Quarkonia Production with Leptons and Hadrons

Vaia Papadimitriou
(Texas Tech University)
XXIII Physics in Collision
Zeuthen, Germany
June 26-28, 2003

- Introduction
- **FNAL** - past, present, and future
 - Tevatron (Run I/Run II): \((J/\psi, \psi(2S), \chi_c, \Upsilon, \chi_b, \eta_b)\)
 - Fixed Target: \((\Upsilon\text{ polarization})\)
- **HERA** - past, present, and future
 - Inelastic production measurements \((J/\psi, \psi(2S))\)
 - Diffractive production measurements \((J/\psi)\)
 - Fixed Target: \((J/\psi, \psi (2S), \chi_c, \Upsilon)\)
- Conclusions

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Introduction

- **Tevatron (Run I 1992-96, $\int L\ dt = 20\ pb^{-1}\ (IA) + 90\ pb^{-1}\ (IB)$):**
 - $p \rightarrow \bar{p} p$ at $\sqrt{s} = 1.8\ TeV$
 - η, p_T, polarization
- **HERA ("Run I", $\int L\ dt = 100\ pb^{-1}$):**
 - $e^\pm\ (27.5\ GeV) \rightarrow p\ (820/920\ GeV)$ at $\sqrt{s} = 300/320\ GeV$
 - Q^2, W, z, p_T, t, ..., polarization
 - overconstrained kinematics
- **History**
 - Inelastic J/ψ production at HERA: a golden way to extract gluon density
 - Elastic/diffractive J/ψ production to measure luminosity
- **Variety of presumed production mechanisms:**
 - Diffractive/elastic
 - Gluon-gluon-fusion, photon-gluon-fusion
 - Gluon fragmentation
 - "Resolved photon"-gluon/quark-fusion
 - + decays
Publications (Most Recent Only)

<table>
<thead>
<tr>
<th>J/ψ and ψ(2S) cross section</th>
<th>CDF</th>
<th>(15 pb^{-1})</th>
<th>PRL 79 (1997) 572</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ cross section, χ_c → J/ψγ</td>
<td>D0</td>
<td>(7 pb^{-1})</td>
<td>PL B370 (1996) 239</td>
</tr>
<tr>
<td>χ_c → J/ψγ</td>
<td>CDF</td>
<td>(18 pb^{-1})</td>
<td>PRL 79 (1997) 578</td>
</tr>
<tr>
<td>χ_{c1}/χ_{c2}</td>
<td>CDF</td>
<td>(110 pb^{-1})</td>
<td>PRL 86 (2001) 4472</td>
</tr>
<tr>
<td>Polarization J/ψ, ψ(2S)</td>
<td>CDF</td>
<td>(110 pb^{-1})</td>
<td>PRL 85 (2000) 2886</td>
</tr>
<tr>
<td>"Forward" J/ψ</td>
<td>D0</td>
<td>(10 pb^{-1})</td>
<td>PRL 82 (1999) 35</td>
</tr>
<tr>
<td></td>
<td>CDF</td>
<td>(74 pb^{-1})</td>
<td>PRD 66 (2002) 092001</td>
</tr>
<tr>
<td>Diffractive J/ψ</td>
<td>CDF</td>
<td>(80 pb^{-1})</td>
<td>PRL 87 (2001) 251803</td>
</tr>
<tr>
<td>Polarization γ+pCu</td>
<td>E866</td>
<td>(2M dimuons)</td>
<td>PRL 86 (2001) 2529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J/ψ from χ_c (p-C, p-Ti)</th>
<th>HERA-B</th>
<th>PL B561 (2003) 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic/diffractive</td>
<td>J/ψ γp</td>
<td>H1 (78 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>J/ψ γp</td>
<td>ZEUS (50 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>J/ψ DIS</td>
<td>H1 (20 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>J/ψ DIS</td>
<td>ZEUS (6 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>J/ψ large</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ψ(2S) γp</td>
<td>H1 (77 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>ψ(2S) DIS</td>
<td>H1 (27 pb^{-1})</td>
</tr>
<tr>
<td>Inelastic</td>
<td>J/ψ γp</td>
<td>H1 (88 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>J/ψ DIS</td>
<td>H1 (77 pb^{-1})</td>
</tr>
<tr>
<td></td>
<td>J/ψ and ψ(2S) γp</td>
<td>ZEUS (38 pb^{-1})</td>
</tr>
</tbody>
</table>
Luminosity Delivered and Recorded - CDF

