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We present a measurement of the tt differential cross section, dσ/dMtt, at
√

s = 1.96 TeV using
∼ 2.7 fb−1 of data collected with the CDF II Detector at the Fermilab Tevatron. We select events
in the W+ ≥ 4 jets sample with displaced secondary vertices from jets with heavy-flavor decays.
We use an in-situ calibration of the jet energy scale to reduce the systematic uncertainties and a
regularized unfolding technique to correct the reconstructed invariant mass distribution back to the
true distribution. We see no evidence of inconsistency with the Standard Model, with an observed
p-value of 0.28. We set limits on κ/MPl in the Randall-Sundrum model by looking for gravitons
which decays to top quarks.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is a remarkably successful theory of the strong
and electroweak interactions at the energy scales which have been experimentally tested thus far.
However the SM remains an incomplete theory. In the SM the Higgs boson is responsible for
electroweak symmetry breaking (EWSB) and the generation of fermion masses. The SM prefers a
light Higgs boson [1] well within the reach of current experiments, but it has not yet been found,
opening the possibility for a beyond the SM (BSM) mechanism of EWSB. Because the top quark
is the only known fermion with a mass near the EWSB scale, it plays a special role in many BSM
theories of EWSB. In these models the top quark can play either a direct or an indirect role in
the EWSB. In models with top condensation such as technicolor and topcolor models, the role
of the SM Higgs boson is filled by a composite particle which is a bound state of top quarks [2].
These models predict additional heavy gauge boson which couple strongly to top quarks. The gauge
bosons can be either color singlets, such as a Z ′ boson [3], or color octets, such as colorons [4] or
axigluons [5]. The color-singlet Z ′ bosons generally produce narrow resonances in the Mtt spectrum,
without interference with the SM process. However the color octet processes do interfere with the
SM strong interaction, causing distortions to the Mtt spectrum that are not simple resonances. The
two Higgs doublet and minimal supersymmetric models are examples of models without top quark
condenstation. In these models, the pseudoscalar Higgs boson may couple strongly to top quarks,
causing a peak-dip structure in the Mtt spectrum. [6]

The unification of all of the fundamental forces, including gravity, requires more exotic physics
beyond the SM. The fundamental problem which must be addressed is why the force of gravity
is so weak as compared to the other forces - this is the hierarchy problem. In physics models
with extra dimensions the structure of space-time accounts for the extreme weakness of gravity.
In the Randall-Sundrum (RS) model a single warped extra dimension accounts for the observed
hierarchy [7]. Kaluza-Klein (KK) gravitons which propagate in the bulk space and decay to top
quarks would be seen as a series of resonances in the Mtt spectrum.

The study of the Mtt spectrum is sensitive to a very broad class of models which produce distortions
to the spectrum ranging from narrow resonances to broad interferences [8]. In a previous version of
this analysis, completed with 1.9 fb−1 of CDF II data [9] we found no evidence for physics beyond
the SM, but were limited in our sensitivity by large systematic uncertainties. For this updated
analysis we implement a calibration of the jet energy scale (JES) which significantly reduces the
systematic uncertainties and improves our sensitivity to physics beyond the SM.

II. DEFINITION

We measure dσ/dMtt, as defined by:

dσi

dMtt

=
Ni − N bkg

i

Ai

∫
L∆i

Mtt

where Ni is the number of events observed in each bin, N bkg
i is the predicted number of background

events and Ai is the acceptance in bin i; ∆i
Mtt

is the width of bin i; and
∫
L is the integrated

luminosity. We divide the Mtt distribution into 9 bins: 0-350, 350-400, 400-450, 450-500, 500-550,
550-600, 600-700, 700-800 and 800-1400 GeV/c2.

