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1 Introduction

Reference [1] examines a Bayesian approach to calculating an upper limit on a cross
section in the presence of uncertainties on the acceptance and background level. The
software written for that study is available for general use through the CDF Statistics
Committee’s web site[2]; this note provides additional documentation for users of that
software.

Although the code was written in C, care was taken to ensure that the code also
compiles and runs as C++. Because all necessary integrations are performed analyti-
cally in Ref. [1], the CPU time required to calculate a single limit using this software is
of order 10−3 seconds. This speed makes it especially useful for Toy MC simulations,
where, for example, limits might be needed for thousands of pseudo-experiments. Nu-
merical precision is of order 12 digits.

2 The Problem

A complete description is given in [1], but it is useful to briefly summarize the situation
here. We observe n events, including both signal and background, from which we will
set an upper limit su, at confidence (or credibility) level β, on the cross section s.
We have estimates of the expected background and efficiency; b0 ± σb and ε0 ± σε

respectively. The n observed events then represent a single deviate from a Poisson
distribution having a mean of sε + b.

The prior p.d.f. for s is sα−1ds where α is a constant chosen by the experimenter.
Typical choices are α = 1 and α = 0.5.

The prior for ε is given by a gamma distribution[3]

κ(κε)µ−1e−κε

Γ(µ)
dε

Here µ/κ is the mean of the ε-prior, (µ− 1)/κ is the mode, and µ/κ2 is the variance.
As ε includes factors involving luminosity as well as acceptance, it is not required to

1



be less than 1; it may have any positive value. The Bayesian-Limit routines use the
mean and the variance to characterize the prior for ε, i.e.

ε0 ≡ µ/κ σε ≡
√

µ/κ

One must be careful to match this convention. For example, should the user have an
estimate of the efficiency based on the mode and the 2nd derivative at the mode, i.e.
ε̂± σ̂ε where ε̂ = (µ− 1)/κ and σ̂ε =

√
µ− 1/κ, we would then use

ε0 = ε̂[1 + (σ̂ε/ε̂)
2] σε = σ̂ε

√
1 + (σ̂ε/ε̂)2

when calling these routines.
The prior for b is also a gamma distribution,

ω(ωb)ρ−1e−ωb

Γ(ρ)
db

and our comments about the ε-prior apply here as well, after the substitutions µ → ρ,
κ → ω, etc. For example, we have

b0 ≡ ρ/ω σb ≡
√

ρ/ω

3 Special Functions

Here we list the special functions that are involved in the solution of this problem.
These brief summaries will help the user to understand the actual code and the equa-
tions in the next section. In some cases, we also mention the syntax for these functions
in Maple and Mathematica, which can be useful for verification. Reference [4] is the
ultimate source of information about special functions.

3.1 Γ(x)

The gamma function Γ(x) is provided by the Unix/Linux standard math library as
double lgamma(double x) which returns log(Γ(x)) .

3.2 ak and ak

The “rising factorial” notation ak is defined as

ak ≡ Γ(a + k)

Γ(a)
= a(a + 1)(a + 2) · · · (a + k − 1)

and is read as “a to the k rising”. The “falling factorial” notation[5] ak is defined as

ak ≡ Γ(a + 1)

Γ(a− k + 1)
= a(a− 1)(a− 2) · · · (a− k + 1)

and is read as “a to the k falling”.
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3.3 M(a, b, x)

The confluent hypergeometric function1 is

M(a, b, x) = 1 +
a

b

x

1!
+

a(a + 1)

b(b + 1)

x2

2!
+

a(a + 1)(a + 2)

b(b + 1)(b + 2)

x3

3!
+ · · ·

When a is an integer ≤ 0 this series terminates, so M(−n, b, x) is a polynomial of order
n in x.

3.4 F (a, b; c; x)

The hypergeometric function2 is

F (a, b; c; x) = 1 +
ab

c

x

1!
+

a(a + 1)b(b + 1)

c(c + 1)

x2

2!
+

a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

x3

3!
+ · · ·

Once again, the series terminates when a or b are non positive integers.

3.5 Ix(a, b)

The incomplete beta function3 is

Ix(a, b) ≡ Γ(a + b)

Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1dt =

xa(1− x)bΓ(a + b)

Γ(a + 1)Γ(b)
F (a + b, 1; a + 1; x)

The file incompletebeta.c defines the function

double incompletebeta(double a, double b, double x)

that evaluates the incomplete beta function via the hypergeometric series, using Ix(a, b) =
1− I1−x(b, a) when x > (a + 1)/(a + b + 2) to speed convergence.

