B Physics at the Tevatron

- Introduction
- Startup of Run II
- B Hadron Producers
- B Physics at the Tevatron
- Selected Run II Results from CDF & D0
- Conclusion
A Brief History of Time

First fully reconstructed B mesons at a hadron collider:

\(B^+ \rightarrow J/\psi K^+ \)

CDF 1992 (2.6 pb\(^{-1}\))
PRL 68, 3403 (1992)

Nowadays

Fully hadronic B decay
Fermilab

Some more history:
1967: Fermilab founded
1978: Laboratory decision to build pp= collider
1985: First collisions in Tevatron
Run I: 1992-1996 data taking period
Run II: Started March 01 after major upgrades of CDF & D0

The Fermilab site
The Upgraded Tevatron

\[E_{\text{CMS}} = 1.96 \text{ TeV} \quad (\text{was } 1.8 \text{ TeV}) \]

Main Injector (150 GeV proton storage ring) replaces Main Ring

Luminosity goal: \(1-2 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}\) (x10 - Run I)

Bunch crossing time: 396 ns (x10 - Run I)

(132 ns upgrade indefinitely postponed)

36x36 bunch operation (was 6x6)

Presently: \(\sim 1-2\) interaction/bunch crossing (expect up to 10 in future)

Interaction region:

\(\sim 30 \ \mu\text{m}\) transverse size

\(\sim 30 \text{ cm}\) long,

Run II started March 2001
The Startup of Run II

Tevatron operations:

Delivered so far: \(~270\, {pb}^{-1}\)
Recorded to tape: \(~210\, {pb}^{-1}\)
Usable for analyses: \(~140\, {pb}^{-1}\) (most results shown use \(~70\, {pb}^{-1}\))
Data taking efficiency: \(~80-95\%\)

Initial luminosities:
Peak so far: \(4.7 \times 10^{31} \, {cm}^{-2}\, {s}^{-1}\)

Delivered To tape

Still factor 2 below nominal
The Startup of Run II

The Upgraded CDF Detector:

- **Tracking upgrade:**
 - Silicon:
 - Beampipe layer + 5 layers + 2/1 outer (forward) layers (radial 1.5 - 28 cm)
 - Full coverage of luminous region; Si tracking up to \(|\eta| < 2\)
 - Central Outer Tracker:
 - 30,200 sense wires (44 - 132 cm)
 - 96 dE/dx samples

- **New endplug calorimeter**

- **Improved muon coverage**

- **Trigger/DAQ upgrade**
 - Fully pipelined
 - All digital (132 ns)
 - Silicon trigger at L2

- **New frontend electronics**

- **Time-of-flight system**
The CDF Experiment
What’s new at D0:

- **New detector elements:**
 - solenoid,
 - silicon tracker,
 - fiber tracker
 - new preshower detector

- **Improved muon system**
- **Enhanced trigger system**
- **Extra shielding around beamlines**
Overview of B Hadron Producers:

\[\Upsilon(4S): \ e^+ e^- \rightarrow \Upsilon(4S) \rightarrow B \bar{B} \]

ARGUS:

The Players:
ARGUS & CLEO (Pioneers)
BaBar & Belle (B Factories)
B Hadron Producers

Z^0: $e^+ e^- \rightarrow Z^0 \rightarrow b\bar{b}$

The Players:
ALEPH, DELPHI, L3, OPAL, SLD
B Hadron Producers

Tevatron: $p\bar{p} \rightarrow b\bar{b}X$

- Lowest order $\mathcal{O}(\alpha_s^2)$ diagrams for $b\bar{b}$ production
 - (a)-(c) gluon-gluon fusion
 - (d) quark-antiquark annihilation

CDF:

The Players:
CDF & D0

Other B producers: Hera-B, FNAL fixed target

The Future: Atlas, CMS, LHCb, BTeV
Why do we have so many (✈😢♂♂♀♩♫) B factories these days?
Why the (✈️😃♂️🚀✨💥) do we want to do B physics at Fermilab?
B Physics at the Tevatron

- Advantages of B Physics at the Tevatron:
 - All B hadrons are produced: $B^0, B^+, B_S^0, B_c^+, \Lambda_b^0$
 - Enormous cross section
 * at $\Upsilon(4S)$: $\sigma(B\bar{B}) \approx 1 \text{ nb}$
 * at Tevatron: $\sigma(p\bar{p} \to b\bar{b}) \approx 50 \mu\text{b}$
 - $\approx 5 \cdot 10^9 b\bar{b}$ pairs produced in Run I during 1992-96

- Compare yield of B mesons:

 CLEO: $\mathcal{L} = 3100 \text{ pb}^{-1}$

 $N(B^+ \to J/\psi K^+) = 198 \pm 15$

 CDF: $\mathcal{L} = 110 \text{ pb}^{-1}$

 $N(B^+ \to J/\psi K^+) = 998 \pm 51$
B Physics at the Tevatron

Comparison with charm production

![Graph showing total inelastic cross section](image)