Physics quality data began March 2002
\(\sqrt{s} = 1.96 \, \text{TeV} \)
Delivered 225 pb-1
Recorded 180 pb-1
(80%)
83% since February

Summer Conference
140 pb-1 QCD
110-140 pb-1 EWK
100-110 pb-1 Top+
100-140 pb-1 Exotics
110 pb-1 Bottom

Since Feb 10 2003, silicon in 94% of time

Winter top analyses used 57 pb-1

Vaia Papadimitriou (Texas Tech University)

June 28, 2003
Direct $\psi(2S)$ Cross Section - CDF

- $\psi(2S) \rightarrow \mu\mu$, Run IA data, 18 pb$^{-1}$
- "Central muons" ($|\eta| < 0.6$)
- Lifetime information from SVX used to extract prompt component
- Prompt \equiv direct for $\psi(2S)$
- Colour singlet fusion: α_s^3/p_T^8
- CS fragmentation (Braaten, Yuan, PRL 71(1993) 1673): α_s^5/p_T^4

 $$g^* \rightarrow 2g + c\bar{c}(3S_1^{(1)}) \rightarrow \psi(2S)$$
- NRQCD expansion

 $$d\sigma(H) = \Sigma_n d\sigma[c\bar{c}(n)]\langle O^H(n) \rangle$$

- n includes colour singlet and octet states
- Expansion in α_s and v (relative velocity of quark and anti-quark)

- Colour octet fragmentation (Braaten, Fleming, PRL 74(1995) 3327): $\alpha_s^3v^4/p_T^4$

 $$g^* \rightarrow c\bar{c}(3S_1^{(8)}) \rightarrow \psi(2S)$$

- Fragmentation dominates at high p_T

Braaten, Fleming PRL 74(1995) 3327
CDF Data: PRL 79(1997) 572

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Prompt / Direct J/ψ Cross Section

Prompt J/ψ cross section includes:
- χ_c decays ($\chi_c \to J/ψγ$ measured)
- $ψ(2S)$ feed-down (measured)
- Direct J/ψ (64±6%)

CDF, PRL 79(1997) 572, 578
June 28, 2003
Direct J/ψ Cross Section

- Large uncertainties in the extracted matrix elements
 - low p_T: effects of gluon k_t
 - parton density functions

LO colour singlet:
$$g + \cdots \sim \alpha_s^3 \frac{(2m_c)^4}{p_t^8}$$

colour-singlet fragmentation: $g + g \rightarrow [c\bar{c}[^3S_1^{(1)}] + gg] + g$

$$+ \cdots \sim \alpha_s^5 \frac{1}{p_t^4}$$

colour-octet fragmentation: $g + g \rightarrow c\bar{c}[^3S_1^{(8)}] + g$

$$+ \cdots \sim \alpha_s^3 \frac{1}{p_t^4} \nu^4$$

colour-octet fusion: $g + g \rightarrow c\bar{c}[^1S_0^{(8)}, ^3F_J^{(8)}] + g$

$$+ \cdots \sim \alpha_s^3 \frac{(2m_c)^2}{p_t^8} \nu^4$$

Vaia Papadimitriou (Texas Tech University)

June 28, 2003
J/ψ Cross Section – Run II

CDF Run II Preliminary

- Data with stat. uncertainties
- Systematic uncertainties

Extends to $p_T=0$

$|\eta|<0.6$

\[\frac{d\sigma}{dp_T} \cdot BR(J/ψ \rightarrow \mu \mu) = \frac{N'(p_T)}{\epsilon_{\text{rec}} \cdot \Delta p_T^{\text{bin}} \cdot \int L dt} \]

\[\sigma_{pp \rightarrow J/ψ} = 240 \pm 1(\text{stat})^{+35}_{-28}(\text{syst}) \text{nb} \]