III. DATA SAMPLE & EVENT SELECTION

We use ∼ 2.7 fb−1 of CDF II data, collected between March 2002 and April 2008. The data are
collected with an inclusive lepton trigger, which requires an electron with ET > 18 GeV or a muon
with pT > 18 GeV/c. The offline selection requires a lepton with ET > 20 GeV (pT > 20 GeV/c for
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muons), missing transverse energy greater than 20 GeV and at least 4 jets with ET > 20 GeV . To
further reduce the backgrounds, we require at least one jet with an identified displaced secondary
vertex, from a heavy-flavor decay. We identify these jets as b-jets (“b-tagged”) from the decay
t → Wb. With this event selection, we observe 650 total events. The CDF II detector is described
in detail elsewhere [13].

The calibration of JES relies upon a fit of the invariant mass distribution of the dijets from the
hadronically decaying W boson, Mjj . We identify the daughters of the W boson as follows: for events
with 2 b-tags we assume the 2 untagged jets (of the leading 4 jets in the event) as the daughters of
the hadronically decaying W . For events with a single b-tag we find the pair of untagged jets among
the leading 4 that has an invariant mass which is most consistent with the W boson mass.

We reconstruct the invariant mass of the tt pair by combining the 4-vectors the of the 4 leading
jets, lepton and missing transverse energy. This reconstructed Mtt distribution is distorted from the
true distribution by detector effects, including jet and missing energy resolution, and our geometric
and kinematic acceptance. We correct for these effects by using a regularized unfolding technique,
Singular Value Decomposition (SVD) unfolding [15].

IV. ANALYSIS OVERVIEW

In this section we present details for each component of the analysis. In Section IVA we present
the estimation of the SM backgrounds. In Section IVB we describe the details of the JES calibra-
tion. After calibrating the JES we unfold the background-subtracted Mtt distribution as described
in Section IVC. The number of events in the JES-dependent unfolded Mtt distribution is then
divided by the product of the acceptance, integrated luminosity and bin width - the denominator of
Equation 1 - to obtain the measured dσ/dMtt. We describe the calculation of the denominator and
its dependence on the JES calibration in Section IVD.

A. Backgrounds

The tt signature described in Section III can be mimicked by several Standard Model processes,
including diboson production, single top production, and W +jets production. The least-well theo-
retically constrained of these processes is the W +jets production cross section, due to the difficulties
of high-order QCD calculations. We use a background estimation, described previously in [16], which
uses the theoretically well-known processes to constrain the data sample composition. This estima-
tion was repeated in the 2.7 fb−1 dataset in a separate analysis [17].

The calculation of the expected number of events from the electroweak processes – diboson,
Z+jets, single top – is straightforward. We calculate an acceptance for each process, analogously
to the tt acceptance described in Section IVD, and obtain the total number of expected events
according to N = σA

∫
L. These processes, with the exception of single-top and Z+jets, are modeled

with a PYTHIA Monte Carlo simulation. The single-top background is modeled by a MADEVENT [18]
Monte Carlo simulation which is showered with PYTHIA, the Z+jets background is modeled by an
ALPGEN [19] Monte Carlo simulation which is showered by PYTHIA. These backgrounds are small for
our event selection.

The largest component of the background is W +jets production. We separate the tagged heavy
flavor component of the W +jets background from the tagged light flavor component. We assume
that while the absolute cross section for heavy flavor production is very sensitive to higher order
corrections, that the fraction is not. Therefore we calculate the fraction of W +jets events with
bottom and charm content in an ALPGEN Monte Carlo simulation with PYTHIA showering, and obtain
the absolute normalization from the number of W +jets events before the tagging selection (“pretag”)
in the data. The number of expected W +heavy flavor events we obtain is corrected for differences
in heavy flavor content and tagging efficiency in data and Monte Carlo.

