Status of CDF II Higgs Searches

HCP 2004

Michael Gold, for the CDF II Collaboration

gold@phys.unm.edu

University of New Mexico
Higgs at the Tevatron

Broken symmetry...is it the Higgs?

Can H be discovered at the Tevatron?
CDF Run I Limits

CDF PRELIMINARY Run 1

95% C.L. upper limits

$\sigma(p\bar{p} \rightarrow VH) \times BR(H \rightarrow b\bar{b})$ (pb)

Higgs Mass (GeV/c^2)

LEP EXCLUDED

Standard Model

VH combined

New world average fit $M_H = 117$ GeV

M.Gold, HCP04, June 17 – p.3/30
CDF Ongoing Searches

- $\sqrt{WH \to \ell\nu bb}$
- $ZH \to \ell\ell bb$
- $ZH \to \nu\nu bb$
- $\sqrt{H \to WW^* \to \ell\nu\ell'\nu'}$
- Hbb\to bbbb large $\tan \beta$
- $H \to \tau\tau$ large $\tan \beta$
- $H^+ \to \tau\nu$
- $t \to H^+b$ (direct, $B(t \to \ell\nu b)$)
- $\sqrt{H^{\pm\pm}}$ triplet
- LFV $H \to \tau\mu$
Double Charged Higgs

Additional Higgs triplet, e.g. SUSY LR \(\Rightarrow 10^2 < M_{H^{\pm\pm}} < 10^3 \) GeV

\(H^{++} \rightarrow \ell^+ \ell'^+ \) with coupling \(h_{\ell\ell'} \)

- \(h_{ee} < 0.07 \) LEP II
- \(h_{\mu\mu} < 0.25 \) \((g-2)_\mu \)
- \(h_{e\mu} h_{ee} < 3 \times 10^{-7} \) \(\mu \rightarrow 3\mu \)
- \(h_{e\mu} h_{\mu\mu} < 2 \times 10^{-6} \) \(\mu \rightarrow e\gamma \)

Pair-produced at Tevatron via \(\gamma^* Z^* \)

Constraints allow prompt decays:
Signature: 2 same-sign \(\ell = e, \mu \) with \(M(\ell\ell) = M_{H^{\pm\pm}} \)
QCD derived from fakes in the data

W+jets rate from data, mass from MC

WZ $\sigma_{nnlo} = 4.0$ pb

$Z \rightarrow e^+ e^- (\gamma \rightarrow e^+ e^-)$

normalize BG to Z peak
expect $1.1 \pm 0.3 \ M < 80$
\[H^{\pm \pm} \rightarrow \mu^{\pm} \mu^{\pm}, e^{\pm} \mu^{\pm} \]

Background to same-sign \(\mu \mu \)

- Jets
- W+Jets
- WZ

Background to same-sign e\(\mu \)

- Jets
- W+Jets
- WZ

expect \(0.9 \pm 0.4\) \(M < 80\)
expect \(0.3 \pm 0.1\) \(M < 80\)
$H^{\pm \pm}$ Acceptance

\[
\text{(kinematic+geometric) } \times \epsilon_{trig}\epsilon_{ID} \quad \text{a central } \eta \text{ leptons}
\]

\[
a \mu \equiv \text{track+stub/m.i.}
\]
H^{±±} Limits

100% Branching

- 133 GeV $ee \ H_L^{±±}$
- 136 GeV $\mu\mu \ H_L^{±±}$
- 115 GeV $e\mu \ H_L^{±±}$
- 113 GeV $\mu\mu \ H_R^{±±}$

CDF Run 2 Preliminary

$\mathcal{L} \sim 240 \text{ pb}^{-1}$

Cross section \times BR (pb) vs. $H^{±±}$ mass (GeV/c2)

- **ee**
- **$e\mu$**
- **$\mu\mu$**

M.Gold, HCP04, June 17 – p.9/30
limits are for exclusive decays; long-lived $H^{\pm\pm}$ search in progress.
SM Searches

Sensitivity

Understand detector & backgrounds. Best way is to do searches and set limits:

- $H \rightarrow WW^*$
- HW production

Q: How sensitive are we relative to our expectations?
heavy $H \rightarrow WW$

signature for $M_H \gtrsim 135$ GeV $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$ (e,μ)

- exactly 2 $\ell^+\ell^-$ (suppress WZ)
- no jets (suppress WZ)
- $\not{E}_T > 25$ GeV (suppress DY)
- $\Delta\phi(\not{E}_T, \ell) > 20^\circ$ (mis-measured E_T)
- Z removal
Estimate from MC with theory σ:

- $WW \quad 13 \text{ pb}$
- $WZ \quad 4 \text{ pb}$
- $ZZ \quad 1.4 \text{ pb}$
- $t\bar{t} \quad 7 \text{ pb}$
- $DY \ LO \times k = 1.4$

$W + jets \rightarrow \text{fake } \ell \text{ from inclusive } \ell \text{ data}$