June 28, 2003

Vaia Papadimitriou (Texas Tech University)
J/ψ Cross Section - Run II

Cross section as a function of rapidity

Dzero Run2 PRELIMINARY
- pT(J/ψ)>5GeV/c
- pT(J/ψ)>8GeV/c

CDF Run1 results
17.4 +/- 2.8 nb
2.7 +/- 0.4 nb

Cross Section per 1.2 unit of rapidity

4.7 pb⁻¹

Vaia Papadimitriou (Texas Tech University) June 28, 2003
J/ψ Polarization

- All CDF Run I data, $\int L \, dt = 110 \, \text{pb}^{-1}$
- $p_T > 4 \, \text{GeV}$, $|y| < 0.6$
- Small acceptance at large $|\cos \theta|$
- χ^2 fit using templates for longitudinal and transverse polarization

$$d\Gamma/d \cos \theta \propto 1 + \alpha \cos^2 \theta$$

$\alpha = 1$ **transverse**

$\alpha = -1$ **longitudinal**

Vaia Papadimitriou (Texas Tech University)

CDF, PRL 85 (2000) 2886

June 28, 2003
J/ψ Polarization

J/ψ Production Polarization

Prompt α
- CDF Preliminary
- $|y^{J/\psi}| < 0.6$

![Graph showing α vs. $P_{t}^{J/\psi}$ for prompt J/ψ production.]

B-decay α
- CDF Preliminary
- $|y^{J/\psi}| < 0.6$

![Graph showing α vs. $P_{t}^{J/\psi}$ for B-decay J/ψ.]

J/ψ from B decays essentially unpolarized

CDF, PRL 85 (2000) 2886

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Prompt J/ψ Polarization

- Need to take into account $\psi(2S)$ and χ_c contributions
- Data do not show a trend towards transverse polarization at large p_T
- Phenomenological models give better description
 - E.g. colour evaporation model: mostly unpolarized J/ψ at large p_T

Braaten, Kniehl, Lee
PRD 62 (2000) 094005
ψ(2S) Polarization

- Same procedure, but limited statistics
- Preferable to J/ψ since no contamination from indirect production
- Inconclusive

CDF, PRL 85 (2000) 2886
Polarization in Run II

CDF study:

- Assume factor 50 in effective statistics
 - Integrated luminosity 2 fb\(^{-1}\)
 - Better SVX coverage (separate prompt/B)
- Lower dimuon trigger threshold (1.5 GeV)
 - Able to measure down to \(p_T(J/\psi)\) of \(\approx 0\)
- Systematic uncertainties still small at larger \(p_T\)
γ Cross Section at CDF

Run I:
PRL 88 (2002)161802

- smaller discrepancy with CSM but similar to $c\bar{c}$ result
- NRQCD CS+CO terms able to fit data with $p_T > 8$ GeV/c

June 28, 2003
χ_b Feed-down to $\Upsilon(1S)$ at CDF

Run I:
PRL 84 (2000) 2094

$\chi_b(1P, 2P) \rightarrow \Upsilon(1S)\gamma$

$\pT (\Upsilon) > 8$ GeV/c

γ backgrounds: π^0, η, K_S decays

Direct $\Upsilon(1S)$: $(50.9 \pm 8.2 \pm 9.0)\%$

From $\chi_b(1P)$: $(27.1 \pm 6.9 \pm 4.4)\%$

From $\chi_b(2P)$: $(10.5 \pm 4.4 \pm 1.4)\%$

From $\Upsilon(2S)$: $(10.7^{+7.7}_{-4.8})\%$

From $\Upsilon(3S)$: $(0.8_{-0.4}^{+0.6})\%$

Input in theoretical calculations of Bottomonium cross sections

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Υ Polarization at CDF

$|y| < 0.4$
$8 < p_T < 20$ GeV/c

$1 + \alpha \cos^2 \theta$
$\alpha = 0.12 \pm 0.22$

- similar to $c\bar{c}$ → as yet inconclusive
- Insufficient data with $p_T > 20$ GeV/c

