Recent Results on Top and Electroweak Physics from CDF

Phillip Koehn
The Ohio State University
For the CDF Experiment
XXXVIIIth Rencontres de Moriond
ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES
March 21, 2003

• Performance of the Tevatron/CDF
• Electroweak Physics
 - W/Z production cross sections and Ratios
 - Forward-Backward Asymmetry
 - WW production
• Top Physics
 - Top production cross sections
 - Top mass
• Summary
Fermilab Tevatron

Operated with proton bunches on antiproton bunches at CM energy of 1.96 TeV

Chicago

Booster

CDF

DØ

Tevatron

Main Injector (new)

p source
Run 2 CDF Detector

Upgraded Components

- Tracking
 - Silicon
 - 707K channels
 - Full Coverage of luminous region
 - Radial coverage from 1.35-28 cm
 - Central Outer Tracker
 - 30k sense wires, 44-132 cm
 - 96 dE/dx samples/track

- Time of Flight
- Expanded Muon Coverage

- Endplug Calorimeter

- Trigger (pipelined)
 - Drift Chamber Tracks @ L1
 - Silicon Tracks @ L2

- Fully Digital DAQ (132 ns)
Run 2a goals:

16 pb\(^{-1}\)/wk
250 pb\(^{-1}\) by summer’03
2 fb\(^{-1}\) for Run 2a

~ 130 pb\(^{-1}\) on tape
~ 5-7 pb\(^{-1}\)/wk @ > 90% efficiency

Current Tevatron status

Run 2a goal is 5-8 \(10^{31}\)

March 21, 2003

Phillip Koehn, The Ohio State University / CDF
Overview of EWK

First priority is to reestablish baseline measurements:
- $W \rightarrow \ell \nu$, $Z \rightarrow \ell \ell$ Cross Sections
- Ratio of W/Z Cross Sections
- Forward/Backward Asymmetry

Goal is to improve our understanding of the Standard Model EWK parameters.

W Charge Asymmetry
- Constraints on PDFs

W Mass Measurement
- Dominated by Systematics

Diboson Production
- WW, WZ, $W\gamma$
- Triboson Couplings
 • Anomalous couplings may indicate New Physics
Event selection
One isolated high \(p_T\) central e
\(E_T > 25\) GeV

Number of Candidates: 38628 in 72 pb\(^{-1}\)
Background (~6.4%):
QCD: 1344 ± 82 ± 672
\(Z \to ee\): 344 ± 17
\(W \to \tau\nu\): 768 ± 22

\[\sigma \ast B(W \to ev) = 2.64 \pm 0.01_{\text{stat}} \pm 0.09_{\text{syst}} \pm 0.15_{\text{lum}} \text{ nb} \]

NNLO @ \(\sqrt{s}=1.96\) TeV: 2.69 ± 0.10 nb
\[\sigma_{W^*B} (W \rightarrow \mu \nu) \]

Event selection

- One isolated high \(p_T \) central \(\mu \)
- \(p_T > 20 \text{ GeV} \)
- Veto \(Z \) and Cosmics

Number of Candidates:

- 21599 in 72 pb\(^{-1}\)

Background (11%):

- QCD: \(222 \pm 58 \)
- cosmics: \(276 \pm 195 \)
- \(Z \rightarrow \mu \mu \): \(1147 \pm 44 \)
- \(W \rightarrow \tau \nu \): \(691 \pm 31 \)

\[\sigma_{W^*B} (W \rightarrow \mu \nu) = 2.64 \pm 0.02_{\text{stat}} \pm 0.12_{\text{syst}} \pm 0.16_{\text{lum}} \text{ nb} \]
\[\sigma_W^* B(W \to \tau \nu) \]

Event selection

- One isolated (cal+track)
- high \(E_T \) central \(\tau \)
- \(E_T > 25 \) GeV
- e removal

Candidates: 2345 in 72 \(\text{pb}^{-1} \)

Backgrounds (~ 26 %):

- QCD: \(363 \pm 52 \)
- \(W \to e\nu \): \(103 \pm 11 \)
- \(W \to \mu\nu \): \(91 \pm 27 \)
- Cosmics: \(35 \pm 13 \)
- \(Z \to \tau\tau \): \(20 \pm 2 \)

\[\sigma_W^* B(W \to \tau \nu) = 2.62 \pm 0.07_{\text{stat}} \pm 0.21_{\text{syst}} \pm 0.16_{\text{lum}} \text{ nb} \]
$\sigma Z^*B(Z\rightarrow ee)$