The QCD background expectation is obtained by fitting the shape of the missing ET distribution
in data. Events with no real W will generally have low missing energy because of the absence of
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CDF II Preliminary,
∫
L ≈ 2.7 fb−1

Process 4 jets ≥ 5 jets
Wbb 32.3 ± 10.5 6.5 ± 2.5
Wcc 16.8 ± 5.6 3.6 ± 1.4
Wc 8.9 ± 2.9 1.5 ± 0.6
Mistags 18.9 ± 4.8 3.5 ± 1.6
Non-W 20.9 ± 17.5 6.4 ± 6.0
WW 3.5 ± 0.5 1.0 ± 0.1
WZ 1.2 ± 0.1 0.3 ± 0.0
ZZ 0.3 ± 0.0 0.1 ± 0.0
Z+jets 3.3 ± 0.4 0.7 ± 0.1
Single Top (s-channel) 2.8 ± 0.3 0.6 ± 0.1
Single Top (t-channel) 2.8 ± 0.2 0.4 ± 0.0
tt̄ (6.7pb) 358.6 ± 49.7 121.5 ± 16.8
Total Prediction 470.3 ± 56.5 145.9 ± 18.5
Observed 494 156

TABLE I: Summary of sample composition. [17]

a high pT neutrino. The fit allows an extrapolation from the low missing energy side band to the
signal region, with missing ET greater than 20 GeV.

The remainder of the W +jets background in the tagged data is a result of the misidentification
of light flavor jets as heavy flavor, or “mistags”. To first order, the mistags may be modeled by
events in which the secondary vertex position corresponds to a negative decay length. The rate
of negative tags is parameterized as a function of jet energy, jet η, number of tracks, number of
z-vertices, primary vertex position and the sum of the event transverse energy in a mistag matrix.
The sum of probabilities from the matrix on all jets in the event yields the number of negative
tags. This number is corrected for an asymmetry in the negative versus positive decay probability
for mistags and real heavy flavor content of the mistag matrix. The predicted number of W +light
flavor events is then the number of negative tags times the fraction of W +light flavor events in the
W +jets sample.

The composition of our data sample is summarized in Table I. The “Mtt” and Mjj distributions of
the backgrounds are modeled with the same Monte Carlo or data samples used in calculation of the
absolute normalizations of the the relevant processes. The uncertainty on the overall normalization
of the backgrounds includes the uncertainty due to the JES. The background shapes do not vary
appreciably with respect to variations in the JES and are kept constant in this analysis.

B. Jet Energy Scale Calibration

Like any analysis that relies heavily on jet information, the uncertainty on the JES is a dominant
source of systematic uncertainty in this analysis. We have previously completed an analysis of
dσ/dMtt with 1.9 fb−1 of data [9], where the JES uncertainty was the largest source of systematic
uncertainty, followed by the uncertainty on the Parton Distribution Function (PDF) used in the
Monte Carlo simulation. In order to constrain the JES uncertainty we use a technique similar to
that developed for use in the analysis of the top quark mass [10].

The derivation of the nominal jet energy scale at CDF is described elsewhere [11]. Fig 1 shows
the total jet energy scale uncertainty as a function of corrected jet pT . We measure the quantity
∆JES , which is the deviation from the nominal JES (∆JES = 0) in units of the nominal jet energy
scale uncertainty, σJES , as shown in Figure 1. The differential cross section depends on the value
of ∆JES , as will be explained in detail in the following sections. The measured dσ/dMtt will be
calculated at the value of ∆JES measured in the data, ∆data

JES , with the uncertainty on ∆data
JES as an

additional source of statistical uncertainty.
We reconstruct the invariant mass of the hadronically decaying W boson in the data, Mjj , and



5

 (GeV)TCorrected jet P
20 40 60 80 100 120 140 160 180 200

F
ra

ct
io

n
al

 s
ys

te
m

at
ic

 u
n

ce
rt

ai
n

ty

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Systematic uncertainties. Cone 0.4

Quadratic sum of all contributions

Absolute jet energy scale

Out-of-Cone + Splash-out

|<0.6ηRelative - 0.2<|

Underlying Event

Systematic uncertainties. Cone 0.4

Quadratic sum of all contributions

Absolute jet energy scale

Out-of-Cone + Splash-out

|<0.6ηRelative - 0.2<|

Underlying Event

FIG. 1: The total jet energy scale uncertainty, indicated by the solid black line, as a function of corrected
jet pT . [12]

compare the distribution to distributions in Monte Carlo simulations with known values of ∆JES

using an unbinned maximum likelihood fit. The likelihood function to be maximized is:

