Search for the Higgs boson in the all-hadronic final state using the CDF II detector
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We report on a search for the production of the Higgs boson decaying to two bottom quarks
accompanied by two additional quarks. The data sample used corresponds to an integrated lumi-
nosity of approximately 4 fb™! of pp collisions at v/s = 1.96 TeV recorded by the CDF II experiment.
This search includes twice the data of the previous published result, uses new analysis techniques
to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds
sensitivity to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs
boson and place limits on the Higgs boson production cross-section for Higgs boson masses between
100 GeV/c? and 150 GeV/c? at 95% confidence level. For a Higgs boson mass of 120 GeV/c? the
observed (expected) limit is 10.5 (20.0) times the predicted Standard Model cross-section.

The Higgs boson remains the only undiscovered parti-
cle of the standard model (SM) of particle physics. It
is the physical manifestation of the mechanism which
provides mass to fundamental particles [I, [2]. Direct
searches at the LEP collider have excluded a Higgs bo-
son mass my < 114.4GeV/c? at 95% confidence level
(CL) [3], while the Tevatron has excluded a Higgs bo-
son mass between 163 GeV/c? and 166 GeV/c* at 95%
CL []. The Tevatron has reported a preliminary up-
date which extends the exclusion region for a Higgs bo-
son mass between 158 and 175 GeV/c2. [5]. Global fits to
precision electroweak measurements set a one-sided 95%
CL upper limit on my at 157 GeV/c? [6].

This Letter presents the results of a search for the
Higgs boson using an integrated luminosity of 4 fb~! of
pp collision data at /s = 1.96 TeV recorded by the Col-
lider Detector at Fermilab (CDF II). We search for a
Higgs boson decaying to a pair of bottom-quark jets (bb)

accompanied by two additional quark jets (qq’). This
search is most sensitive to a Higgs boson with low mass,
mp < 135GeV/c?, where the Higgs boson decay to bb is
dominant [7]. The two production channels studied are
associated production and vector boson fusion (VBF).
The associated production channel is pp — VH — qq’ bb,
where V' is a W/Z vector boson, which decays to a pair
of quarks. The hadronic branching ratio of V' to ¢q’ is
~ 70% [8]. In the VBF channel, pp — q¢' H — qq’ bb, the
incoming partons each radiate a V and the two V fuse
to form a Higgs boson.

Low-mass Higgs boson searches at CDF have concen-
trated on signatures that are a combination of jets, lep-
tons and missing transverse energy which help to con-
strain the backgrounds but the signal yields are small [9-
IT1]. The hadronic modes used in this search exploit the
larger branching ratio and thus have the largest signal
yields among all the search channels at CDF. The major



challenge for this search is the modeling and suppression
of the large background from QCD multijets.

A previous Letter on the search for the Higgs boson
in the all-hadronic channel was published using an in-
tegrated luminosity of 2fb=! [12]. This Letter has im-
proved the analysis sensitivity by a factor of two: a factor
of ~ v/2 from doubling the analyzed data and a factor
of 1.4 from improvements to the analysis which are dis-
cussed in this Letter.

The CDF II detector is an azimuthally and forward-
backward symmetric detector designed to study pp col-
lisions and described in detail in [I3HI5] and references
therein. Jets are defined by a cluster of energy in the
calorimeter deposited inside a cone of radius AR =
VAP? + An? = 0.4 [16] as reconstructed by the JETCLU
algorithm [I7]. Corrections are applied to the measured
jet energy to account for detector calibrations, multiple
interactions, underlying event and energy outside of the
jet cone [18].

The data for this search were selected by two multijet
triggers. The first 2.8 fb~! used a trigger which selected
four jet clusters with energy of at least 15 GeV and total
transverse energy > 175 GeV. This trigger was used in the
previous result [12]. The remaining 1.1fb~! was recorded
with a new trigger which selected three jet clusters with
energy of at least 20 GeV and total transverse energy >
130 GeV. The new trigger improves the acceptance for
low-mass Higgs by a factor of two.