Luminosity: 72 pb^{-1}

Observed Events: 1830 Events

Background ($\sim 0.5\%$): $8.7 \pm 4.7_{\text{stat}} \pm 2.4_{\text{syst}}$

NNLO Prediction: $252 \pm 9 \text{ pb}$

$\sigma Z^*B(Z\rightarrow ee) = 267.0 \pm 6.3_{\text{stat}} \pm 15.2_{\text{syst}} \pm 16_{\text{lum}}\text{pb}$
\[\sigma_{Z} B(Z \rightarrow \mu \mu) \]

Luminosity: 72 pb\(^{-1}\)

Observed Events: 1632 Events

Background (\sim 0.8\%): 14 \pm 14

NNLO Prediction: 252 \pm 9 pb

CDF Run II Preliminary, 72pb \(^{-1}\)

\[\sigma_{Z} B(Z \rightarrow \mu \mu) = 246 \pm 6_{\text{stat}} \pm 12_{\text{syst}} \pm 15_{\text{lum}} \text{ pb} \]
Summary of W and Z Cross Sections

\[\sigma_W = 2.640 \pm 0.012_{\text{stat}} \pm 0.093_{\text{syst}} \pm 0.158_{\text{lum}} \text{ pb} \]

\[\sigma_Z = 251.5 \pm 4.3_{\text{stat}} \pm 10.6_{\text{syst}} \pm 15.1_{\text{lum}} \text{ pb} \]
SM Consistency Checks

\[R = \frac{\sigma(pp \to W) \Gamma(W \to e\nu) \Gamma(Z)}{\sigma(pp \to Z) \Gamma(W) \Gamma(Z \to e\nu)} \]

- **\(R_e \)**: 9.88 ± 0.24\text{stat} ± 0.47\text{sys}
- **\(R_\mu \)**: 10.69 ± 0.27\text{stat} ± 0.33\text{sys}
- **\(R_{\text{combined}} \)**: 10.54 ± 0.18\text{stat} ± 0.33\text{sys}
- **\(\Gamma(W)e \text{ [GeV]} \)**: 2.29 ± 0.06\text{stat} ± 0.10\text{sys}
- **\(\Gamma(W)\mu \text{ [GeV]} \)**: 2.11 ± 0.05\text{stat} ± 0.07\text{sys} ± 0.02\text{ext}
- **\(\Gamma(W)_{\text{comb.}} \text{ [GeV]} \)**: 2.146 ± 0.078

- \(R = 10.67 \pm 0.15 \) NNLO(1.96 TeV) [Nucl. Phys. B359,343 (1991)] [Phys. Rev. Lett. 88,201801 (2002)]
- \(\frac{\text{BR}(W \to \tau\nu)}{\text{BR}(W \to e\nu)} = 0.99 \pm 0.04\text{stat} ± 0.07\text{sys} \)
- \(\frac{g_\tau}{g_e} = 0.99\pm0.02_{\text{stat}}\pm0.04_{\text{sys}} \)
Forward Backward Asymmetry

\(A_{FB} \)

\[
\frac{d\sigma(q\bar{q} \rightarrow Z / \gamma \rightarrow e^+e^-)}{d \cos \theta} = A(1 + \cos^2 \theta) + B \cos \theta
\]

\[
A_{FB} = \frac{N_F - N_B}{N_F + N_B} = \frac{\sigma(\cos \theta > 0) - \sigma(\cos \theta < 0)}{\sigma(\cos \theta > 0) + \sigma(\cos \theta < 0)} = \frac{3B}{8A}
\]

- \(A_{FB} \) is a direct probe of the relative strengths of the vector and axial-vector couplings.
- \(A_{FB} \) modified by neutral gauge bosons beyond the SM.
- Extract \(\sin^2\theta_{\text{eff}} \) from \(A_{FB} \).