Run I:
PRL 88 (2002)161802
E866/Nusea, $\sqrt{s}=38.8$ GeV

$p + Cu \rightarrow \mu^+\mu^- X$
(800 GeV proton beam)

$0 < x_F < 0.6$

$p_T < 4$ GeV/c
(transverse to beam axis)

- $\Upsilon(2S)$ and $\Upsilon(3S)$ not distinguished
- Subtract Drell-Yan $\mu\mu$ continuum
 (100% transverse polarization)
- sideband fit: $\alpha=1.008 \pm 0.016 \pm 0.020$

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
E866/Nusea, Υ polarization

Cosθ distributions for $p_T > 1.8$ GeV/c

- **Inclusive $\Upsilon(1S)$:**
 - NRQCD: $\alpha = 0.28$ to 0.31, avg over p_T, x_F
 - Observed: $\alpha = 0.07 \pm 0.04$ (stat)$ \pm 0.06$ (sys)

- **Inclusive $\Upsilon(2S) + \Upsilon(3S)$:**
 - No explicit NRQCD prediction
 - Large observed transverse polarization, contrast with charmonium

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Search for η_b at CDF

$\eta_b \rightarrow J/\psi J/\psi$ reconstruction

Braaten, Fleming, Leibovich
PRD 63 (2001) 094006

Expected production rate:
$\sigma(\eta_b) \sim (3-6) \times \sigma(\Upsilon(1S))$
$B(\eta_b \rightarrow J/\psi J/\psi) \sim 7 \times 10^{-4} \pm 1$

100 pb$^{-1}$
Possibly seen in Run I?

Small cluster: 7 events, 1.8 events expected from background

CDF mass resolution ~ 10 MeV/c2
Search window 9.36 to 9.46 GeV/c2
Simple mass fit: 9445 ± 6 (stat) MeV/c2
Probability of background fluctuation: 1.5% ($\sim 2.2 \sigma$)
Search for η_b at CDF

$\eta_b \rightarrow J/\psi J/\psi$ reconstruction

Rate Limit:

$$\sigma_{\eta_b}(|y|<0.4) \cdot B(\eta_b \rightarrow J/\psi J/\psi) \cdot [B(J/\psi \rightarrow \mu\mu)]^2 < 18 \text{ pb}$$

Run 1 SVX $J/\psi \rightarrow \mu\mu$ Data

Central value 3.5 pb

Improves apparent significance
Supportive of signal hypothesis
Need more data for confirmation

Vaia Papadimitriou (Texas Tech University)
Prospects for Run II

- $\int L \, dt \approx 1.4 \text{ fb}^{-1}$ by end of FY05, $\int L \, dt \approx 9 \text{ fb}^{-1}$ by end of FY09
 - Run II is well underway, data samples about 30% bigger than Run I now
- Will get many J/ψ's and $\psi(2S)$ for free, but
 - Is the charm system massive enough?
 - For J/ψ, will always have feed-down to J/ψ final states
- For most measurements, there are now two experiments
- Also better muon and silicon coverage, improved trigger capabilities, decays into e^+e^- (?)
- There will be other possible measurements that can shed light on the colour octet issue
 - $h_c, \chi_c, \Upsilon, \chi_b...$ production cross sections
 - Associated jets in direct production
Run II - CDF

CDF Run II Preliminary, 120 inv. pb, June 2003

J/ψ: Events: 1.2×10^3, Width: 22.6 ± 0.03 MeV/c^2

$\phi(0s)$: Events: 378, Width: 21.9 ± 0.5 MeV/c^2

4146 $\Upsilon(1S)$ events
1307 $\Upsilon(2S)$ events
~80 pb$^{-1}$

All four tracks in silicon
3.5 MeV/c^2 resolution

CDF Run II Preliminary 80 pb$^{-1}$

$N(\psi') = 2332.0 \pm 73.3$

$\psi(2s) \rightarrow J/\psi \pi^+ \pi^-$

Vaia Papadimitriou (Texas Tech University) June 28, 2003
Run II – (CDF/D0 on χ_c)

