Top Physics at the Tevatron

David Gerdes
University of Michigan

representing the CDF and DØ Collaborations

IIInd International Conference on Flavor Physics (ICFP2003)
KIAS, Seoul
October 9, 2003
Motivations for Studying Top

- Only known fermion with a mass at the natural electroweak scale
 - Special role in precision electroweak physics
 - Window into the problem of EWSB?
- New physics may appear in production (e.g. topcolor) or in decay (e.g. charged Higgs).
- Can only be studied at Tevatron prior to LHC.
A Brief History of Top

- Observed in 1995 in first ~ 70 pb$^{-1}$ of Run I data.
- Final Run I top analyses based on ~ 110 pb$^{-1}$.
 - Production cross sections in many channels
 - Mass: 174.3 ± 5.1 GeV (CDF/DØ combined)
 - Event kinematics
 - W helicity measurement
 - Limits on single top production, rare/non-SM decays
- Overall consistency with the Standard Model.
- But only ~ 100 analyzable top events
 \rightarrow analyses statistics-limited.
Improvements for Run II

- **Accelerator**
 - Energy upgrade: $1.8 \rightarrow 1.96 \text{ TeV}$
 - 30-40% increase in top cross section
 - Luminosity upgrades: factor of ~2-3 so far

- **Detectors**
 - **CDF**: new Si vertex detector, outer tracker, endplug calorimeter, extended muon coverage
 - **DØ**: magnetic tracking system (scint. fibers + silicon), preshower system, muon upgrades
 - **Both**: Upgraded DAQ/trigger systems to deal with change from 3.5\(\mu\)s to 396 ns bunch crossing interval.
Tevatron Peak Luminosity

Typical recent stores: $3-4 \times 10^{31}$

Run IIa goal: 8×10^{31}
Integrated Luminosity

Results from first \(\sim 100 \text{ pb}^{-1} \) presented today.

Goal for 2004: additional 310-380 \(\text{pb}^{-1} \) delivered.

delivered ~325 \(\text{pb}^{-1} \)
on tape ~270 \(\text{pb}^{-1} \)

Taking data with \(\sim 90\% \) efficiency.
Production and Decay Basics

Pair Production:

85%

15%

NB: qq, gg fractions reversed at LHC

Event topology determined by the decay modes of the W's

$\sigma_{\text{theory}} \approx 7 \text{ pb}$

$\text{BR}(t \rightarrow Wb) \approx 100\%$

b-jet: identify via secondary vertex or soft lepton tag
\textbf{t-tbar Final States}

- Dilepton (ee, \(\mu\mu, e\mu\))
 - BR = 5\%
 - 2 high-\(P_T\) leptons + 2 b-jets + missing-\(E_T\)

- Lepton (e or \(\mu\)) + jets
 - BR = 30\%
 - single lepton + 4 jets (2 from b’s) + missing-\(E_T\)

- All-hadronic
 - BR = 44\%
 - six jets, no missing-\(E_T\)

- \(\tau\text{had} + X\)
 - BR = 23\%

Most favorable channels for top physics:
- e-e (1/81)
- mu-mu (1/81)
- tau-tau (1/81)
- e-mu (2/81)
- e-tau (2/81)
- mu-tau (2/81)
- e+jets (12/81)
- mu+jets (12/81)
- tau+jets (12/81)
- jets (36/81)

More challenging backgrounds, but measurements still possible.
Measuring the $t\bar{t}$bar Cross Section

- Basic engineering number, starting point for all top physics.
- Requires detailed understanding of backgrounds and selection efficiencies.
- Test of QCD
 - Latest calculations: NNLO + NNNLL
 - Departures from prediction could indicate nonstandard production mechanisms, i.e. production through decays of SUSY states.
Dilepton Cross Sections: DØ

Results from first 90 - 110 pb\(^{-1}\)