After offline reconstruction, we select events with four
or five jets where each jet has Ep > 15 GeV and |n| < 2.4.
The selected jets are ordered by descending jet-Ep and
any fifth jet plays no further role in the search. The scalar
sum of the four leading jets is required to be > 220 GeV.
Events with isolated leptons or missing transverse energy
significance [19] > 6 are removed to suppress the t¢ back-
ground.

The next stage of offline selection requires exactly two
of the four leading jets to be identified (“tagged”) as
bottom-quark jets (b jet). A b jet is identified by its dis-
placed vertex, as defined by the SECVTX algorithm [I4],
or by determining the tracks within the jet are unlikely to
have originated from the primary pp collision as defined
by the JETPROB algorithm [20].

The two b-tagging algorithms are combined to form
two non-overlapping b-tagging categories: SS when both
jets are tagged by SECVTX, SJ when one jet is tagged by
SECVTX and the other by JETPROB. For a jet tagged
by both algorithms, SECVTX takes precedence as it has
a lower rate of misidentifying a light flavor jet as a b
jet. The previous 2fb~"! search only included the SS cat-
egory [12]. The addition of the SJ category increased
the signal acceptance by 36%. Other b-tagging combi-
nations, such as both b jets selected by JETPROB, were
not considered in this search as the relative gain in the
background is much larger than that for the signal.

The events which pass the offline selection are sepa-

rated into VH or VBF signal regions. Both signal re-
gions are defined by the invariant masses of the two b-
tagged jets, mypp, and the remaining leading two g-jets,
Mgq. The division of events is based on the different kine-
matics of the two processes. The V H channel has two
mass resonances: mg, from the Higgs boson decay and
Mg from the V' decay. The V H signal region is defined
as 75 < my, < 175GeV/c? and 50 < m,, < 120 GeV/c? .
The VBF channel shares the same my;, Higgs boson mass
resonance but there is no accompanying resonance for
Mgq. When compared to the background, a cut requir-
ing mgy, > 120GeV/c? optimizes the VBF signal over
background ratio which exploits the large An between
the g¢-jet pair. The VBF signal region is defined as
75 < mp, < 175GeV/c? and mg, > 120GeV/c? . The
division of the events by their b-tagging categories and
their signal regions gives four analysis channels: V H-SS;
V H-SJ; VBF-SS; VBF-SJ.

The VH and VBF production are modeled with
PYTHIA [2I] combined with a GEANT-based [22] simu-
lation of the CDF II detector [23]. The background is
dominated by QCD production of multi-jets which is
modeled by a data-driven technique developed in [12]
and described in more detail below. The non-QCD
backgrounds are modeled by simulation normalized to
next-to-leading order cross sections and are described
in detail in [12]. After applying the selection criteria
and correcting for the simulated trigger efficiency [12],
the expected yields for a Higgs boson of mass of
120GeV/c? for the VH and VBF signal regions are
7.8(SS)/2.9(SJ) and 3.2(SS)/1.2(SJ) events. The to-
tal background for the VH and VBF signal regions
are about 17000(SS)/9300(SJ) and 18000(SS)/9500(SJ)
events. The background composition is ~98% QCD and
the remaining 2% is a mixture of tt, Z+jets, single-top,
W +jets and diboson events. We estimate the contribu-
tions of these backgrounds in the same way as in [12].

The large background precludes the use of simple vari-
ables, such as the dijet mass, to search for a Higgs boson
signal. We use an artificial neural network (NN) from
the TMVA package [24] to separate Higgs boson signal
events from the dominant QCD background and trained
at Higgs masses of 100, 120 and 140 GeV/c?. As the
kinematics for VH and VBF Higgs signals are different,
a dedicated NN for each signal is trained. The input vari-
ables for the V H neural net are my;, mqq, the jet shapes
(explained below) of both g-jets, the cosine of the helicity
angle cos 7 [25], the cosine of the leading jet scattering
angle in the four jet rest frame cosfs [26] and x which is
a measure of whether both the b-jet pair and ¢-jet pair
are from a Higgs boson and V decay respectively. x is
defined as the minimum of xy and xz where xy is de-
fined as xw = /(Mw — Myg)? + (Mpy — My,)? and a
similar expression exists for xz . For the VBF channel,
the neural net inputs are my,, mqq and the jet shape of
both g-jets. As the kinematics are not affected by the




different b-tagging categories, the neural net is trained
with SS data as it has a better signal/background ratio.
The NN distribution for the V H-SS channel, trained on
simulated 120 GeV/c? Higgs boson events, is shown in
Fig.|ll The NN returns a more negative (positive) score
for background (signal) events.
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FIG. 1: NN distribution for V H-SS trained on
simulated 120 GeV/c? Higgs Boson events.