CDF Run II

CDF Run 2 Preliminary

$\chi_c \rightarrow J/\psi \gamma$

46 pb$^{-1}$

γ in calorimeter
$E_T(\gamma) > 1$GeV

CDF - Run I

PRL 79 (1997) 578
PRL 86 (2001) 4472

DO Run II Preliminary

$\chi_c \rightarrow J/\psi \gamma$

$N = 84 \pm 12$

$\Delta M_{c1} = 0.403 \pm 0.004$ GeV

$\sigma = 0.018 \pm 0.004$ GeV

γ conversions

Vaia Papadimitriou (Texas Tech University)
Quarkonia at HERA

- DIS
 - $1 < Q^2 < 100 \text{ GeV}^2$
- Tagged/untagged photoproduction
 - Scattered e not seen in main detector
 - Median $Q^2 \approx 10^{-4} \text{ GeV}^2$
- Decays into e^+e^- and $\mu^+\mu^-$
- Central tracking ($|\eta| < 1.8$)
 - $30 < W < 180 \text{ GeV}$
 - In addition, dedicated analyses with specific statistical and systematic limitations (forward muon spectrometer, backward calorimetry, ...)

$Q^2 := -q^2$

$W^2 := (p_p + q)^2 \approx Q^2 / x$

$Q^2 \approx xys$
\[z = \frac{P_p \cdot P_\psi}{P_p \cdot P_\gamma} = \frac{E_\psi}{E_\gamma} \text{ in } p \text{ rest frame} \]

- Order of magnitude comparable
 - "Elastic" \(z \approx 1 \) \((M_X = m_p) \)
 - p diffractive dissociation \(z \approx 1 \) \((\sigma \propto 1/M_X^2) \)
 - "Inelastic" \(z < 1 \)

- At small \(z \) contributions from
 - Resolved photon
 - B production

- Background increases with decreasing \(z \)
HERA Production Mechanisms

Inelastic

- "resolved" (gg-fusion) direct (γg-fusion)
 - (z<0.3)
 - (z>0.3)

p-dissociation

- J/ψ from ψ(2S) decays (ψ(2S) → J/ψππ and others)
 - (not subtracted, measured, ~ 15%)

- J/ψ from χ_c decays (not subtracted)
 - (1% of inelastic, up to 7% at lowest z)

- J/ψ from B decays (not subtracted)
 - (5% of inelastic, up to 25% at lowest z)

Elastic

- Cut on z, (fwd.) energy, add'l tracks, ...

- "Forward tagging"

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
J/ψ Photoproduction: CSM

Colour Singlet Model: NLO calculation of direct photon gluon fusion process (M. Krämer)

LO: too steep
NLO: good agreement

Errorbands: $1.3 \leq m_c \leq 1.5$ GeV

$0.1175 \leq \alpha_s(M_Z) \leq 0.1225$

June 28, 2003
J/ψ Photoproduction: NRQCD

- p_T spectra similar at low and medium z
- NRQCD (including CS and CO): softer than data
 - Contributions from B decays in data?

J/ψ Photoproduction: inelasticity

EJ C25 (2002) 25
EJ C27 (2002) 173

CO long-distance ME taken from fit to CDF data

NLO CSM agrees with data; Theoretical uncertainties do not allow strong conclusions on CO
Left: NRQCD describes shapes (large LDME uncertainties)
Right: Damping at high z for BSW (LO, CS+CO) ⇒ better agreement

Vaia Papadimitriou (Texas Tech University) June 28, 2003
Photoproduction: $\sigma_{\psi(2S)}/\sigma_{\psi(1S)}$

ZEUS

\[\sigma_{\psi(2S)}/\sigma_{\psi(1S)} = 0.33 \pm 0.10^{+0.01}_{-0.02}\]

Flat, consistent with 0.24 from KZSZ (LO,CS)

Estimate of J/ψ fraction coming from $\psi(2S)$
Cascade decays consistent with expectations (15%)
Photoproduction: helicity

\[
dN/d\cos\theta* \approx 1 + \alpha \cos^2\theta^*
\]