- \textit{ee channel}
 - Observe 2 events, bkgd. 0.6 ± 0.5
- \textit{\(\mu\mu\) channel}
 - Observe 0 events, bkgd. 0.7 ± 0.4
- \textit{e\(\mu\) channel}
 - Observe 3 events, bkgd. 0.4 ± 0.4)

\[
\sigma_{tt} = 8.7^{+6.4}_{-4.7} \text{(stat)}^{+2.7}_{-2.0} \text{(syst)} \pm 0.9 \text{(lum) pb}
\]
Two complementary analyses (126 pb$^{-1}$)

- **Tight**: Two good-quality leptons + MET + 2 jets
 - 10 candidates (2 ee, 3 µµ, 5 eµ), bkgd. 2.9 ± 0.9
 - 6 events b-tagged (one double-tag); expect 4 top
 - $\sigma_{tt} = 7.6 \pm 3.4 \text{ (stat)} \pm 1.5 \text{ (sys)} \text{ pb}$

- **Loose**: Lepton + isolated track + MET + 2 jets
 - 13 candidates, bkgd. 5.1 ± 0.9
 - 5 events b-tagged (one double-tag); expect 4 top
 - $\sigma_{tt} = 7.3 \pm 3.4 \text{ (stat)} \pm 1.7 \text{ (sys)} \text{ pb}$
Jet Multiplicity in Dilepton Events

CDF Run II Preliminary

Event count per jet bin

entries/jet bin

0 10 20 30 40 50 60

n_{jet}

WW+WZ+ZZ
+ Drell-Yan
+ fakes
+ tt

126 pb^{-1}

ttbar signal bin
Double b-tagged Lep+Trk event at CDF

CDF II Preliminary Secondary Vertex

Jet2 63.2 GeV $L_{xy} = 13 \text{ mm}$
Jet1 69.7 GeV $L_{xy} = 16 \text{ mm}$

E_T γ 87 GeV

I.P.

t_l 25.9 GeV

μ TCL 34.7 GeV

$E_T = 38.66 \text{ GeV}$
Dilepton Kinematics

CDF Run II Preliminary $\int L \, dt = 126 \text{ pb}^{-1}$

Scalar summed E_T of jets, leptons, and missing E_T

ICFP2003, Seoul
October 9, 2003
Dilepton Kinematics, contd.

Lepton P_T softer than expected. Statistical fluctuation or a hint of something new?
Lepton + Jets Cross Section: DØ

Using topological cuts

Backgrounds from QCD estimated from data as fcn. of MET, Njets.

Backgrounds from W+jets estimated using Berends scaling hypothesis, \(\sigma(W+n+1 \text{ jets})/\sigma(W+n \text{ jets}) = \text{constant} \).

After aplanarity, \(H_T, Njet \geq 4 \) cuts:

Observe 26 events, bkgd. 18.5 ± 2.5.

Using soft muon b-tag

Orthogonal selection to topological analysis.

QCD and W+jets backgrounds estimated as in topological analysis.

Fake tag rate estimated using jet data.

Observe 15 events, bkgd. 3.3 ± 1.3.
Lepton + Jets Kinematics

DØ Run II Preliminary

$\sigma_{tt} = 8.0^{+2.4}_{-2.1} (\text{stat})^{+1.7}_{-1.5} (\text{syst}) \pm 0.8(\text{lum}) \text{pb}$

b-tagged events populate the top signal region

$e+jets \quad 92 \text{pb}^{-1}$

$\mu+jets \quad 94 \text{pb}^{-1}$

Sum-E_T of jets (GeV)

Aplanarity
Lepton + jets with Secondary Vertex B-Tag at DØ

Tag by reconstructing sec. vtx.:

Tag by counting displaced tracks:

\[\sigma_{tt}^{-} = 10.8^{+4.9}_{-4.0} \, (stat)^{+2.1}_{-2.0} \, (syst) \pm 1.1(lum) \, pb \]

\[\sigma_{tt}^{-} = 7.4^{+4.4}_{-3.6} \, (stat)^{+2.1}_{-1.8} \, (syst) \pm 0.7(lum) \, pb \]

45 pb\(^{-1}\)

ICFP2003, Seoul
October 9, 2003

David Gerdes
University of Michigan
µ+jets double tagged event at DØ
Jet Multiplicity in b-tagged events: CDF

