Search for Long-Lived Particles Decaying to the Z^0 Boson

Adam Scott
CDF/UCSB

DPF 2004
Direct Searches For New Physics
Motivation

• What I want:
 • Same as what everyone wants
 • To find what physics lies beyond the Standard Model
• Alright, but how?
• Many possible theoretical and experimental signatures to choose from
 • Theoretical:
 • Higgs
 • SUSY
 • Extra dimensions
 • …
 • Experimental:
 • photons
 • leptons
 • neutrinos ($\bar{\nu}_e$)
 • quarks (jets)
 • gauge bosons: Z^0 and W^\pm
What We Do

- Our approach is to look at the gauge bosons for evidence of new physics
- We focus on new physics that couples to the Z^0
- $X \rightarrow Z^0$
 - Theoretically motivated
 - Might expect to see new physics to couple to heavy particles more strongly than the light ones
- Experimentally clean
 - Two leptons that reconstruct to the Z^0 mass has little background
 - The dominant background is from Standard Model Z^0’s
Standard Model Z^0

- To be sensitive to $X \rightarrow Z^0$, must distinguish the Z^0 from new physics with the Standard Model Z^0

- What do Standard Model Z^0 events look like?
 - Z^0 has low p_T
 - Events have little other activity in them (no jets, no \not{E}_T)
 - Z^0 has short lifetime
New Physics Couplings to Z^0

- To be sensitive to $X \rightarrow Z^0$, must distinguish the Z^0 from new physics with the Standard Model Z^0

- What do Standard Model Z^0 events look like?
 - Z^0 has low p_T
 - Events have little other activity in them (no jets, no \not{E}_T)
 - Z^0 has short lifetime

- What would Z^0 new physics events look like?
 - Z^0 has *high* p_T
 - Events *a lot* of other activity *(many jets, large \not{E}_T)*
 - Z^0 parents (might) have *long* lifetime
Long-Lived Particle Decaying to Z^0

- Experimentally clean
 - Vertex dileptons from Z^0's
 - Negligible background from actual displaced vertices
 - Dominant background is from tracking mistakes
- Theoretically motivated
 - Existing (and perhaps many non-existing) models predict a long-lived Z^0 parent
Let’s Do It!

- **Convention:**
 \[L_{xy} = \text{distance in transverse plane from beam to dilepton intersection} \]
- Use transverse quantities because they are easier to measure

- **L_{xy} sign definition**
- **Motivation:**
 - Tracking mistakes are symmetric in \(L_{xy} \)
 - Signal has predominantly positive \(L_{xy} \)

- Search for excess above background at positive \(L_{xy} \)
- Negative \(L_{xy} \) gives a cross-check of the background
- Use \(Z^0 \rightarrow \mu\mu \) channel
- Plan to use \(Z^0 \rightarrow ee \) channel next
Selection Criteria

- **Selection Motivation:**
 - Clean sample of Z^0’s
 - Well-measured tracks
 - High efficiency for signal
 - Look for large L_{xy}
- Calibrated cuts and L_{xy} calculation with $J/\psi \rightarrow \mu\mu$’s
 - Displaced vertices from B meson decay

- Two important cuts:
 - $\Delta\phi$ cut
 - Z^0 boson p_T cut

<table>
<thead>
<tr>
<th>Two well-identified high p_T muons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within Z^0 mass peak: $81 < M_{\mu\mu} < 101$ GeV</td>
</tr>
<tr>
<td>Tracking quality cuts to reduce mistakes</td>
</tr>
<tr>
<td>$L_{xy} > 0.1$ cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cosmic Rejection Cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z^0 boson $p_T > 30$ GeV</td>
</tr>
<tr>
<td>$L_{xy} > 0.03$ cm</td>
</tr>
</tbody>
</table>
Due to the back-to-back nature of Z^0 events, even small mistakes in tracking can lead to large mistakes in L_{xy}