LMjj
= Lshape × LNevts × LBkg . (1)

Most of the information comes from the term Lshape:

Lshape =

N∏

n=1

NsigPsig(Mjj ; ∆JES) + NbkgPbkg(Mjj)

Nsig + Nbkg

(2)

which gives the probability for an event n that Mjj comes from background or signal. The number
of signal events is given by Nsig and the number of background events by Nbkg. Psig(Mjj ; ∆JES)
and Pbkg(Mjj) are probability distribution functions for the signal and the background, respectively.
While the probability distribution function for the signal varies with ∆JES , the probability distri-
bution function for the background is found to vary little enough that no parameterization in ∆JES

is needed. The distributions of Mjj for the signal and background at ∆JES = {−2, 0, 2} · σJES

along with the probability distribution functions for are shown in Figures 2 and 3, respectively. In
order to improve the fit of the probability distribution functions we restrict the range of the fit to
30 GeV/c2 ≤ Mjj ≤ 150 GeV/c2. The term LNevts is a simple Poisson:

LNevts =
e−(Nsig+Nbkg)(Nsig + Nbkg)

N

N !
. (3)

The term LBkg constrains the normalization of the background to the expectation in the range
30 GeV/c2 ≤ Mjj ≤ 150 GeV/c2, which is approximately 98% of the total background expectation
in Table I.

LBkg = exp(−
(Nbkg − Nexp

bkg )2

2σ2
exp

). (4)

We test the fit performance in pseudo-experiments with a range of known input ∆JES values from
∆JES = −2 · σJES to ∆JES = +2 · σJES . We find that over this range of values that the means of
the pull distributions for ∆JES are consistent with zero, as shown in Figure 4 and that the widths
are consistent with one, as shown in Figure 5. Figure 6 shows the uncertainty from the fit as a
function of input ∆JES . The fitted uncertainty is about 50% of the nominal uncertainty, depending
on the value of ∆JES .
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FIG. 2: The reconstructed Mjj signal distribution at various values of ∆JES, along with the fitted probability
distribution functions.
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FIG. 3: The reconstructed Mjj background distribution (at ∆JES = 0) along with the fitted probability
density function.

C. SVD Data Unfolding

In order to extract the true underlying Mtt distribution from the background-subtracted recon-
structed distribution, it is possible to model the effects which distort Mtt with Monte Carlo and

produce a probability response matrix, Â, such that Âx = b where x is the true distribution and b
is the measured distribution. However, given the measured distribution b, attempting to solve for x
by inverting Â results in solutions with large differences from the true distribution when some bins
are not well populated. We use the technique described in [15], which uses the SVD of a response
matrix filled with actual numbers of events, rather than probabilities, to regularize the solution.
Figure 7 shows an application of the algorithm to a simulated reconstructed distribution of events.

For a measurement which depends on ∆JES , we model the dependence of the detector response
matrix on ∆JES . Each bin of the matrix is parameterized as a quadratic function of ∆JES , and the
background-subtracted Mtt distribution will be unfolded with the appropriate matrix at ∆data

JES . We
perform pseudo-experiments at various known input values of ∆JES in order to test the unfolding.
In each pseudo-experiment we fit the Mjj distribution for ∆JES and then unfold the background-
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FIG. 4: The mean of the pull distribution of the fitted ∆JES over a range of input ∆JES values.
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FIG. 5: The width of the pull distribution of the fitted ∆JES over a range of input ∆JES values.

subtracted Mtt distribution at the value of ∆JES obtained in the fit. We check the pull distribution
for the number of unfolded events in each bin at various known input values of ∆JES , as shown
in Table II. We will not correct for the slight over-estimation of the uncertainty at large values of
∆JES .
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FIG. 7: An example unfolded Mtt distribution compared with the true and a simulated measured distribu-
tion.