- **Total inelastic cross section:**
 \(\sigma(\text{total}) / \sigma(b) \approx 1000 \)

→ **It's all about the trigger!**

CDF's 3-level trigger system:

- **Level 1 Trigger**
 - 7.6 MHz Crossing Rate
 - 132 ns Clock Cycle
 - L1 Storage Pipeline:
 - 42 Clock Cycles Deep
 - L1 Accept

- **Level 2 Trigger**
 - 7.6 MHz Synchronous Pipeline
 - 5544 ns = 42 x 132 ns
 - Latency < 50 kHz
 - Accept Rate
 - Asynchronous 2-stage Pipeline
 - \(\sim 20 \mu s = 1/50 \text{ kHz} \)
 - Latency 300 Hz
 - Accept Rate
 - L1+L2 Rejection factor: 25,000

- **Level 3 System**
 - DAQ Buffers / Event Builder
 - Accept rate < 75 Hz
 - Rejection factor: > 4

Manfred Paulini - Physics at LHC, Prague, 11 July 2003
B Trigger at CDF

- **Run I:** B trigger based on leptons
 - Dilepton trigger: J/ψ, mixing
 - Single lepton: semileptonic B decays
- **Run II:** Hadronic track trigger
 (exploit 'long' B lifetime)

Example: Run I single electron trigger

- **Level 1:** Fast track trigger (XFT) finds charged track with $p_T > 1.5$ GeV/
- **Level 2:** Link tracks into silicon; require track impact parameter $> 100 \, \mu$m (SVT)

Access to hadronic B decays

\Rightarrow B physics program fully competitive with B factories

SVT impact parameter resolution:

- $\sigma = 47 \, \mu$m
- Includes $33 \, \mu$m beamspot

Manfred Paulini - Physics at LHC, Prague, 11 July 2003
Trigger at D0

- **Run II**: B trigger
 - Dilepton trigger: J/ψ, mixing
 - Single lepton: semileptonic B decays
 - Commissioning of new hadronic track trigger
 (note, no pipeline)
- **Current trigger rates:**
 - L1 rate: 1 kHz
 - L2 rate: 600 Hz
 - L3 rate: 50 Hz
- **Data taking efficiency:**
 ~85% overall
B Physics in Run I

Successful B physics program at Tevatron in Run I:

- **B lifetimes**
 - $\tau(B^0)$: 1.51 ± 0.05 ps
 - $\tau(B^+)$: 1.66 ± 0.05 ps
 - $\tau(B^0_s)$: 1.36 ± 0.10 ps
 - $\tau(\Lambda_b)$: 1.32 ± 0.17 ps
 - $\tau(B_c)$: 0.46 ± 0.17 ps
 - Inc. $\tau(b)$: 1.53 ± 0.04 ps
 - $\tau(B^+)/(\tau(B^0))$: 1.09 ± 0.05

- **B mixing**
 - D^0/lep, Δm_d Results:
 - D^0/lep: $0.516 \pm 0.099 + 0.028 - 0.035$ ps$^{-1}$
 - e/μ: $0.562 \pm 0.068 + 0.041 - 0.050$ ps$^{-1}$
 - μ/μ: $0.450 \pm 0.045 \pm 0.051$ ps$^{-1}$
 - Average: $0.489 \pm 0.025 \pm 0.024$ ps$^{-1}$

- **B Cross Sections**
 - $\sigma(pp\rightarrow bX, \sqrt{s}=1.8$ TeV, $|y|<1$

- **Discovery of B_c meson**

- **Evidence for $\sin2\beta \neq 0$**
Selected Run II Results

Average B Lifetime:

$J/\psi \rightarrow \mu \mu$ signal: $\sim 75,000$ events (40 pb$^{-1}$)

Average B lifetime from $B \rightarrow J/\psi X$:

$\tau(b) = (1.561 \pm 0.024 \pm 0.074)$ ps

$\lambda_B = 468 \pm 7\text{(stat)} \pm 22\text{(syst)}$ μm
Selected Run II Results

Exclusive B Decays:

(a) $B^+ \rightarrow J/\psi \ K^+$ (N=500)
(b) $B^0 \rightarrow J/\psi \ K_S$ (N=65)
(c) $B^0 \rightarrow J/\psi \ K^*$ (N=190)
(d) $B_S \rightarrow J/\psi \ \phi$ (N=62)
\[\tau(B^+) = (1.76 \pm 0.24) \text{ ps (stat.)} \]

\[\Lambda_b \rightarrow J/\psi \Lambda \]

\[\text{DØ Run II Preliminary} \]
\[\#\text{Sig.} = 40.7 \pm 10.7 \]
\[M = 5604 \pm 18 \text{ MeV} \]
\[\sigma = 63 \pm 18 \text{ MeV} \]
Where does charm come from?
- Prompt charm: $d_0 = 0$
- $B \rightarrow$ charm: $d_0 \neq 0$