The QCD multi-jet background consists of a mixture
of quark and gluon jets while the Higgs signal jets are
mostly quark jets. One can make use of the fact that the
gluon jets tend to be broader than light flavor quark jets
to help separate the Higgs signal from the QCD multi-
jet background [27]. The width of a jet is characterized
by the jet ¢-moment (¢) and jet n-moment (n) [28]. (¢)
is defined by Eq.( [1)) where the summation for the jet-
moments are over the calorimeter towers used to form the
jets and uses the tower-Er (Ef°V"), the jet-Ep (EI),
the tower’s ¢ position (Piower) and the jet’s ¢ position
(@jet). A similar definition exists for (n).

@)= >

towers

~ i (A6 (Gtomer diet)) ] (1)

The jet-width depends not only on the parton initi-
ating the jet but also the jet-Ep, jet-n and the number
of reconstructed primary vertices. The variation of the
jet-width measurement by these variables is removed by
parameterizing their dependence and rescaling the jet-
moment to a common reference value of jet-E7=50 GeV,
jet-n=0 and one reconstructed vertex.

The simulation of the jet shapes was verified using
events from tt — blv + bgq’, where ¢ are electrons or
muons, as this provides a source of light-flavor quark jets
in data. The event selection from [29] was used to select
a data sample which is dominated by & (~ 86%) followed
by W4jets, Z+jets, single top, diboson and backgrounds

where light-flavor jets are misidentified as b jets. The two
highest £ untagged jets in the event whose dijet mass
is consistent with a W boson (My, = 80 4+ 30 GeV/c?)
are assumed to be quark jets. The jet shapes of these
quark jets are compared to a simulation sample of tf
and W+jets in the same fraction as measured in data.
An offset of +0.0024 (+0.0015) was added to the simu-
lation’s n-moment (¢-moment) to agree with data. Half
of the offset values were assigned as systematic uncer-
tainties for the jet n and ¢-moment. A cross-check using
Z+jets simulation and data was performed and found to
agree only after applying the corrections derived from tt.

The parameterizations used to rescale the jet-width
to the common reference point for the simulation were
cross-checked with the Higgs boson sample. The rescaled
jet-widths for V H were consistent with ¢f. However the
rescaled jet-widths for VBF were lower than tt. This
difference was considered as an additional systematic
uncertainty for the VBF jet-width. Half of this maxi-
mum difference was used as a measure of the uncertainty:
+0.0025 (£0.0010) for the VBF jet (n)({(¢)).

A data-driven method, known as the tag rate func-
tion (TRF), is used to model the dominant QCD multijet
background. The TRF is applied to events with at least
one b-tagged jet (single tagged events) to predict the dis-
tribution of events with exactly two b-tagged jets (double
tagged events). For each single-tagged event, the TRF
gives the probability of each additional jet, called a probe
jet, to be a second b-tagged jet. The TRF is described
in detail in [I2]. In this search the TRF was parameter-
ized as a function of three variables: the probe jet-Er,
probe jet-n and AR between the tagged b jet and probe
jet. The TRF is measured using jets in the TAG region
(Fig. , defined as mg, < 45GeV/c?, my, < 50 GeV/c?
and my, > 200 GeV/c2. The TRF is then applied to the
single tagged events in the VH and VBF signal regions
to predict the double tagged events.
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FIG. 2: my, — mgq plane: This plane illustrates the
regions used for the VH,VBF signal and the TRF.