\(A, B \) depend on I, \(Q_q, (M_\gamma)^2 \)
WW pair production

<table>
<thead>
<tr>
<th>SM expectation:</th>
<th>2.74 ± 0.59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background:</td>
<td>1.52 ± 0.64</td>
</tr>
</tbody>
</table>

Extrapolation of Run I results

Theory: 1.8 TeV → ∼9.5 pb with 10% uncertainty

Theory: 1.96 TeV → 13.25 ± 0.25 pb (hep-ph/9905386)

Run I CDF experiment → 10.2 ± 6.3-5.1 (stat) ± 1.6(sys) pb

Run II Extrapolation: 10.2 * (13.25/9.5) = 14.2 pb
The Discovery of the top quark in 1995 was no big surprise. What was surprising is that its mass is almost 40 times that of the b quark, and tantalizingly close to the scale of EWSB.

The Fermilab Tevatron has been the only place, and will be until the LHC turns on in ~2008, to study the top quark.

Everything we know about top is based on about 100 events from the Tevatron Run 1 by the D0 and CDF collaborations.

With 30 times more top events, as expected in Run 2a, we hope to try and answer such questions as:

- Why is top so heavy?
- Is it or the third generation special?
- Is top involved with EWSB?
- Is it connected to new physics?
Production and Decay of the Top Quark

At the Tevatron, top quarks are primarily produced in pairs.

\[\tau_{\text{top}} \approx 4 \times 10^{-25} \text{ s} \]
\[\Lambda^{-1} \approx 10^{-23} \text{ s} \]
Top decays as free quark!
BR\((t \rightarrow Wb) \) @ 100%

3 classes of signal
Dilepton: 2 high-\(P_T \) leptons, 2 bjets, large Missing \(E_T \): BR 5%
Lepton + jets: 1 high-\(P_T \) lepton, 4 jets (2 b's), large \(E_T \): BR 30%
All-hadronic: 6 jets: BR 44%

Branching ratios for \(t\bar{t} \) decay modes

March 21, 2003 Phillip Koehn, The Ohio State University / CDF
Top production numbers

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM Energy (TeV)</td>
<td>1.8</td>
<td>1.96</td>
</tr>
<tr>
<td>L(cm$^{-2}$ s$^{-1}$)</td>
<td>2×10^{31}</td>
<td>2×10^{32}</td>
</tr>
<tr>
<td>L(fb$^{-1}$)</td>
<td>0.11</td>
<td>2.0</td>
</tr>
<tr>
<td>σ(tt) (pb)</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>σ(single top) (pb)</td>
<td>2.5</td>
<td>3.4</td>
</tr>
<tr>
<td>N(tt) produced</td>
<td>500</td>
<td>14000</td>
</tr>
<tr>
<td>N(singel t) produced</td>
<td>250</td>
<td>7000</td>
</tr>
<tr>
<td>N(tt\rightarrowdilepton)</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>N(tt\rightarrowl+3j) (1 tag)</td>
<td>25</td>
<td>1400</td>
</tr>
<tr>
<td>N(tt\rightarrowl+4j) (2 tags)</td>
<td>5</td>
<td>600</td>
</tr>
</tbody>
</table>
Top Properties

Production Cross Section
Resonance production?
Production kinematics

SM

New Physics?

W helicity
Top spin polarization
Top Mass

Production kinematics

Decay modes
Branching ratios
CKM matrix element |V_{tb}|

Rare decays
$t \rightarrow Z c / \gamma c$, $t \rightarrow W Z b$, ...

Non-SM decays
$t \rightarrow H^{±}$, $t \rightarrow \tilde{t}$, ...

March 21, 2003
Phillip Koehn, The Ohio State University / CDF
Top cross section

Measurement of the cross section is primarily a “counting experiment”

\[\sigma(t\bar{t}) = \frac{N_{\text{obs}} - N_{\text{bkg}}}{A \cdot \int L} \]

\[\sigma_{t\bar{t}}(\sqrt{s} = 1.96 \text{ TeV}) \approx 1.30 \times \sigma_{t\bar{t}}(\sqrt{s} = 1.8 \text{ TeV}) \]