Direct Production
- D points back to PV

Secondary Production
- D has finite impact parameter

CDF is collecting large amounts of direct charm!
Selected Run II Results

Direct charm cross sections:

\[\sigma(D^0, p_T > 5.5 \text{ GeV}) = (13.3 \pm 0.2 \pm 1.5) \mu\text{b} \]

\[\sigma(D^{*+}, p_T > 6.0 \text{ GeV}) = (5.2 \pm 0.1 \pm 0.8) \mu\text{b} \]

\[\sigma(D^+, p_T > 6.0 \text{ GeV}) = (4.3 \pm 0.1 \pm 0.7) \mu\text{b} \]

\[\sigma(D_S, p_T > 8.0 \text{ GeV}) = (0.75 \pm 0.05 \pm 0.22) \mu\text{b} \]
Selected Run II Results

J/ψ cross section:

Lower muon threshold of $p_T > 1.5$ GeV/c in Run II

$=>$ measure $J/ψ$

cross section
down to p_T of zero
at hadron collider

$$\sigma(p_T > 0.0 \text{ GeV, } |\eta|<0.6) = (240 \pm 1 \pm 35/28) \text{ nb}$$
Reconstruction of fully hadronic B decays:

Measurement of B branching ratios:
Compare search mode to kinematically similar mode:

\[
\frac{\sigma_b \cdot f_S \cdot BR(B_S^0 \rightarrow D_S^- \pi^+)}{\sigma_b \cdot f_d \cdot BR(B^0 \rightarrow D^- \pi^+)} = \frac{\epsilon_{B^0} \cdot N_{B^0} \cdot BR(D^- \rightarrow K^+ \pi^+ \pi^+)}{\epsilon_{B_S^0} \cdot N_{B_S^0} \cdot BR(D_S^- \rightarrow K^- K^+ \pi^+)}
\]

Advantage: Cancellation of
- σ_b
- systematics in trigger and reconstruction efficiency

Normalization mode: $B^0 \rightarrow D^- \pi^+$

Manfred Paulini - Physics at LHC, Prague, 11 July 2003
Reconstruction of hadronic B decays:

First observation of $B_S^0 \rightarrow D_S \pi^+$

$$\frac{f_s \times BR(B_s \rightarrow D_s \pi)}{f_d \times BR(B_d \rightarrow D \pi)} = 0.44 \pm 0.11(\text{stat}) \pm 0.11(\text{BR}) \pm 0.07(\text{syst})$$
Two-Body Charmless B decays:

- Use hadronic track trigger
- Find \(\sim 300 \) events in 65 pb\(^{-1}\)
- \(S : N = 2 : 1 \) (expected 1:1)
- Signal is mix of \(B^0 / B_S^0 \to \pi\pi, K\pi, KK \)
- Use dE/dx & kinematics to disentangle

\[
\text{BR}(B^0 \to \pi\pi) / \text{BR}(B^0 \to K\pi) = 0.26 \pm 0.11 \pm 0.055
\]

- Significant \(B_S^0 \to KK \) contribution: \(90 \pm 17 \pm 17 \) events
- Fraction of \(B^0 \to K\pi \): \(0.53 \pm 0.06 \)
 \(B^0 \to \pi\pi \): \(0.14 \pm 0.05 \)
 \(B_S^0 \to KK \): \(0.32 \pm 0.06 \)
 \(B_S^0 \to K\pi \): \(0.01 \pm 0.04 \)
Conclusions

- Tour of Fermilab, CDF and D0
- Start-up of Run II
- Tour of B producers
- How to do B Physics at a Hadron Collider => Trigger
- Some Run II Results from D0:
 - Exclusive B decays modes & Lifetimes
- Some Run II Results from CDF:
 - Charm & J/Psi cross sections
 - Reconstruction of hadronic B decay modes
 (CDF's hadronic track trigger working well)
- More to expect with more luminosity
 (see talk on Bs mixing prospects by Stephanie Menzemer)
Conclusions

- Tour of Fermilab, CDF and D0
- Start-up of Run II
- Tour of B producers
- How to do B Physics at a Hadron Collider => Trigger
- Some Run II Results from D0:
 - Exclusive B decays modes & Lifetimes
- Some Run II Results from CDF:
 - Charm & J/Psi cross sections
 - Reconstruction of hadronic B decay modes
 (CDF's hadronic track trigger working well)
- More to expect with more luminosity
 (see talk on Bs mixing prospects by Stephanie Menzemer)

"Anyone who keeps the ability to see beauty never grows old."
Franz Kafka
(born in Prague 1883)