The TRF predictions were verified by comparing the
shapes of different variables constructed from single-



tagged events, after applying the TRF, and double
tagged events from the TAG region. The TRF was able
to model the shapes of all the NN training variables ex-
cept mgqq and the jet shapes (¢) and () which required
their own corrections. The prediction for these variables
were scaled by the ratio of their observed shape to their
prediction in the TAG region. These scaling corrections
are applied in the V H and VBF signal regions when pre-
dicting the shapes of double tagged events.

We consider two sources of systematic uncertainty on
the shape of the NN output distributions for the multijet
background. The interpolation uncertainty accounts for
possible difference in the TRF between the regions where
it was measured (TAG) and applied (SIGNAL). An alter-
native TRF was measured using events in the CONTROL
region, as indicated in Fig. [2| which is still background-
dominated. The difference in the shapes of the predicted
background distribution in the NN output for the two
TRFs is treated as a systematic uncertainty. The second
source is due to the uncertainty in applying the mq, and
jet shapes scaling factors measured in the TAG region
to the SIGNAL region. Alternative scaling factors were
derived using events in the CONTROL region.

The systematic uncertainties which affect the accep-
tance of the Higgs signal and non-QCD backgrounds
are: +7% jet energy scale uncertainty [I8], +2% par-
ton distribution function uncertainty, b-tagging scale fac-
tor between simulation and data (+£7.6% SS / +9.7%
ST), £2% VH / +3% VBF initial- and final-state ra-
diation (ISR/FSR) uncertainties for the signal , +4%
trigger acceptance uncertainty and +6% luminosity un-
certainty [5]. The uncertainty on the cross-sections
for the non-QCD backgrounds are: +£10% for ¢f and
single-top [5] , £6% for diboson [5],£50% for W +jets
and Z+jets. In addition to changes to the acceptance,
changes to the shape of the NN output were considered
for the Higgs boson signal. The uncertainties which af-
fected the shape of the NN output were jet-energy scale,
ISR/FSR and jet-width. It should be noted the dom-
inant systematic error for this analysis came from the
uncertainties of the QCD prediction.

When the data are compared to the background predic-
tion, we find no excess of events over the expected back-
ground and set upper limits on the excluded Higgs boson
cross-section at 95% CL for 100 < mpy < 150 GeV/c2.
The limits are calculated using a Bayesian likelihood
method with a flat prior for the signal cross-section and
Gaussian priors for the uncertainties on acceptances and
backgrounds [30]. The normalization of the multijet
background is a free parameter that is fit to the data.
We combine the four search channels by taking the prod-
ucts of their likelihoods and simultaneously varying their
systematic uncertainties.

For my = 120 GeV/c?, the observed (expected) limit,
normalized to the SM prediction, for the individual anal-
ysis channels are 11.9(25.6) for VH-SS, 43.4(51.8) for

VH-SJ, 47.0(49.4) for VBF-SS, 93.7(132.3) for VBF-SJ,
and 10.5(20.0) for the combination. The combined chan-
nel limits for Higgs boson masses in the range between
100 - 150 GeV/c? are shown Fig.
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FIG. 3: Expected (dashed) and observed (solid) 95%
CL normalized to the SM cross-section for the combined
V H and VBF channel. The dark (light) band
represents the 1o(20) expected limit range.

The observed limits for the individual search channels
are in agreement with their expected limits except for
the V H-SS channel where there is a deficit in the data in
the high signal region of the NN. As the V H-SS channel
is the most sensitive, it has the strongest influence on
the combined limit. Figure [ shows the ratio of the data
to background for the four analysis channels for a NN
trained on a 120 GeV/c®> Higgs boson simulated data.
All four channels show a ratio &~ 1 over the whole NN
output range, but the V H-SS channel has several points
with a ratio of &~ 0.9 about a NN output of 0.5; the high
signal region of NN output. The same TRF is used in the
VBF-SS channel and the same NN is used in the V H-SJ
channel, neither of which show such a feature. The low
ratio for V H-SS is likely a statistical fluctuation rather
than evidence of background mismodeling.