- Cut at: $\Delta \phi < 175$ deg
 - Rejects 99% of large L_{xy} tracking mistake background above 0.1 cm
 - 50% efficient on Standard Model Z^0’s
 - 90% efficient on signal sample

![Graph showing SM Z^0 Monte Carlo before and after $\Delta \phi$ cut](chart.png)
Z⁰ Boson p_T Cut

• Can use the Z⁰ transverse momentum to reject Standard Model background
• Increases sensitivity to smaller lifetimes

• Cut at:
 \(Z^0 \ p_T > 30 \ \text{GeV} \)
 \(L_{xy} > 0.03 \ \text{cm} \)

• Do not optimize heavily to retain model independence
• Use it as optional cut
 • Look at \(L_{xy} \) distribution with and without the cut
Acceptance \times Efficiency

- Have calculated acceptance \times efficiency of signal
- Used a b' model
- Note: Assumes $\text{BR}(b' \rightarrow b Z^0) = 1$, and includes $\text{BR}(Z \rightarrow \mu\mu)$
Backgrounds

- Negligible backgrounds from:
 - Cosmics
 - QCD (semileptonic B decays to muons)
- Dominant background from:
 - Tracking mistakes from Standard Model Z^0 events
 - Difficult to measure
 - Use simulated Monte Carlo
 - Can cross-check the background measurement with the data in the negative L_{xy} control region

<table>
<thead>
<tr>
<th></th>
<th>No Z^0 p_T cut</th>
<th>Z^0 $p_T > 30$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background:</td>
<td>0.72 ± 0.27 events</td>
<td>1.1 ± 0.8 events</td>
</tr>
</tbody>
</table>
The Data

- 2 events in signal region
- Background: 0.72 ± 0.27 events
- No events is negative L_{xy} control region

- 3 events in signal region
- Background: 1.1 ± 0.8 events
- No events is negative L_{xy} control region
Signal Events

• Have 2+3 events in signal regions
• Can look at events displays to find other information consistent with the signal or background hypothesis
• In the case of the signal:
 • Should have other activity in the event
 • Additional jets, etc.
 • In the case of the $b' \rightarrow b Z^0$ signal:
 • b jets
 • Jets from other Z^0
Event Display Example

$L_{xy} > 0.1$ cm, without the $Z^0 \ p_T$ cut

CDF Run II Preliminary

run 155365

event 1953250
Event Display Example

$L_{xy} > 0.1 \text{ cm}, \text{without the } Z^0 p_T \text{ cut}$

CDF Run II Preliminary

run 155365
event 1953250

Z^0 boson $p_T = 14 \text{ GeV}$

$M_{\mu\mu} = 91 \text{ GeV}$
Event Display Example

$L_{xy} > 0.03 \text{ cm}, \text{ with the } Z^0 p_T > 30 \text{ GeV cut}$
Event Display Example

$L_{xy} > 0.03 \text{ cm}, \text{ with the } Z^0 p_T > 30 \text{ GeV cut}$
Limit

- No significant excess of signal above background
- Set a 95% confidence limit on the b’ model using Pythia at LO
Limit – Lifetime vs. Mass

- At $m_{b'} = 150$ GeV, exclude at 95% confidence:
 - $2.0 < c\tau < 70$ mm
 - $0.55 < c\tau < 52$ mm

- At $c\tau = 10$ mm, exclude at 95% confidence:
 - $m_{b'} < 174$ GeV

- Model only valid if $m_{b'} < m_t$

- More generally, we exclude a region in mass and lifetime parameter space
Conclusions

- We have completed a search and set a limit on long-lived particles decaying to Z^0’s at CDF in the dimuon channel
- Will now look at dielectrons
 - Will use experience gained from dimuon channel
 - Have greater acceptance for electrons
- Can do more searches using Z^0 bosons!
- And a lot more tools to use…

- What would Z^0 new physics events look like?
 - Z^0 has high p_T
 - Events a lot of other activity (many jets, large E_T)
 - Z^0 parents (might) have long lifetime