B mass, lifetime, prospects for B-oscillations and CP-violation at CDF, including new Charm results.

Sandro De Cecco

Universita’ di Roma “La Sapienza” e INFN Roma-1

- CDF detector upgrades for Heavy Flavour physics.
- First Run II measurements overview.
- Prospects for B mixing and CP violation.
- Perspectives for Charm physics & CPV.
- Conclusions.
CDF upgrades for B-physics:

- **New** Silicon vertex detector SVX II (5 double layers) + ISL (2 additional layers) + extra silicon layer L00 on beam pipe (~2cm from I.P.) rad. hard for improving vertexing resolution.

- **Silicon** Vertex Tracker at L2 for triggering on high impact parameter tracks, combine tracks measured in the transverse plane at L1 by XFT with axial silicon information to measure I.P. with quasi-offline resolution.

- **Muon** detector coverage extended to $\eta = 1.5$

- **New** Time of Flight detector at R=1.4 m, outside the drift chamber, made of 216 plastic scintillator bars, for PID oriented to improve B-tagging.
The new hadronic B trigger SVT:

First time that B-physics ($\sigma \approx 0.1\text{mb}$) @ CDF, is done by rejecting p-antip background ($\sigma \approx 50\text{mb}$) without requiring a lepton.

- $\sigma = 48 \mu m$ (includes $33 \mu m$ beam spot)
- σ includes $\sim 33 \mu m$ beamspot

Now:

- First time that B-physics (@ CDF) is done by rejecting p-antip background ($\sigma \approx 50\text{mb}$) without requiring a lepton.

- ~ 150 VME boards find & fit silicon tracks, with offline accuracy, in a $15 \mu s$ pipeline.

- **Secondary Vertex L2 Trigger**
 - Impact Parameter resolution as planned
 - $48 \mu m$ ($33 \mu m$ beam spot transverse size)
 - Online fit/subtraction of beam position
 - $R\phi$ only \Rightarrow need beamline \parallel silicon

- Efficiency:
 - $>90\%$
 - 80%

- J/ψ data
- CDF simulation

S. De Cecco - HCP 2002, Karlsruhe, 2 October '02
CDF Time of Flight:

A very good timing resolution is needed: 100 ps to obtain a K/π separation at 2σ for $PT<1.6$ GeV.

... at present almost reached

An example of application on background reduction on $\phi \rightarrow KK$:

with TOF PID

S/B ~ 1/40

S/B ~ 1/2

S. De Cecco - HCP 2002, Karlsruhe, 2 October '02
Lepton based sample
Momentum scale study from J/Ψ and D’s:

- Use J/ψ’s to understand E-loss and B-field corrections
 $$\sigma(\text{scale})/\text{scale} \sim 0.02\%$$
- Check with other known signals

Add B scale

Missing material ~20%

Correction for material in GEANT

Raw tracks

Confirm with $\gamma \rightarrow ee$

S. De Cecco - HCP 2002, Karlsruhe, 2 October '02
B0, B+, Bs masses in the exclusive J/Ψ channels

Relying on momentum scale calibration, B mesons masses as been measured using 18.4 pb-1 of integrated luminosity with the di-muon trigger.

- Very low statistics at present especially for Bs.
- Systematic from tracking drift chamber +Silicon extensively studied (Energy loss, alignments).

\[
\begin{align*}
M(B^+) &= 5280.6 \pm 1.7\text{ (stat)} \pm 1.1\text{ (syst)} \text{ MeV/c}^2 \\
M(B_0) &= 5279.8 \pm 1.9\text{ (stat)} \pm 1.4\text{ (syst)} \text{ MeV/c}^2 \\
M(B_s) &= 5360.3 \pm 3.8\text{ (stat)} +2.1/-2.9\text{ (syst)} \text{ MeV/c}^2
\end{align*}
\]

As an higher statistics monitor, the Ψ’ mass from Ψ’ → J/Ψ ππ was used.

M(Ψ’) = 3686.43 ± 0.54(stat) MeV/c2
Inclusive B lifetime from $B \rightarrow J/\Psi + X$

- From ~ 28K $J/\Psi \rightarrow \mu\mu$ collected with di-muon trigger based on CMU (Central Muon System).
- There are a “prompt” (from direct pp production) and a “lifetime” component of J/Ψ’s.
- Need to correct $c\tau$ measurement of J/Ψ with MC, to account for the partially recon.decay.
- Primary vertex J/Ψ’s are used to study the resolution function.