In summary, the measurement presented in this Let-
ter shows a factor of two improvement over the previ-
ous 2fb~! result for the all-hadronic Higgs search [12] .
This Letter extends the 2fb~! analysis by including the
VBF channel, adding an additional algorithm to iden-
tify bottom-quark jets, adding an artificial neural net-
work to separate signal from background which includes
jet shapes to distinguish gluons from quark jets, and by
doubling the analyzed data set. As the Tevatron con-
tinues to collect more data and further improvements to
the analysis technique will extend the sensitivity of the
all-hadronic Higgs search.

We thank the Fermilab staff and the technical staffs
of the participating institutions for their vital contribu-
tions. This work was supported by the U.S. Department
of Energy and National Science Foundation; the Italian



(a)

© \

e
3]

Data/Background

HWM# i}

LN
b

: ++*W~

Data/Background

e
o

ry

A

L P‘M“W‘“ Mﬁm

e
2]

(d)

ey

-
[3)]

Data/Background

|

Data/Background

ury

'l
3]

-‘1 0 1

-2 0

Neural Network Output Neural Network Output

FIG. 4: Ratios of the data to background for V H-SS
(a), VH-SJ (b), VBF-SS (c), and VBF-SJ (d) for the
NN trained on 120 GeV/c? Higgs boson simulated
events.

Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science and Technology of
Japan; the Natural Sciences and Engineering Research
Council of Canada; the National Science Council of the
Republic of China; the Swiss National Science Founda-
tion; the A.P. Sloan Foundation; the Bundesministerium
fiir Bildung und Forschung, Germany; the World Class
University Program, the National Research Foundation
of Korea; the Science and Technology Facilities Coun-
cil and the Royal Society, UK; the Institut National de
Physique Nucleaire et Physique des Particules/CNRS;
the Russian Foundation for Basic Research; the Minis-
terio de Ciencia e Innovacién, and Programa Consolider-
Ingenio 2010, Spain; the Slovak R&D Agency; and the
Academy of Finland

[1] P. W. Higgs, Phys. Lett., 12, 132 (1964).

[2] F. Englert, Phys. Rev. Lett., 13, 321 (1964).

[3] The ALEPH, DELPHI, L3 and OPAL Collaborations,
and the LEP Working Group for Higgs boson searches,
Phys. Lett. B, 565, 61 (2003).

[4] T. Aaltonen et al. (CDF Collaboration), Phys. Rev.
Lett., 104, 061802 (2010).

[5] CDF Collaboration and DO Collaboration and Teva-
tron New Physics and Higgs Working Group, “Combined
CDF and DO upper limits on standard model higgs-
boson production with up to 6.7 fb~! of data,” [arXiv:hep-
ex/1007.4587v1l

[6] ALEPH, CDF, DO, DELPHI, L3, OPAL, SLD, the LEP

Electroweak Working Group, the Tevatron Electroweak
Working Group, and the SLD Electroweak and Heavy
Flavor Working Groups, “Precision Electroweak Mea-
surements and Constraints on the Standard Model,”
arXiv:hep-ex/0911.2604.

[7] A.Djouadi, J. Kalinowski, and M. Spira, Comput. Phys.
Commun., 108, 56 (1998).

[8] C. Amsler et al., Phys. Lett. B, 667, 1 (2008).

[9] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D,
80, 071101 (2009).

[10] T. Aaltonen et al. (CDF Collaboration), Phys. Rev.
Lett., 103, 101802 (2009).

[11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev.
Lett., 104, 141801 (2010).

[12] T. Aaltonen et al. (CDF Collaboration), Phys. Rev.
Lett., 103, 221801 (2009).

[13] D. E. Acosta et al. (CDF Collaboration), [Phys. Rev. D,
71, 032001 (2005).

[14] D. E. Acosta et al. (CDF Collaboration), [Phys. Rev. D,
71, 052003 (2005).

[15] A. Abulencia et al. (CDF Collaboration), |J. Phys. G, 34,
2457 (2007).

[16] CDF uses a cylindrical coordinate system with the z axis
aligned along the proton beam direction, 6 is the polar
angle relative to the z-axis and ¢ is the azimuthal angle.
The pseudorapidity is n = —In(tan6/2). The transverse
energy is Fr = E'sinf.