CDF II preliminary

- mistags
- Wbb
- Wcc
- non-W
- Wc
- WW, WZ, Z → ττ
- Single top
- Total bkgd ± 1σ
- Data (107.9 pb$^{-1}$)

Number of tagged events vs Number of jets in W+jets:

- Top signal region
Jet Multiplicity (with top contribution)

\[\sigma_{\ell+\text{jets}} = 4.5 \pm 1.4\text{(stat)} \pm 0.8\text{(syst)} \text{ pb} \]
L+jets: Tagged Jet E_T
Summary of Cross Section Results
Cross Section \sqrt{s}-Dependence

CDF and DØ Run II Preliminary

$\sigma (pb)$ vs $\sqrt{s} (GeV)$

Kidonakis NNLO-NNNLL+ (hep-ph/0303186)
Cacciari et al. (hep-ph/0303085)

CDF Run II (Dilepton), DØ Run II
CDF Run I, CDF Run II (l+jets), DØ Run I
M_{top} is a precision electroweak parameter that helps constrain the mass of the Higgs.
Top Mass in Run II (CDF)

• Lepton + 4 jets with sec. vertex b-tag
 - Many kinematic constraints: 4C fit
 - 12 parton/jet matching assignments possible; pick combination with lowest χ^2.
 - Fit resulting to mass distribution to background + signal templates.

• Dilepton channel
 - Underconstrained system
 - Use $P_{tt\bar{t},z}$ to weight the mass fit distribution
 - Likelihood fit to top mass templates.
Run II Top Mass: lepton + jets

CDF Run II Preliminary (~ 108 pb$^{-1}$)

$M_{\text{top}} = 177.5 \pm 12.7 / -9.4$ (stat.) ± 7.1 (syst)

Events/(15 GeV/c2)

Data (22 evts)
Signal + Bkgd
Bkgd only

Reconstructed Top Mass, Tagged Events (GeV/c2)
Run II Top Mass: Dilepton Channel

6 events

124 pb$^{-1}$

$175.0^{+17.4}_{-16.9}$ (stat) ± 7.9 (syst) GeV/c2
New Run I Mass Measurement (DØ)

- The template method has some disadvantages:
 - One combination chosen for fit
 - Single template describes the distribution
 - All events treated with equal weight
- New analysis makes better use of available information
 - All measured quantities used in fit (except unclustered energy)
 - Each event has its own probability distribution
 - Well-measured events contribute more
Matrix Element Method

\[d^n \sigma = \frac{1}{\sigma} \int d^n \sigma(y; \alpha) dq_1 dq_2 f(q_1) f(q_2) W(x, y) \]

\[P(x; \alpha) = c_1 P_{\text{ttbar}}(x; \alpha) + c_2 P_{\text{background}}(x) \]

- Leading-Order ttbar->lepton+jets matrix element, PDFs
- 12 jet permutations, all values of \(P(\nu) \)
- Phase space of 6-object final state
- Detector resolutions
 - Convolute probability to include all conditions for accepting or rejecting an event
 \[P_{\text{measured}}(x; \alpha) = Acc(x) P(x; \alpha) \]
 - Form a Likelihood as a function of: Top Mass, \(F_0 \) (longitudinal fraction of W bosons)

\(W(y, x) \) is the probability that a parton level set of variables \(y \) will be measured as a set of variables \(x \)

\(f(q) \) is the probability distribution than a parton will have a momentum \(q \)
Error Comparable to Previous Run I Measurements Combined

$M_{\text{top}} = 180.1 \pm 3.6 \text{ (stat)} \pm 4.0 \text{ (syst)} \text{ GeV}/c^2$

Previous DØ result using template method had stat. uncertainty of 5.6 GeV. New method is equivalent to 2.4 times more data!
W Helicity Measurement

• Top decays before it can hadronize, because width $\Gamma_t = 1.4 \text{ GeV} > \Lambda_{\text{QCD}}$.
 - Decay products preserve information about the underlying Lagrangian.
 - Unique opportunity to study the weak interactions of a bare quark, with a mass at the natural electroweak scale!

• SM Prediction:
 - W helicity in top decays is fixed by M_{top}, M_W, and V-A structure of the tWb vertex.
W Helicity Measurement, contd.

