseudo-experiment.

As seen in Figure 3, the output (measured) top mass traces the input (generated) top mass. Any residual differences
between the output and input mass are much smaller than the statistical uncertainties, shown in Fig. 4. The mean
and sigma of the pull distributions from each set of pseudo-experiments are shown in Figure 5 and we see that our
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FIG. 3: The median and mean of the output (measured) top mass as a function of the input (generated) top mass. For each
input top mass 5000 pseudo-experiments with (11.5 ± 1.5) signal and (6.6 ± 1.7) background events are constructed. The
likelihood maximization gives a measured top mass from each pseudo-experiment.
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FIG. 4: The statistical uncertainty on the measured top mass in pseudo-experiments, as a function of the generated top
mass. The +1σ and −1σ uncertainties are shown separately. The distribution of statistical uncertainties in each set of pseudo-
experiments resembles a Landau distribution. The most probable value (MPV), the median and the mean of these distributions
are shown here.

method provides essentially unbiased measurement of the top mass. Nevertheless, the statistical uncertainty estimates
we obtain have a small bias for some of the generated top masses (an unbiased estimate would always yield a sigma
for the pull distributions equal to one). Therefore, for the final result we scale the uncertainties obtained from the
likelihood fit on the data. The scale factor is found from pseudo-experiments, such that the ”corrected ±1σ” interval
encompasses 68% of the output top mass values.
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FIG. 5: Average and sigma of the pull distributions in pseudo-experiments. The uncertainties shown here account for back-
ground template statistics and are therefore correlated.

FIG. 6: Reconstructed top mass for the 19 data events (histogram). The normalized shapes of the background and signal plus
background p.d.f’s are shown as hatched curves. The shape of the likelihood function is shown in the inset.
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FIG. 7: The positive and negative statistical uncertainties for 5000 pseudo-experiments generated using the 170 GeV/c2 signal
template (histogram). The arrows indicate the values measured in the data.

V. RESULT ON DATA

We have 19 events satisfying the LTRK selection in 197 pb−1 of Run II data. Selecting from each event the most
probable top mass and applying the procedure described in Sec. III, we measure a top mass of 168.1GeV/c2. Figure 6
shows the reconstructed top masses in the data, the normalized background shape, the normalized sum of the signal
and background shapes, and, in the inset, the variation of −ln(L) as a function of the top mass hypothesis. By
taking the width at −ln(Lmax) + 0.5 we obtain a statistical uncertainty of +10.2GeV/c2 and −9.1GeV/c2. Since
the expected average mass offset is consistent with zero (See Fig. 5), we do not correct the measured central value.
However, the statistical uncertainty quoted above is underestimated; both set of pseudo-experiments drawn using
the 165 and 170 GeV/c2 signal templates (which bracket the measured value of 168.1 GeV/c2) yield σpull > 1. As
explained in the previous section, the uncertainty is then corrected by an appropriate scale factor. Using the 165
GeV/c2 signal template we find a scale factor of 1.12, while using the 170 GeV/c2 signal template we find 1.05. We
then interpolate to 168 GeV/c2 and get a scale factor of 1.08. Thus, we obtain mtop = 168.1+11.0

−9.8 GeV/c2. The
statistical uncertainty measured in the data is consistent with the distribution of statistical uncertainties from 5000
pseudo-experiments using the 170GeV/c2 signal template (see Figure 7).

The fit found 14.1 ± 4.5 signal and 6.0 ± 1.7 background events. When we remove the Gaussian constraint on the
background (i.e., the term Lnb

in Eq. 4), the fit converges on zero background events and the resulting top mass is
166.9GeV/c2.

VI. SYSTEMATIC UNCERTAINTIES

Apart from the uncertainty on the measured top mass due to the limited size of our data sample, there are several
sources of systematic uncertainty, amounting to 8.6 GeV/c2. We evaluate each uncertainty from pseudo-experiments
drawn from “±1σ shifted” Monte Carlo samples, while we keep using the nominal p.d.f’s in the likelihood function.

The largest systematic uncertainty (7.4 GeV/c2) arises from the jet energy measurement, mainly due to uncertainties
on i) the jet energy corrections as a function of the calorimeter region (function of η), ii) the absolute calibration of
the hadronic calorimeters, and iii) the jet fragmentation model.