D. Acceptance

The total tt acceptance is measured from a mixture of data and Monte Carlo. We use a PYTHIA

Monte Carlo simulation [14] to measure the geometric and kinematic acceptance. The lepton iden-
tification efficiency is measured in data using the unbiased leg of Z → ℓℓ decays. The difference in
efficiency for identifying an isolated high pT lepton in data versus Monte Carlo is corrected for with
a scale factor. Likewise we correct for the difference in data and Monte Carlo for tagging a b-jet.
The efficiency in data is determined in a heavy-flavor enriched data sample of low pT electrons, from
the semi-leptonic decay of B hadrons and mesons.

The acceptance depends on the value of ∆JES . We parameterize the dependence in each bin as
a linear function of ∆JES . The full denominator of Equation 1 in each bin is shown as a function
of ∆JES in Figure 8. The solid line shows the parameterization; dσ/dMtt is calculated with the



9

Pull Mean
Mtt [GeV/c2]bar ∆true

JES=-1 ∆true
JES=0 ∆true

JES=1
0-350 0.11 ± 0.03 −0.02 ± 0.02 0.06 ± 0.02

350-400 0.09 ± 0.03 0.05 ± 0.02 0.09 ± 0.02
400-450 −0.03 ± 0.02 0.04 ± 0.02 0.02 ± 0.02
450-500 −0.07 ± 0.02 0.02 ± 0.02 −0.01 ± 0.02
500-550 −0.03 ± 0.02 −0.02 ± 0.02 0.01 ± 0.02
550-600 −0.04 ± 0.02 −0.05 ± 0.02 −0.00 ± 0.02
600-700 0.04 ± 0.02 −0.01 ± 0.02 −0.02 ± 0.02
700-800 0.12 ± 0.02 0.08 ± 0.02 −0.01 ± 0.02
800-1400 0.13 ± 0.02 0.13 ± 0.02 0.02 ± 0.02

Pull Width

Mtt [GeV/c2] ∆true
JES=-1 ∆true

JES=0 ∆true
JES=1

0-350 1.12 ± 0.02 1.07 ± 0.02 1.01 ± 0.02
350-400 1.11 ± 0.02 1.09 ± 0.02 1.01 ± 0.02
400-450 0.92 ± 0.01 0.92 ± 0.01 0.89 ± 0.01
450-500 0.98 ± 0.02 0.93 ± 0.02 0.92 ± 0.02
500-550 1.00 ± 0.02 0.95 ± 0.01 0.93 ± 0.02
550-600 1.01 ± 0.02 0.97 ± 0.02 0.94 ± 0.01
600-700 1.01 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
700-800 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02
800-1400 0.93 ± 0.02 0.92 ± 0.01 0.94 ± 0.02

TABLE II: The mean and widths of the pull for the number of unfolded events in each bin at various ∆JES

points.

appropriate denominator at ∆data
JES .

V. SYSTEMATIC UNCERTAINTIES

Our systematic uncertainties arise from Monte Carlo modeling of the acceptance, true and recon-
structed Mtt distributions, and background distributions; also, the uncertainties of our efficiency of
lepton identification, b-tagging efficiency, and integrated luminosity affect the measurement. The
lepton identification uncertainty arises due to the extrapolation from Z → ℓℓ events, where the
efficiency is measured in data, to the busier tt environment. The uncertainty on the b-tagging effi-
ciency is largely dominated by the limited number of events in the data sample that is used. These
uncertainties, together with a small uncertainty due to the finite size of the Monte Carlo simulation
using to calculate the acceptance comprise the acceptance uncertainty in the table below.

