Search for Additional Decay Modes of and Partners to the $D_{sJ}^{*}(2317)^+$

- CDF Search Strategy
- Reconstructed Charm Samples
- Benchmark D^{**} Modes
- Search Modes
- Conclusions

M. Shapiro, U.C. Berkeley/LBNL, for the CDF Collaboration
CDF Search Strategy:

- Discovery of $D_{sJ}^*(2317)^+$ by Babar sparked a flurry of theory papers
- While Cleo’s discovery of $D_{sJ}^*(2463)^+$ favors a conventional interpretation of the states, it is important to fully explore all possibilities

 → Can CDF make a contribution to the study of D_{sJ} states?

- CDF EM Calorimeter not appropriate for searches involving π^0
- Concentrate on all-charged modes:
 - $D_{sJ} \rightarrow D_s \pi^+ \pi^-$
 - $J^P = 0^+$ assignment forbids this mode for $D_{sJ}^*(2317)^+$
 - $J^P = 1^+$ assignment permits this mode for $D_{sJ}^*(2463)^+$, but no evidence of this mode from Cleo
 - $D_{sJ} \rightarrow D_s \pi^\pm$
 - Would imply isovector assignment for D_{sJ}
 - Four quark or DK molecule interpretations possible
Estimating CDF’s Sensitivity

- No prediction exists for D_{sJ} production cross section
- CDF not sensitive to $D_s \pi^0$ mode
- Can infer sensitivity to search modes by studying well known $D^{**} \rightarrow D \pi$ modes
 - Provides demonstration of CDF’s reconstruction capabilities
 - Provides estimate of $D^{**} : D$ relative production rates in hadron collisions
- D^{**} yields, together with relative $D_s : D$ rates allow approximate estimate of sensitivity
- Alternate normalization using $D^{**} \rightarrow DK$ in progress
Charm Reconstruction at CDF

- *D* Events collected using CDF Silicon Vertex Trigger
- $735K \ D^0 \rightarrow K\pi$, $572K \ D^+ \rightarrow K\pi\pi$ with good mass resolution and good S:B
- $\sim 88\%$ direct charm, remainder from B decays
\[D_s \rightarrow D_s\pi \]

CDF Run II Preliminary

- Signal Window: 24600 \(D_s^+ \)s
- RMS: 7.6 MeV/c^2

\(\pm 19 \) ~80 pb^{-1}

- Use \(|\cos \theta_{helicity}| > 0.4 \) to improve S:B
- 24,600 \(D_s \rightarrow \phi\pi \) remain
- About \(\frac{1}{3} \) size of Babar \(D_s \) sample
 - Adequate sample size for meaningful search
- ~77\% direct charm, remainder from \(B \) decays
$D\pi$ Reconstruction

- No attempt to remove $B \rightarrow DX$ component
- Vertex constrain D track combination
- Mass constrain D candidate tracks
- Procedure gives slightly better resolution than plotting ΔM
- But no qualitative change over using ΔM
Benchmark I: $D_2^{*0} \rightarrow D^+\pi$

- 9100 \pm 300 D_2^{*0} events
- Reflections from D_1^0 and D_2^{*0} with lost π^0
- No Structure in $D^+\pi^+$
Benchmark II: $D^*_2 \rightarrow D^0 \pi^+$

- Dominant Structure: D^{*+} (see inset)
- 5400 ± 400 D^*_2 events
- Reflections from D^+_1 and D^+_2 with lost π^0
- Some Reflection Structure in $D^0 \pi^-$

CDF Run II Preliminary

5400 ± 400 D^*_2 Candidates
Mass: 2463.6 ± 2.7(stat) MeV/c2

2282.5 ± 4.1(stat) MeV/c2
2318.9 ± 11.1(stat) MeV/c2

CDF-FPCP/M, Shapiro/June 2003/8
Search Mode I: $D_s \pi \pi$ Mass Distribution

- No Evidence of Resonant Structure at either 2317 or 2463
 - Consistent with Cleo Search
- No Structure in $D_s^+ \pi^+ \pi^+$ and $D_s^+ \pi^- \pi^-$
Search Mode II: $D_s\pi$ Mass Distribution

CDF Run II Preliminary

- No Evidence of Resonant Structure
- First Search in this Mode

Absence of $D_s\pi$ mode → isovector and four-quark interpretations of $D_{sJ}^*(2317)^+$ disfavored
Conclusions

- CDF has searched for the decays $D_{sJ} \rightarrow D_s \pi^+ \pi^-$ and $D_{sJ} \rightarrow D_s \pi^\pm$
- Sensitivity is estimated using benchmark D^{**} modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th># D Candidates</th>
<th># D^{**} Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{2}^{*0} \rightarrow D^+ \pi^-$</td>
<td>735K</td>
<td>9.1K</td>
</tr>
<tr>
<td>$D_{2}^{*+} \rightarrow D^0 \pi^+$</td>
<td>572K</td>
<td>5.4K</td>
</tr>
</tbody>
</table>

- In sample of 24.6K D_s Candidates, no evidence for D_{sJ} states is seen
 - $D_{sJ} \rightarrow D_s \pi^+ \pi^-$ results consistent with Cleo
 - This is first $D_{sJ} \rightarrow D_s \pi^\pm$ search presented

- Work continuing on quantifying limits using $D_s^{**} \rightarrow DK$ for normalization