[17] F. Abe et al. (CDF Collaboration), Phys. Rev. D, 45,
1448 (1992).

[18] A. Bhatti et al. (CDF Collaboration), Nucl. Instrum.
Methods, A566, 375 (2006).

[19] Missing transverse energy significance is the ratio of the
total missing transverse energy to the total transverse
energy.

[20] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D,
74, 072006 (2006).

[21] T. Sjostrand et al., Comput. Phys. Commun., 135, 238
(2001).

[22] R. Brun et al., CERN-DD-EE-84-01 (1987).

[23] E. Gerchtein and M. Paulini, arXiv:hep-ex,/0306031.

[24] A. Hoecker et al., [arXiv:hep-ex/0703039v5!

[25] cos @y, is the cosine helicity angle of the leading non b
jet (q1). The helicity angle 67, of the leading non b jet
q1 is defined to be the angle between the momentum of
q1 in the ¢1 — g2 rest frame and the total momentum of
q1 — @2 in the lab frame.

[26] cos B3 is defined in a three jet rest frame as the cosine of
the leading jet scattering angle. We reduce from four jets
to three jets by combining the two jets with the lowest

Pav-Bs  where Ps is the
|[Pav | P3|

third jet and P,Zv is the vector sum of the three jets in
the lab frame [31].

[27] D. Acosta et al. (CDF Collaboration), Phys. Rev. D, 71,
112002 (2005).

[28] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D,
81, 052011 (2010).

[29] T. Aaltonen et al. (CDF Collaboration), Phys. Rev.
Lett., 105, 012001 (2010)!

[30] J. Heinrich et al., arXiv:physics/0409129v1.

[31] S. Geer and T. Asakawa, Phys. Rev., D53, 4793 (1996).

two jet mass. Thus cosfs =


http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/S0370-2693(03)00614-2
http://dx.doi.org/10.1103/PhysRevLett.104.061802
http://dx.doi.org/10.1103/PhysRevLett.104.061802
http://arxiv.org/abs/hep-ex/1007.4587v1
http://arxiv.org/abs/hep-ex/1007.4587v1
http://arxiv.org/abs/hep-ex/0911.2604
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://dx.doi.org/DOI: 10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevD.80.071101
http://dx.doi.org/10.1103/PhysRevD.80.071101
http://dx.doi.org/10.1103/PhysRevLett.103.101802
http://dx.doi.org/10.1103/PhysRevLett.103.101802
http://dx.doi.org/10.1103/PhysRevLett.104.141801
http://dx.doi.org/10.1103/PhysRevLett.104.141801
http://dx.doi.org/10.1103/PhysRevLett.103.221801
http://dx.doi.org/10.1103/PhysRevLett.103.221801
http://dx.doi.org/10.1103/PhysRevD.71.032001
http://dx.doi.org/10.1103/PhysRevD.71.032001
http://dx.doi.org/10.1103/PhysRevD.71.052003
http://dx.doi.org/10.1103/PhysRevD.71.052003
http://dx.doi.org/10.1088/0954-3899/34/12/001
http://dx.doi.org/10.1088/0954-3899/34/12/001
http://dx.doi.org/10.1103/PhysRevD.45.1448
http://dx.doi.org/10.1103/PhysRevD.45.1448
http://dx.doi.org/10.1103/PhysRevD.74.072006
http://dx.doi.org/10.1103/PhysRevD.74.072006
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://arxiv.org/abs/hep-ex/0306031
http://arxiv.org/abs/hep-ex/0703039v5
http://dx.doi.org/10.1103/PhysRevD.71.112002
http://dx.doi.org/10.1103/PhysRevD.71.112002
http://dx.doi.org/10.1103/PhysRevD.81.052011
http://dx.doi.org/10.1103/PhysRevD.81.052011
http://dx.doi.org/10.1103/PhysRevLett.105.012001
http://dx.doi.org/10.1103/PhysRevLett.105.012001
http://arxiv.org/abs/arXiv:physics/0409129v1
http://dx.doi.org/10.1103/PhysRevD.53.4793

	Search for the Higgs boson in the all-hadronic final state using the CDF II detector
	Abstract
	References