The rest of the uncertainties deal with the modeling of the signal and background events by the templates used. The
largest of these uncertainties steams from the modeling of the background, even in the limit of infinite statistics. We
conservatively state that the true background p.d.f could be anything between the two most different contributions:
the Drell-Yan and the fakes, which also happen to be the two largest backgrounds. We draw pseudo-experiments
using either the Drell-Yan or the fake background template as a model for the whole background shape, and we get
a difference of 9.8 GeV/c2 in the top mass measured in pseudo-experiments. The uniform probability assumed above

yields a standard deviation of 9.8/
√

12 = 2.8 GeV/c2. We performed a series of cross-checks to convince ourselves
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CDF II Preliminary
Systematic Measure Uncertainty

(GeV/c2)
Monte Carlo Generators HERWIG - PYTHIA −0.1 ± 0.6

We take 0.6

PDFs (Parton MRST72 - CTEQ5L −0.2 ± 0.6
Distribution Functions) MRST75 - MRST72 0.4 ± 0.5

We take 0.8

ISR (Initial “TuneB” - “TuneA” PYTHIA 0.2 ± 0.6
State Radiation) “−1σ” ISR 0.5 ± 0.6

“+1σ” ISR 2.5 ± 0.6
We take 2.5

FSR (Final “−1σ” FSR 1.2 ± 0.6
State Radiation) “+1σ” FSR −1.3 ± 0.6

We take 1.3

TABLE I: Details on the systematic uncertainties on the measured top mass due to the modeling of the tt̄ dilepton events.

that the 2.8 GeV/c2 quoted here is indeed conservative.
The uncertainty due to the modeling of the tt̄ signal (shown in Table I) is studied by: i) using two different Monte

Carlo generators, HERWIG [10] and PYTHIA (we take σmtop
= 0.6 GeV/c2 = max{0.1, 0.6}); ii) using parton

distribution functions from two different groups (CTEQ and MRST), where the two MRST sets employed are derived
using different ΛQCD values (we take σmtop

= 0.8 GeV/c2 = max{0.2,0.6} ⊕ max{0.4, 0.5}); iii) varying the initial
and final state radiation in PYTHIA samples, by changing the QCD parameters for parton shower evolution according
to comparisons between CDF Drell-Yan data and Monte Carlo (the maximum observed difference, 2.5 and 1.3 GeV/c2,
respectively, is taken as the systematic uncertainty on the top mass).

The finite statistics in the signal and background templates results in a systematic uncertainty on the p.d.f’s
used in the likelihood (Eq. 4), even if the modeling of the signal and background processes were correct. For each
signal template we Poisson-fluctuate the number of events in each bin and create a new template. Then, we fit the
probability density function (Eq. 3) to the “fluctuated template” and perform a set of 5000 pseudo-experiments, by
drawing events from the nominal (non-fluctuated) template. We repeat 100 times and each time we get an average top
mass measured from the pseudo-experiments. We use the root mean square of this distribution (0.3 GeV/c2) as the
systematic uncertainty due to the signal template statistics. Performing this test using events from the 175GeV/c2

signal template yields the same result. We repeat the same procedure for each bin of each background component
and obtain a systematic uncertainty due to the limited background template statistics of 1.3 GeV/c2.

The 6ET resolution is the last source of non-negligible systematic uncertainty we consider. Should our knowledge of
the 6ET resolution not represent that of the data, the weights assigned to a certain configuration will change (see Eq. 1)
and may cause a systematic error. We create two extra sets of signal (mt = 170 GeV/c2) and background templates;
one set using σ 6ET

= 8GeV in Eq. 1 when reconstructing the top mass in simulated events and the other set using
σ 6ET

= 30GeV. We perform pseudo-experiments by drawing events from the templates created using σ 6ET
= 8GeV

or σ 6ET
= 30GeV, but the likelihood uses the nominal p.d.f’s, obtained with σ 6ET

= 15GeV. The σ 6ET
= 8GeV value

corresponds to the case where the jets are almost perfectly measured, whereas the 30 GeV value corresponds to the
case where the two jets are about 250 GeV each and this should account for any unmodeled wide component to the 6ET

resolution. Notice that the average pT of b quarks in dilepton tt̄ decays is about 70 GeV/c, with a root-mean-square of
26 GeV/c. Conservatively assuming that the true 6ET resolution can uniformly be anything between 8 and 30 GeV, we

take the difference of the top masses measured in pseudo-experiments over
√

12 and obtain a systematic uncertainty
of 0.3 GeV/c2. The same result is obtained when performing this test using the 165GeV/c2 signal template.

In Table II we summarize the systematic uncertainties on the top mass measurement.

VII. CONCLUSION

Using the Neutrino Weighting Algorithm applied on the 19 ”lepton+track” events collected by CDF in 197 pb−1

of the Run II data, we measure a top quark mass of 168.1+11.0
−9.8 (stat) ± 8.6(syst) GeV/c2.
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CDF II Preliminary
Systematic Uncertainty (GeV/c2)

Jet energy scale 7.4
Background shape 2.8

Signal template statistics 0.3
Background template statistics 1.3
Signal Monte Carlo generators 0.6
Parton Distribution Functions 0.8

Initial State Radiation 2.5
Final State Radiation 1.3

6ET resolution 0.3
Total 8.6

TABLE II: Summary of the systematic uncertainties on the top mass measurement. The total uncertainty is obtained by adding
the individual contributions in quadrature.
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