$c\tau(B) = 458 \pm 10\text{(stat)} \pm 11\text{(syst)} \mu$m

$\tau(B) = 1.526 \pm 0.034\text{(stat)} \pm 0.035\text{(syst)} \text{ps}$
Exclusive B+ lifetime in B+→ J/Ψ K+

- Measure based on 18 pb-1 collected corresponding to ~150 reconstructed B+→ J/Ψ K+.
- The cτ distribution is modeled by the convolution of a long life exponential with a gaussian resolution function.
- Systematic uncertainties, mostly due to silicon alignment, model for resolution and selection cuts, is very well controlled. → Measure is statistically dominated for the time being.

\[
c\tau(B+) = 446 \pm 43\text{(stat)} \pm 13\text{(syst)} \mu\text{m} \\
\tau(B+) = 1.49 \pm 0.14\text{(stat)} \pm 0.04\text{(syst)} \text{ps}
\]
Semileptonic B decays:

Two optimized trigger paths:
- 4 GeV electron + displaced track \(p_T>2\text{GeV}; d_0>120\mu\text{m}\)
- Muon + displaced track \(p_T>2\text{GeV}; d_0>120\mu\text{m}\)

Best sample to measure effective dilution of tagging algorithm for B mixing

Lepton+D0, \(D_0 \rightarrow K\pi\)
- \(~2000\) candidates

\(\Rightarrow\) (10 pb-1)

Lepton+D* \(\rightarrow D_0\pi\)
- \((D_0 \rightarrow K\pi)\)
- \(~350\) candidates

“Right” sign correlation between lepton charge and the charge of the Kaon from D meson is a tag for \(B \rightarrow l\nu D\) decays.

\(\Rightarrow\) Huge sample (x3 yield/lum of runI) for lifetimes measurements and CKM triangle elements \((V_{cb}, V_{ub})\) as well as B/C-barions study.
Hadronic sample
bb/cc fraction in the hadronic trigger sample:

Understanding the SVT trigger sample i.e. Displaced vertices events

D mesons I.p.(d0) distribution

From reconstructed D mesons in hadronic final states $D^+\rightarrow K\pi\pi$, $D^0 \rightarrow K\pi$, $D^* \rightarrow \pi D^0$, $D_s \rightarrow \phi\pi$; produced at ppbar interaction, the relative fraction between prompt D’s and secondary D’s from B.

Given the high impact parameter resolution, the Distance of closest approach (d0) from Primary vertex Was used to discriminate the two components.

D’s from p.v. have d0≈0

$K_s \rightarrow \pi\pi$ are primary \rightarrow I.P. resolution

...just to have a feeling:

B fraction:

D0 sample : 16.4 ± 0.7 %

S. De Cecco - HCP 2002, Karlsruhe, 2 October '02
Ds – D+ mass difference

• Based on ~ 11 pb-1 of luminosity collected with the new SVT two track trigger.
• Ds and D+ are reconstructed in the $\phi\pi$ channel where $\phi \rightarrow KK$.
• Almost the same statistics of Ds and D+ even if $D^+ \rightarrow \phi\pi$ is Cabibbo suppressed, this is due to the higher efficiency of SVT trigger to long lifetimes: $\tau(D^+) \sim 2 \tau(Ds)$.

About 2400 Ds and 1400 D+ after selection:

• Offline confirmation of SVT tracks requirements.
• $1010 < M(\phi) < 1035$ MeV/c2.
• Projected flight distance $L_{xy}(D) > 500 \mu m$.
• + other cinematic cuts.

\[
M(Ds) - M(D^+) = 99.28 \pm 0.43\text{(stat)} \pm 0.27\text{(syst)} \text{ MeV/c}^2
\]
Cabibbo suppressed D decays:

After correction for relative acceptance of SVT trigger & reconstruction for the 3 decays

\[\frac{\Gamma(D \rightarrow KK)}{\Gamma(D \rightarrow K\pi)} = 11.17 \pm 0.48\text{(stat)} \pm 0.98\text{ (syst)} \% \]

\[\frac{\Gamma(D \rightarrow \pi\pi)}{\Gamma(D \rightarrow K\pi)} = 3.37 \pm 0.20\text{(stat)} \pm 0.16\text{(syst)} \% \]

Already competitive measurements in Charm with 9.6 pb\(^{-1}\) only

WORLD BEST MEASURES: CLEO2 (PDG 2002)

• \[\frac{\Gamma(D \rightarrow KK)}{\Gamma(D \rightarrow K\pi)} = 10.40 \pm 0.33 \pm 0.27 \% \]

• \[\frac{\Gamma(D \rightarrow \pi\pi)}{\Gamma(D \rightarrow K\pi)} = 3.51 \pm 0.16 \pm 0.17 \% \]

Huge sample of D→had’s expected \(\rightarrow \) D0 mixing & CPV in D decays
Firsts fully hadronic B signals in the SVT trigger:

- $B^\pm \rightarrow D_0^{\mp} \pi^\pm (D_0 \rightarrow K\pi)$
- $B_0 \rightarrow h^+h^- (\pi\pi \text{ inv.mass})$

$N_B = 56 \pm 12$

$N_B = 33 \pm 9$

Reconstructed from 10 pb$^{-1}$ out of SVT trigger data. (@ ICHEP 2002)

- Very good (better than expected) Signal/Noise (lowers the stat. needings)
 ⇒ Recent improvement: 50 % increase of SVT efficiency to hadronic decays of heavy mesons due to enlarged SVX coverage & optimization of SVT patterns.
CDF B-tagging capabilities

- **SLT** Soft Lepton Tagging based on lepton charge correlation with B flavour in semileptonic B decays.
- **JQT** Jet charge of opposite B tagging.
- **SST** *Same Side Tagging*, in hadronization of B_d/s meson a $d\bar{d}/s\bar{s}$ pair is produced giving a π/K associated to the B meson at production vertex.
- **OSK** *Opposite Side Kaon tagging*, due to $b\rightarrow c\rightarrow s$ it is more likely that a b quark will contain in final state a K^- than a K^+, this Kaon is associated to the opposite B decay vertex.