The angular dependence of the semileptonic decay in the W rest frame is given by

\[w(\cos \varphi_{l^-b}) = F_- \cdot \frac{3}{8} (1 - \cos \varphi_{l^-b})^2 + F_0 \cdot \frac{3}{8} (1 - \cos^2 \varphi_{l^-b}) + F_+ \cdot \frac{3}{8} (1 + \cos \varphi_{l^-b})^2 \]

The angular dependence is shown in the diagrams for different decay modes:
- **left**:
 \[w(\cos \varphi) \]
- **long.**:
 \[w(\cos \varphi) \]
- **right**:
 \[w(\cos \varphi) \]

SM predictions (for \(m_b = 0 \)):

\[F_- = \frac{2\omega}{1 + 2\omega} \approx 0.3 \]
\[F_0 = \frac{1}{1 + 2\omega} \approx 0.7 \]
\[F_+ = 0 \]

where \(\omega = \frac{M_W^2}{M_{\text{top}}^2} \)

parameter to measure
W Helicity Results

New DØ Run I measurement:

- Natural extention of the ME method developed for top mass measurement.
- Extend the ME to include generalized dependence on F_0.
 \[F_0 = 0.56 \pm 0.31 \text{(stat)} \pm 0.04 \text{(syst)} \]
- Application to Run II data is in progress.
Helicity affects lepton P_T in lab frame

See general agreement with SM, but limited statistics. Analysis in progress.

David Gerdes
University of Michigan
Model independent search for a narrow resonance $X \rightarrow tt$
exclude a narrow, leptophobic X boson with $m_X < 560 \text{ GeV/c}^2$ (CDF)
and $m_X < 585 \text{ GeV/c}^2$ (D0)
Tevatron Luminosity Projections

<table>
<thead>
<tr>
<th></th>
<th>Design Projection</th>
<th>Base Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per year</td>
<td>Accumulated</td>
</tr>
<tr>
<td>FY03</td>
<td>0.22</td>
<td>0.30</td>
</tr>
<tr>
<td>FY04</td>
<td>0.38</td>
<td>0.68</td>
</tr>
<tr>
<td>FY05</td>
<td>0.67</td>
<td>1.36</td>
</tr>
<tr>
<td>FY06</td>
<td>0.89</td>
<td>2.24</td>
</tr>
<tr>
<td>FY07</td>
<td>1.53</td>
<td>3.78</td>
</tr>
<tr>
<td>FY08</td>
<td>2.37</td>
<td>6.15</td>
</tr>
<tr>
<td>FY09</td>
<td>2.42</td>
<td>8.57</td>
</tr>
</tbody>
</table>

With recycler and electron cooling
Conclusions and Outlook

• The top quark is back!
• First Run II measurements of cross section, mass are available and will improve rapidly.
• Other analyses (W helicity, single top...) are making excellent progress.
• It is the start of a program of precision top physics—and hopefully top surprises—at the Tevatron.
• We still expect at least 50x more data compared to Run I!
The Road Ahead

• Search for $\text{top} \rightarrow H^+$
• Study of τ channels - pure 3^{rd} generation decay mode.
• Single top production, measure V_{tb}
• $ttbar$ resonant production, strong EWSB
• Searches for rare decays
• Is top *the connection* to new physics?
Top Mass Uncertainties, lepton + jets

CDF Run II Preliminary

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>+12.7 -9.4</td>
</tr>
<tr>
<td>Jet scale</td>
<td>6.2</td>
</tr>
<tr>
<td>FSR</td>
<td>2.2</td>
</tr>
<tr>
<td>PDFs</td>
<td>2.0</td>
</tr>
<tr>
<td>ISR</td>
<td>1.3</td>
</tr>
<tr>
<td>Other MC modeling</td>
<td>1.0</td>
</tr>
<tr>
<td>Generator</td>
<td>0.6</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>0.5</td>
</tr>
<tr>
<td>b-tagging</td>
<td>0.1</td>
</tr>
<tr>
<td>Total systematic</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Dominated by calorimeter energy scale in simulation; will improve soon.