Run 1 cross section results ~100 pb⁻¹

- DØ combined (m_t = 172 GeV/c²): 5.9±1.7 pb
- CDF combined (m_t = 175 GeV/c²): 6.5±1.7 pb
- CDF L+jets (topological): 4.1±2.1 pb
- DØ L+jets (topological): 5.1±1.5 pb
- CDF L+jets (SVX b-tag): 9.2±4.3 pb
- CDF L+jets (Soft Lepton Tag): 8.3±3.6 pb
- DØ L+jets (Soft Lepton Tag): 7.6±3.5 pb
- CDF Hadronic: 7.1±3.2 pb
- DØ Hadronic: 8.4±4.5 pb
- CDF Dilepton: 5.9±1.7 pb

March 21, 2003
Phillip Koehn, The Ohio State University / CDF
σ_{tt} dilepton cross section

- **Event selection**
 - 2 High P_T ($P_T > 20$ GeV) oppositely charged leptons (e,µ).
 - Both isolated: $I_{CAL} < 0.1$
 - Veto Z’s, cosmics, and conversions
 - Neutrinos: large missing $E_T > 25$ GeV
 - at least 2 jets with $E_T > 10$ GeV
 - Total transverse energy of the event > 200 GeV
- $\text{BR} \sim 5\%$, detection eff $\sim 11\%$, expect $S/B \sim 9$, $S \sim 2.5$
- 5 candidate events in 72 pb^{-1}
- Backgrounds from Drell Yan, $Z^0 \rightarrow \tau\tau$, WW : 0.30 ± 0.12

$$\sigma_{tt} = 13.2 \pm 5.9_{\text{stat}} \pm 1.5_{\text{syst}} \text{ pb}$$

NLO for $M_{\text{top}} = 175$ GeV: $6.70^{+0.71}_{-0.88}$ pb
σ_{tt} : lepton + jets

- **Event selection**
 - 1 High momentum, central, and isolated lepton
 - \(P_T > 20\) GeV/c, e or \(\mu\).
 - Veto Z’s, cosmics, and conversions
 - Neutrinos: large missing \(E_T > 20\) GeV
 - 3 or more jets with \(E_T > 15\) GeV
 - at least 1 jet with secondary vertex tag (SVX)

- 15 observed events in 57.5 pb\(^{-1}\)

- Backgrounds from \(Wbb, Wcc, \text{mistags}, Wc, \text{non-W}: 3.8 \pm 0.5\)

CDF II preliminary

\[\sigma_{tt} = 5.3 \pm 1.9_{\text{stat}} \pm 0.8_{\text{syst}} \text{ pb} \]

NLO for \(M_{\text{top}} = 175\) GeV: \(6.70^{+0.71}_{-0.88}\) pb
Top mass: lepton + jets

Select lepton + 4 jet events, similar to the $\sigma(tt)$ measurement, except no requirement on silicon.

METHOD

Use 2C constrained fitting technique with constraints $M_{l\nu} = M_W$, $M_{jj} = M_W$, $M_{t1} = M_{t2}$

24 combinations:

12 correspond to the jet parton match

every combination has 2 solutions for neutrino P_Z

Choose combination with lowest χ^2.

March 21, 2003 Phillip Koehn, The Ohio State University / CDF
Reconstructed top masses from data are compared to parameterized templates of top and background Monte Carlo.

CDF II Preliminary (72 pb^{-1})

Herwig 175 GeV/c^2

$\chi^2/\text{ndf}=1.12$

signal

Vecbos

$\chi^2/\text{ndf}=0.96$

background
Use a continuous likelihood method to extract top mass and statistical uncertainty.

\[M_{\text{top}} \] is the minimum of the log-likelihood distribution.

\[\sigma_{\text{top}} \] corresponds to a change of 0.5 units in the log-likelihood.

CDF II Preliminary (72 pb\(^{-1}\))

\[M_{\text{TOP}} = 171.2 \pm 13.4 \pm 9.9 \text{ GeV/c}^2 \]

CDF Run 1 combined 176.1 ± 6.5 GeV/c²
Summary

• Run 2a is well underway and we are in the process of reestablishing some basic physics measurements and getting a better understanding of the CDF detector
 - W/Z Cross Sections and Ratios
 - tt Cross Section
 - Top mass

• Some of the more complicated analyses will follow
 - W Mass

• With larger samples (later this year) we will be able to extend our Run I searches for extensions to the standard model
 - Diboson couplings
 - Top Properties

• By summer we hope to have ~200 pb\(^{-1}\).
• Goal for Run 2a is still 2000 pb\(^{-1}\)