SST(kaon) & OSK are possible with PID from TOF

<table>
<thead>
<tr>
<th>Method</th>
<th>runI εD_2</th>
<th>runII εD_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLT</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>JQT</td>
<td>3.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>SST</td>
<td>1.0%</td>
<td>4.2%</td>
</tr>
<tr>
<td>OSK</td>
<td>---</td>
<td>2.4%</td>
</tr>
<tr>
<td>Total</td>
<td>5.7%</td>
<td>11.3%</td>
</tr>
</tbody>
</table>
Projections for Δm_s

...CDF toward new constraint of CKM triangle:

\[\Delta m_s = (N_{\text{nomix}} - N_{\text{mix}})/(N_{\text{nomix}} + N_{\text{mix}}) \propto D \cos \Delta m_s \]

where:

\[D = 2P_{\text{tag}} - 1 \; ; \; \Delta m_s = m(B_H) - m(B_L) \]

and

\[x_s = \Delta m_s / \Gamma_s \]

Significance(Δm_s) \propto \sqrt{N \epsilon D^2} \exp[\Delta m_s \sigma_{t}]^2

Latest LEP limit: $\Delta m_s < 14.4$ ps$^{-1}$ at 95% CL

Standard Model expectation: $\Delta m_s < 24.6$ ps$^{-1}$ at 95% CL ⇒

CDF will be able to cover SM allowed range in a fraction of runIIa Luminosity.

S. De Cecco - HCP 2002, Karlsruhe, 2 October '02
CDF B physics program:

(only some hints)

• **sin(2β)** from \(B_d \to J/\psi \, K_s \), improve the runI measure, benchmark for CDF B tagging capabilities.

• \(A_{cp}(B_d \to \pi\pi; \; B_d \to K\pi; \; B_s \to KK; \; B_s \to K\pi) \); special SVT trigger path optimized for \(B \to \pi\pi \).

• **CP asymmetries** in other relevant \(B_d, B_u, B_s \) and \(\Lambda_b \) decays.

• **Lifetimes** of \(B_s \) and \(\Lambda_b \).

• **sin(γ)** measurement in \(B_s \to D_s K \) (after \(\Delta m_s \) measure) and in \(B_u \to D_0(D^*)K \).

• Study of \(B_c \) and **rare B decays** as \(B \to \mu\mu; \; B \to K(K^*)\mu\mu \) ...

 … and much more to come …
Perspectives for Charm physics:

• At present (8/2002) working conditions we will collect ≅ \(750 \text{K } D_0 \rightarrow K\pi \) and ≅ \(250 \text{K } D^* \rightarrow \pi D_0 \ (D_0 \rightarrow K\pi) / 100 \text{ pb}^{-1} \). [Babar & Belle ~600K D*/exp. in 200fb-1]

• This a sector in which CDF is already an HIGH STATISTICS experiment: in few hundreds of pb-1 we will be competitive on relevant measurements like CP asymmetries in \(D_0 \rightarrow KK, \pi\pi \) (with D*tag) as well as D0 mixing (via \(\Delta \Gamma \)).

• The CDF experiment has started a program to look for rare and forbidden Charm decays, start to be competitive with 100 pb-1.

• Charm production cross section measurement based on the huge amount of charmed mesons in the SVT trigger, will be for the first time measured at proton-antiproton by CDF.

• These Charm measurements are also excellent to test with a high statistic sample most of the ingredients in B-physics analysis like lifetime resolution, vertexing capabilities, trigger efficiency and PID methods for tagging.

Ex.: \(D_0 \rightarrow hh \) from SVT has almost the same cinematic as \(B \rightarrow hh \) and will be the control sample for dE/dx separation power between \(B_d \) and \(B_u \).
Backup slides
Realistic Simulation of SVT

Effects simulated:
- Geometry in Geant shifted from nominal using actual alignment tables (impact on efficiency)
- Beam offset similar to what we have in data (impact on efficiency)
- Emulation of real XFT and SVT algorithm using constants from database (patterns and fit constants)
- Dead channel list from database

• Tested with a sample composed of:
 – 80% prompt J/ψ from FakeEvent with a realistic spectrum
 – 20% of B ± →J/ψK ± from BGEN
 – no muon trigger simulation yet
Simulation of SVT tracking efficiency

• SVT tracking efficiency is defined as the probability to match in ϕ and curvature an SVT track to an offline track that has ≥ 4 silicon hits in the layer required by SVT in each wedge

• Pt dependence of efficiency comes from pattern acceptance

• Impact parameter efficiency curve from svtsim matches within statistics
Recent SVT efficiency improvement