Apply $M_{\ell\ell}$ cut b

a in good agreement with σ^{CDF}

b J=0 weak decay
heavy H Search Results

<table>
<thead>
<tr>
<th>M_H</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>3.8 ± 0.5</td>
<td>4.5 ± 0.5</td>
<td>5.4 ± 0.6</td>
</tr>
<tr>
<td>other</td>
<td>0.9 ± 0.2</td>
<td>1.3 ± 0.4</td>
<td>1.9 ± 0.5</td>
</tr>
<tr>
<td>data</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>σ_N</td>
<td>95%</td>
<td>< 9.8 pb</td>
<td>< 6.2 pb</td>
</tr>
</tbody>
</table>

signal: $\Rightarrow \sim 0.2$ events
Partial Mass Reconstruction

CDF Run II Preliminary, $L_{\text{int}} \approx 200 \text{ pb}^{-1}$

$M_H = 180 \text{ GeV}$

$M_C \equiv \sqrt{P_{T\ell\ell} + M_{\ell\ell} + E_T}$
CDF Run II Preliminary, $L_{\text{int}} = 184 \text{ pb}^{-1}$

Exploit $J = 0$ resonance

$\sigma_{\text{fit}} 95\% \Rightarrow 5.6 \text{ pb} \quad M_{H} = 160, 170$
Golden Mode $WH \rightarrow b\bar{b}$

Signature:
- exactly 1 central $\ell (e\mu)$
- $E_T > 20$
- exactly 2 jets

jet cut optimization

CDF Run II Preliminary (162 pb$^{-1}$)

$m_h = 115$ GeV/c2
WH Pre-tag backgrounds

CDF Run II Preliminary (162 pb⁻¹)

- Data
- Expected Total
- W+light flavors
- W+bb
- W+cc
- W+c+1p
- non-W

Events / 10 GeV/c²

Dijet Mass (GeV/c²)
WH Backgrounds

Derived from data as for top:

- $W + bb$, $W + cc$, $W + c$
- QCD

From theory (MC):

- top
- di-Boson
- $Z \to \tau\tau$

Mis-tags: derived from generic jet data “tag” rate = few % /jet
B-tag efficiency

derived from inclusive e sample further \(\bar{b}b \) enriched by vertex tag on 2nd jet.

scale factor \((82 \pm 6)\)%
WH with b-tagging

CDF Run II Preliminary (162 pb⁻¹)

- Data
- Mistags
- $W^\pm + b\bar{b}$
- $W^\pm + c\bar{c}$
- $W^\pm + c$
- Diboson and $Z^0 \rightarrow \tau^+ \tau^-$
- non-W^\pm
- $t\bar{t}$
- Single Top

Additional cuts:
- lepton: high-P_T, opp. sign track
- jets: no extra low-E_T
WH Dijet Mass

CDF Run II Preliminary (162 pb⁻¹)

- **W+2jets (Data)**
- **WH (m_h=115 GeV/c²)**
- **W+jets and non-W**
- **Top, Diboson and Z⁰ → τ⁺τ⁻**
- **WH×100**

Events / 10 GeV/c²

- Mean = 107.85 ± 0.25 GeV/c²
- Width = 18.69 ± 0.25 GeV/c²

Dijet Mass (GeV/c²)
Current Sensitivity

Acceptance with central η leptons including all (kinematic+geometric) $\times \epsilon_{\text{trig}} \epsilon_{\text{ID}} \epsilon_{\text{tag}}$

$$= (1.7 \leftrightarrow 1.9) \pm 0.4 \%$$

CDF Run II Preliminary (162 pb$^{-1}$)

$\sigma(VH) \times \text{Br}(H \rightarrow b\bar{b})$ (pb)

$\sigma(VH) = 1.6 \sigma(WH)$
SM Higgs: Status

$\int L = 0.16 \, fb^{-1} \Rightarrow \text{Significant improvement over run I}$
Ultimate Sensitivity

Results of revised sensitivity study (CDF/D0) based on:
hit-level, GEANT simulation, measured trigger rates, 396 ns scenario (multiple interactions).

- MB $\sim \epsilon_b \times (0.90 \leftrightarrow 0.85)$
- lepton acceptance $\times 1.3$
- b-tagging
- di-jet mass resolution

Vertex and i.p. tagging (0 MB)
Improvements to δM_{jj} versus $\#$ central jets: (1) tracking, (2) soft leptons, (3) global event variables (e.g. E_T)
$Z \rightarrow b\bar{b}$

CDF PRELIMINARY

M_{jj} Run I μ triggers; Run II measure δM_{jj}
SM Higgs: Prospects

Higgs Sensitivity Study ('03)
statistical power only
(no systematics)

SUSY/Higgs Workshop ('98-'99)

5σ discovery
3σ evidence
95% CL exclusion

PRELIMINARY

m_H (GeV)

integrated luminosity (fb^{-1}/exp.)

80 100 120 140 160 180 200
Beyond SM Higgs: Prospects

Much work on τ (e.g. $H \rightarrow \tau\tau, H^+ \rightarrow \tau\nu$)

CDF measurements of $\sigma_W B(W \rightarrow \tau\nu)$, $B(W \rightarrow \tau\nu)/B(W \rightarrow e\nu)$
Conclusion

from $0.4\text{fb}^{-1} \Rightarrow 8\text{fb}^{-1}$

“It ain’t over ’till it’s over”

– Yogi Berra