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We present a result on the search for the new color-octet particle (massive gluon) decaying to top
quark pair in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV, based on 1.9
fb~1 of data collected by the CDF in the Tevatron Run II. The lepton+jet channel with at least one
secondary vertex b-tagged jet are studied. The observed top quark pair invariant mass distribution
is consistent with the standard model prediction within the explored parameter space. We set the
95 % confidence level limits on the coupling strength.



I. INTRODUCTION

The top quark is the heaviest elementary particle, which could be sensitive to the physics beyond standard model [1].
The search for the new color-singlet particle decaying the top pair have been performed at both CDF and DO [2, 3].
In this analysis we search for the new color-octet particle, “massive gluon (G)”, based on the generic assumption.
The top quark pairs are produced coherently in g annihilation process in this case. The production matrix element
can be written as,
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A = AAg- Ay and g are the coupling strength of massive gluon to the light quark and heavy quark, relative to

the strong coupling as shown in the figurel. There are 3 modeling parameters, A (strength of coupling), mass, and
the decay width. A can be both positive and negative. We assume no parity violation.
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FIG. 1: Feynman diagram: Left diagram is SM ¢g annihilation process. Right diagram is Massive Gluon process. These
processes interfere.

II. DATA SAMPLE & EVENT SELECTION

This analysis is based on an integrated luminosity of 1.9 fb~! collected with the CDFII detector between March
2002 and May 2007. To select lepton+jets events, tt — WW ~bb — I7qq'bb, we require one lepton (pr > 20 GeV),
high missing Er (> 20 GeV) and exact 4 jets (Er > 20 GeV and |n| < 2.0). Jets are reconstructed with the cone
algorithm with a radius of 0.4 [4]. The SECTVX algorithm [5] based on the identification of secondary vertices inside
jets is used to tag b-jets. The dataset with high-pr lepton (E7 > 18 GeV for electron and pr > 18 GeV for muon)
collected in CDF are studied. The processes of gqg — g — tt and q@ — G — tt can not be treated separately due
to the effect of the interference. So we treat qg — t as signal, and the other processes are the backgrounds. The
background processes are gg — tt, W boson + heavy flavor, W boson + light flavor (Mistags), QCD, diboson, Z
boson production, and the single top productions. The way of background estimation is described in the reference
[6]. The fraction of gluon fusion in the top pair production from the next-to-leading-order calculation [7] is assumed.

III. SEARCH METHODOLOGY

The t¢ invariant mass is reconstructed event-by-event using the Dynamical Likelihood Method (DLM) [8]. The
production matrix element is not used for the reconstruction to avoid the bias by assuming the standard model or
massive gluon production. After reconstructing the tf invariant mass, we perform the unbinned likelihood fit by
scanning the mass and width of massive gluon to extract the coupling strength.
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where, « is massive gluon parameters: o = (A, M,T). G is Gaussian and P is Poisson. v, is the central value

of expected background number and o;™® is the uncertainty of background estimation. N is the total number of
event. /sy is the reconstructed tf invariant mass of i-th event. ps (py) is the signal (background) #f invariant mass
probability density function (p.d.f.). v, and v, are the signal and background numbers (v = v, + ).

The reconstructed signal ¢t invariant mass p.d.f. is defined by
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where, Vi, is the parton level ¢ invariant mass, N(«) is normalization factor, € is acceptance, R is the (massive
gluon)/(SM) differential cross section ratio and f is the resolution function (left plot of figure4).
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In equation4 we use the differential cross section ratio to describe the massive gluon parton level /s, because by
taking the ratio many factors are canceled, like PDFs, top propagators, decay matrix elements and the Jacobian’s,
and the differential cross section ratio is written by simple formula 7.

The right plot of the figure4 shows the background p.d.f.
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FIG. 2: The left plot is the resolution function in the ¢ invariant mass reconstruction normalized at the given true value. The
right plot is the background probability density function.



IV. SYSTEMATIC UNCERTAINTIES

We briefly summarize the systematic uncertainties. The changes in the shape of ## invariant mass distribution
affect the fitted coupling strength. The jet energy scale and top mass uncertainties are shifted +1o simultaneously
to account for the correlation. The uncertainties of the parton distribution function (PDF) are estimated by using
different PDF sets (CTEQ5L vs MRST72), different values of Agcp and varying the eigenvectors of the CTEQ6M set.
The difference from the generators is estimated by using Pythia[9] and Herwig[10]. The uncertainties due to the next-
to-leading-order is estimated by using the MC@NLO[11]. The initial and final state gluon radiation is estimated using
Pythia by shifting the range of QCD parameters studied with Drell-Yan data. The uncertainty in the MC modeling
of the multiple interaction and the b-tagging efficiency as a function of jet pr are evaluated. These uncertainties are
evaluated at the various coupling strengths, masses and decay widths, and incorporated in the likelihood function.
The example of the systematic uncertainties is shown in figure3.
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FIG. 3: The example of the systematic uncertainties at I'/M = 0.1 and M = 450 GeV.

V. RESULTS

The tt invariant mass distribution is shown in figure4. The fitted coupling strengths are consistent with the standard
model prediction within ~ 1.7¢ at the explored parameter range, as shown in the figure6. The 95% confidence level
limits on the coupling strength are shown in the figure7, which are highly dependent on the decay width.

The top quark pr distributions show no discrepancy with the standard model prediction as in figure5, which will
reflect the secondary effect of the resonance.
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FIG. 4: The tt invariant mass distribution.
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FIG. 5: The top quark pr distribution of leptonic decay (left) and hadronic decay (right)
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FIG. 6: The consistency with the standard model expectations. Each plot shows the fitted coupling strength as a function of
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FIG. 7: The limits on the coupling strength as a function of mass from I'/M = 0.05 to I'/M = 0.5.
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