The recursion

Ix(a, b) =
Γ(a + b)

Γ(a + 1)Γ(b)
xa(1− x)b + Ix(a + 1, b)

is used in several routines to replace a whole series of Ix calls.

3.6 P (a, x)

The incomplete gamma function4

P (a, x) ≡ 1

Γ(a)

∫ x

0
ta−1e−tdt =

xa

Γ(a + 1)
M(1, a + 1, x)

1KummerM(a,b,x) in Maple, Hypergeometric1F1[a,b,x] in Mathematica
2hypergeom([a,b],[c],x) in Maple, Hypergeometric2F1[a,b,c,x] in Mathematica
3BetaRegularized[x,a,b] in Mathematica
41-GAMMA(a,x)/GAMMA(a) in Maple, 1-GammaRegularized[a,x] in Mathematica
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is defined in the file incompletegamma.c as double incompletegamma(double a,double x).
The function is evaluated using its power series expansion or its asymptotic expansion,
depending on the relative sizes of x and a.

The recursion

P (a, x) = P (a + 1, x) +
xae−x

Γ(a + 1)

is used in several routines to eliminate a whole series of calls to P (a−k, x) for integer k.

4 The Software

The header file bayesianlimit.h declares all public functions. For a complete expla-
nation of the Bayesian solution, see Ref. [1]. The complete list of files is:

• bayesianlimit.h

• posterior.c

• postint.c

• blimit.c

• incompletebeta.c

• incompletegamma.c

4.1 the marginalized posterior p.d.f. for s

The file posterior.c defines two public functions:

• double posterior(double s, int n, double e0, double esig,

double b0, double bsig, double alpha);

returns the value of the posterior p.d.f. by directly evaluating5

p(s|n)ds =
Γ(µ + n)

Γ(µ− α)Γ(α + n)

sα+n−1κµ−α

(s + κ)µ+n

F (−n, ρ; 1− n− µ; (s + κ)/(s(ω + 1)))

F (−n, ρ; 1− n− α; 1/(ω + 1))
ds

• The special case σb = 0 is evaluated by the function

double posteriorb0(double s, int n, double e0, double esig,

double b, double alpha);

which returns the value of the posterior p.d.f. by directly evaluating

p(s|b, n)ds =
Γ(µ + n)

Γ(µ− α)Γ(α + n)

sα+n−1κµ−α

(s + κ)µ+n

M(−n, 1− n− µ, b(s + κ)/s)

M(−n, 1− n− α, b)
ds

Note that posterior(s,n,e0,esig,b0,0,alpha) is entirely equivalent to
posteriorb0(s,n,e0,esig,b0,alpha).

5Previous versions of this note incorrectly had ω instead of ω + 1 in this equation.
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4.2 the integral of the posterior p.d.f.

The file postint.c defines three public functions:

• double postint(double su,int n,double e0,double esig,

double b0,double bsig,double alpha);

returns the integral of the marginalized posterior p.d.f. for s from 0 to su by
evaluating 6

∫ su

0
p(s|n)ds =

n∑
k=0

Ix(α + n− k, µ− α)nkρk

(α + n− 1)k

(ω + 1)−k

k!

/
n∑

k=0

nkρk

(α + n− 1)k

(ω + 1)−k

k!

where x = su

su+κ
.

• The special case σb = 0 is handled by

double postintb0(double su,int n,double e0,double esig,

double b,double alpha);

which uses∫ su

0
p(s|b, n)ds =

n∑
k=0

Ix(α + n− k, µ− α)nk

(α + n− 1)k

bk

k!

/
n∑

k=0

nk

(α + n− 1)k

bk

k!

(
x =

su

su + κ

)

• The special case σε = 0 and σb = 0 is handled by

double postinte0b0(double su,int n,double e,double b,double alpha);

which uses∫ su

0
p(s|ε, b, n)ds =

n∑
k=0

P (α + n− k, εsu)n
k

(α + n− 1)k

bk

k!

/
n∑

k=0

nk

(α + n− 1)k

bk

k!

4.3 the upper limit calculator

These functions, which calculate the upper limit su, are the items of greatest interest
for the general user.

The file blimit.c defines three functions that invert the functions of the previous
subsection:

• double blimit(double beta,int n,double e0,double esig,

double b0,double bsig,double alpha);

returns su such that
∫ su
0 p(s|n)ds = β

• double blimitb0(double beta,int n,double e0,double esig,

double b,double alpha);

returns su such that
∫ su
0 p(s|b, n)ds = β

• double blimite0b0(double beta,int n,double e,double b,double alpha);

returns su such that
∫ su
0 p(s|ε, b, n)ds = β

6Previous versions of this note incorrectly had ω instead of ω + 1 in this equation.
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