We consider several variations to the Monte Carlo model of the signal and background. For the
signal Monte Carlo simulation we evaluate the effects of using HERWIG [20] versus the default PYTHIA
generator (MC Gen.); of adding, simultaneously, more or less Initial and Final State Radiation
(ISR/FSR); and variations to the PDF set. The uncertainty on the background prediction consists of
two pieces - the uncertainty on the background normalization, as given in Table I, and a background
shape systematic for the Monte Carlo modeling of the background shapes. There are additional
systematic uncertainties associated with the ∆JES measurement. First, there is a “residual” ∆JES

uncertainty associated with describing the jet energy scale as one large shift from the nominal, rather
than as shifts from each derived correction as described fully in Reference [11]. Secondly there is
an uncertainty on the b-jet energy scale. This is added because the jets from W are light quarks,
but the correction is applied to all jets in the event. The effects of each systematic uncertainties
on the measurement are evaluated using a pseudo-experiment approach. Pseudo-experiments are
performed for each variation described above and the difference between mean dσ/dMtt in bin with
the shifted pseudo-experiments and the default model is taken as the systematic uncertainty in
each bin. For variation with well-defined ±1 · σ variations the uncertainty is one-half the difference
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FIG. 9: Fitted Mjj distribution in 2.7 fb−1 of W +≥ 4 jets data.

between the +1 · σ variation and the −1 · σ variation. The results are presented in Table III. With
respect the the 1.9 fb−1 analysis with no JES calibration, the total systematic uncertainty is reduced
by approximately one-half in each bin. The dominant systematic uncertainty is the uncertainty on
the PDF set, which is expected as the Mtt spectrum, particularly in the tail of the distribution, is
highly sensitive to the PDF of the protons and anti-protons. The 6% uncertainty on the luminosity
measurement in each bin, arising due to the uncertainty on the total pp cross section and the
acceptance of the luminosity monitors, is not included in the total in Table III.

Summary of systematic uncertainties [in percent] for dσ/dMtt measurement
CDF II Preliminary,

∫
L ≈ 2.7 fb−1

Mtt [GeV/c2] 0-350 350-400 400-450 450-500 500-550 550-600 600-700 700-800 800-1400
MC Gen. 0.7 2.4 5.3 5.7 4.6 3.3 1.4 0.0 1.0
ISR/FSR 1.5 1.3 0.8 0.2 1.1 2.1 2.0 2.2 3.3
Residual JES 7.1 5.9 3.9 2.5 1.4 2.2 4.5 7.2 8.7
b-jet JES 4.1 2.2 1.1 1.9 1.0 0.6 0.7 2.1 2.7
Back. Shape 0.4 0.3 0.6 0.6 0.4 0.4 0.8 1.3 1.8
Back. Norm. 10.3 7.4 2.3 1.6 3.0 4.0 4.4 4.9 5.1
Acceptance 4.5 4.4 4.3 4.4 4.6 4.6 4.4 4.0 3.8
PDF Set 7.7 6.1 3.0 1.0 4.8 9.3 14.0 17.4 18.8
Total 16.0 12.6 8.9 8.1 8.9 12.0 16.1 20.1 22.2

TABLE III: Summary of systematic uncertainties in each bin. The 6% uncertainty due to luminosity is not
included in the total.

VI. RESULTS

First we fit the Mjj distribution of the data, as shown in Figure 9, to obtain ∆JES . We obtain
∆data

JES = (1.3± 0.5) · σJES . The Mtt distribution we reconstruct in data is shown in Figure 10. The
unfolded background-subtracted distribution, using the unfolding matrix at ∆JES = ∆data

JES is shown
in Figure 11. To derive dσ/dMtt, we divide the contents of each bin of the unfolded distribution
by the appropriate denominator at the value ∆JES = ∆data

JES . The result is shown in Figure 12 and
also presented in Table IV.

We check consistency with the Standard Model measurement using the Anderson-Darling statis-
tic [21]. This statistic is similar to the more commonly used Kolmogorov-Smirnov statistic, but it
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FIG. 10: Reconstructed Mtt distribution in 2.7 fb−1 of W +≥ 4 jets data. The first five bins (Mtt ≤ 350 GeV)
are combined for the dσ/dMtt measurement.
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FIG. 11: Unfolded Mtt distribution in 2.7 fb−1 of W +≥ 4 jets data.