BKV – collinear calculations

Baranov – \(k_t \)-factorization

Statistics is not yet sufficient to discriminate between models
H1 - J/ψ Electroproduction

Data: $2 < Q^2 < 100 \text{ GeV}^2$
$0.3 < z < 0.9$
$50 < W < 225 \text{ GeV}$
$p_T^* > 1 \text{ GeV}$
$\int L \, dt = 77 \text{ pb}^{-1}$

Theory: LO Colour Singlet Model
LO NRQCD (CS+CO)

CS alone: normalization low, too steep in p_T

NRQCD (CS+CO): too high at low Q^2, p_T
better at high Q^2, p_T

Need: NLO calculations
More data at larger Q^2, p_T
H1 - J/ψ Electroproduction

Q^2 > 2 GeV^2

Note: Theory normalized to data

Large shape discrepancy

EJ C25 (2002) 41

Rapidity in γp

CMS

Vaia Papadimitriou (Texas Tech University) June 28, 2003
Zeus - J/ψ Electroproduction: Q^2 and W

- $KZ(\text{CS})$ and $LZ(\text{CS})$: lower but consistent with data
- $KZ(\text{CS+CO})$: mostly overshoots data
- $LZ(\text{kt, CS})$: agrees with data

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Zeus - J/ψ Electroproduction: inelasticity

- KZ(CS+CO): too high at large z values (high-z resummation needed?)
- CS predictions are consistent with data
HERA photo/electro production summary

- **Photoproduction**
 - NLO corrections enable one to describe high production of J/ψ within CSM
 - Theoretical uncertainties are large: CO contributions cannot be excluded

- **Electroproduction**
 - LO CS: below but consistent with data, except high p_T range (NLO corrections?)
 - NRQCD (CS+CO): too high at large z and small p_T^* values
 - k_t-factorization (CS): agrees with data except at high p_T^* (too low) and in photon direction (too high)
HERA Prospects

- "HERA I" running period ended in September 2000
 - Another > 50 pb\(^{-1}\) per experiment collected in 2000, giving a total of > 100 pb\(^{-1}\)
- Many analyses make use of the full data sets
- After the HERA upgrade:
 - \(\int L \, dt \sim 100 \text{ pb}^{-1}\) per experiment expected by summer 2004
 - Polarized e\(\pm\) beams
- Various detector upgrades
 - ZEUS Silicon
 - New fast track trigger for H1
 - ...
- High Q\(^2\)/p\(_T\) will greatly benefit from increase in luminosity
HERA vs. Tevatron ME

- Only use theoretically safe regime: \(p_T^2, Q^2 > 4 \text{ GeV}^2, M_X > 10 \text{ GeV} \)
 - Statistics limited in 1999
- Consistent description difficult
- Repeat including recent data?
- Common fit?

\[
\langle \frac{1}{50} \rangle + \frac{3}{m_c^2} \langle \frac{3 P}{3} \rangle \quad \text{J.K. Mizukoshi, hep-ph/9911384}
\]
• HERA-B detector & trigger in good shape

♦ 1200-1400 J/ψ per hour, 70% of available beam time used

♦ ~ 300,000 triggered J/ψ ($e^+e^-/\mu^+\mu^-$)
♦ ~ $210 \cdot 10^6$ Minimum bias events

• Analysis of 2002/03 data in progress
J/ψ - Statistics

$J/ψ \rightarrow e^+e^-$: 40% of statistics

- $N(J/ψ) = 52.8 \text{ k}$
- $M(J/ψ) = 3.125 \text{ GeV}$
- $σ(J/ψ) = 63 \text{ MeV}$

No Bremsstrahlung requirement

$J/ψ \rightarrow μ^+μ^-$: full statistics

- $N_{J/ψ} = 166 \text{ k}$
- $M_{J/ψ} = 3.095 \text{ GeV}$
- $σ_{J/ψ} = 45 \text{ MeV}$
- $N_{ψ(2s)} = 2.7 \text{ k}$
- $M_{ψ(2s)} = 3.672 \text{ GeV}$
- $σ_{ψ(2s)} = 53 \text{ MeV}$