]2 [GeV/c
tt

Unfolded M
0 200 400 600 800 1000 1200 1400

]
2

[fb
/G

eV
/c

tt
/d

M
σd -110

1

10

SM Expectation

SM Uncertainties
-1 2.7 fb≈ L ∫CDF II Data, 

CDF II Preliminary

FIG. 12: dσ/dMtt in 2.7 fb−1 of W +≥ 4 jets data.
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Mtt [GeV/c2] dσ/dMtt [fb/GeV/c2]
≤ 350 0.47 ± 0.07 (stat.+JES) ± 0.08 (syst.) ± 0.028 (lumi.)
350-400 62.3 ± 7.0 (stat.+JES) ± 7.9 (syst.) ± 3.7 (lumi.)
400-450 33.8 ± 4.0 (stat.+JES) ± 3.0 (syst.) ± 2.0 (lumi.)
450-500 15.8 ± 3.0 (stat.+JES) ± 1.3 (syst.) ± 0.9 (lumi.)
500-550 9.9 ± 2.0 (stat.+JES) ± 0.9 (syst.) ± 0.6 (lumi.)
550-600 5.7 ± 1.2 (stat.+JES) ± 0.7 (syst.) ± 0.3 (lumi.)
600-700 2.3 ± 0.6 (stat.+JES) ± 0.4 (syst.) ± 0.1 (lumi.)
700-800 0.8 ± 0.3 (stat.+JES) ± 0.2 (syst.) ± 0.0 (lumi.)
800-1400 0.07 ± 0.03 (stat.+JES) ± 0.02 (syst.) ± 0.004 (lumi.)

Integrated Cross Section [pb] 6.9 ± 1.0 (stat.+JES)

TABLE IV: The differential cross section in each bin.
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FIG. 13: Distribution of Anderson-Darling statistic in pseudo-experiments. The value observed in data is
indicated by the red arrow.

puts more emphasis on discrepancies in the tail of the distribution. We’ve optimized the bin range of
the Anderson-Darling statistic for maximum sensitivity to new physics and find Mtt ≥ 450 GeV/c2

to be the most sensitive region of Mtt. The Anderson-Darling statistic distribution in pseudo-
experiments, and the observed value in the data are presented in Figure 13. We calculate a p-value
by taking the fraction of experiments in pseudo-experiments with a larger observed Anderson-Darling
statistic than that in data. The observed p-value is 0.28.

Because we find no evidence for BSM physics, we set limits on gravitons which decay to top quarks
in the RS model. The signal is modeled in a MadEvent+PYTHIA simulation. We fix the mass of the
first graviton mode at 600 GeV/c2 and vary the value of κ/MPl, where κ is the parameter which
determines the warping of the extra dimension and MPl is the Planck mass. We set limits using a
CLs method [22]. We use the Anderson-Darling statistics as the test statistic. The expected and
observed limits for κ/MPl are shown in Figure 14. We exclue κ/MPl < 0.16 at the 95% confidence
level.

VII. CONCLUSIONS

Using a sample of 650 total events in 2.7 fb−1 of CDF II data, of which the expected background
total is 126.0 ± 22.5, we have measured the tt differential cross section, dσ/dMtt. The shape of
the differential cross section is sensitive to potential sources of new physics that could appear as
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FIG. 14: The expected and observed limit on κ/MPl for RS gravitons where the mass of the first resonance
is 600 GeV/c2.

resonances, broad enhancements, or interference effects in the Mtt distribution. We use an Anderson-
Darling statistic to test for such discrepancies from the Standard Model expectation. None are found.
We set limits on κ/MPl in the RS model for gravitons which decay to top quarks, where the mass
of the first resonance is fixed at 600 GeV/c2, and find κ/MPl > 0.16 at the 95% confidence level.
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