$μ^+μ^-$ invariant mass [GeV/c²]

Invariant Mass

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Detached J/ψ Analysis

$J/\psi \rightarrow e^+e^-$

(40 % of statistics)

$\Delta z/\sigma_z > 10$

impact par. cut

No bremsstrahlung
requirement

2000:

$n_B = 8.6^{+3.9}_{-3.2}$

$\# J/\psi = 40 \pm 12$

$J/\psi \rightarrow \mu^+\mu$

(60 % of statistics)

$\Delta z < 0.5 \text{ cm}$

$\Delta z > 0.5 \text{ cm}$

Impact par. cut

2000:

$n_B = 1.9^{+2.2}_{-1.5}$

No upstream J/ψ

$\# J/\psi = 40 \pm 11$

Vaia Papadimitriou (Texas Tech University) June 28, 2003
Charmonium Production: χ_c

Fraction of J/ψ produced via χ_c

$$R_{\chi_c} = \frac{\sum \sigma(\chi_{ci}) Br(\chi_{ci} \rightarrow J/\psi \gamma)}{\sigma(J/\psi)_{tot}}$$

$\Delta M = M(J/\psi \gamma) - M(J/\psi)$

Background subtracted

$N(\chi_c) = 6806 \pm 1058$

$M(\chi_c) = 0.437 \pm 0.004 \text{ GeV}$

$\sigma(\chi_c) = 0.044 \pm 0.008 \text{ GeV}$

Measurement 2000 based on $380 \pm 74 \chi_c$

$R_{\chi_c} = 0.32 \pm 0.06\text{ stat} \pm 0.04\text{ sys}$

First measurement of χ_c suppression in nuclear matter possible!

Vaia Papadimitriou (Texas Tech University)

June 28, 2003
Upsilon Production: $\sigma(pA \rightarrow \Upsilon)$

$\Upsilon \rightarrow \mu^+\mu^-$

$\Upsilon \rightarrow e^+e^-$

Invariant mass, GeV

<table>
<thead>
<tr>
<th>ID</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>27.44</td>
<td>6.711</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>9.491</td>
<td>0.386</td>
<td>0.01</td>
</tr>
<tr>
<td>P3</td>
<td>3.19</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>P4</td>
<td>10.29</td>
<td>2.35</td>
<td>0.09</td>
</tr>
<tr>
<td>P5</td>
<td>0.1077</td>
<td>0.037</td>
<td>0.01</td>
</tr>
<tr>
<td>P6</td>
<td>16.88</td>
<td>0.89</td>
<td>0.04</td>
</tr>
<tr>
<td>P7</td>
<td>2.743</td>
<td>0.179</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>10.77</td>
<td>0.138</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Invariant mass, GeV

<table>
<thead>
<tr>
<th>ID</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>32.39</td>
<td>10.34</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>9.277</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td>P3</td>
<td>0.325</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>P4</td>
<td>14.15</td>
<td>0.49</td>
<td>0.07</td>
</tr>
<tr>
<td>P5</td>
<td>-4.675</td>
<td>0.98</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\Upsilon events

- $\Upsilon \rightarrow \mu^+\mu^-$: 35 ± 8
- $\Upsilon \rightarrow e^+e^-$: 33 ± 10

Width

- $\mu^+\mu^-$: 157 MeV
- e^+e^-: 335 MeV

Width: in agreement with MC

Measurement of the Υ production cross section is feasible may help to distinguish between Fermilab measurements

Vaia Papadimitriou (Texas Tech University)
June 28, 2003
Conclusions

- Tevatron Run I analyses done, most HERA-I analyses too
- Lots of results, many surprises
- Very fruitful interaction with theoretical developments
 - Non-relativistic QCD / colour octet contributions / ...
 - Soft Colour Interactions, Two Pomerons, ...
- Tevatron Run II will provide (1.4-9.0) fb$^{-1}$ (14-90x statistics)
- HERA-II will deliver < 1 fb$^{-1}$ (10x statistics, measure at larger Q^2, p_T, polarization)
- A lot of answers and surprises awaiting!!