Heavy Quark Production at the Tevatron

Guillelmo Gómez-Ceballos
Massachusetts Institute of Technology

On behalf of the D0 & CDF Collaborations

Heavy Quarks and Leptons, Puerto Rico, June 2004
In this talk…

A lot of analyses are in progress at the Tevatron, here not at all exhaustive summary!

• Cross-section measurements:
 • Prompt charm meson
 • Inclusive J/ψ
 • b → J/ψ X
 • γ + b/c

• Exclusive measurements:
 • B hadron masses
 • CP asymmetries and decay rate ratios
 • Observation of narrow D** states in semileptonic B decays
 • B⁰ mixing
 • Search for pentaquarks

• Not included:
 • B lifetimes (discussed in other sessions)
 • BR(B⁺ → ϕ K⁺)
 • Bc→J/ψ μ X search
 • ………

• Not included, but available in the back up slides:
 • Bₛ → μ μ search (discussed in other sessions)
 • X(3872) → J/ψ π π state (discussed in other sessions)
 • Two body charmless decays studies
 • Bₛ mixing sensitivity
Tevatron Performance

• The Tevatron is working quite well this year

• Record Initial luminosity = 7.4×10^{31} sec$^{-1}$ cm$^{-2}$

• Detector efficiency $\sim 85-90\%$

~ 300 pb$^{-1}$ on tape per experiment
Both detectors
Silicon microvertex tracker
Axial solenoid
Central tracking
High rate trigger/DAQ
Calorimeters and muons

CDF
L2 trigger on displaced vertexes
Particle ID (TOF and dE/dx)
Excellent tracking resolution

DØ
Excellent muon ID and acceptance
Excellent tracking acceptance $|\eta| < 2-3$
L3 trigger on impact parameter/L2 impact parameter trigger being commissioned
Heavy Flavor Physics at the Tevatron

B Bbar production mechanics in hadron collider:

- Huge Charm and Bottom cross-sections
- All B species produced:
 - $B_u, B_d, B_s, B_c, \Lambda_b, \ldots$

BUT $\sigma(bb) << \sigma(pp)$ \Rightarrow B/C events have to be selected with specific triggers...

Trigger requirements: large bandwidth, background suppression, deadtimeless
Heavy Flavor Triggers

- **Single/di-lepton (CDF/D0)**
 - High p_T lepton or two leptons with lower p_T
 - J/ψ modes, masses, lifetime, x-section
 - Yields higher than Run I (low Pt threshold, increased acceptance)

- **lepton + displaced track - semileptonic sample (CDF)**
 - $p_T(e/\mu) > 4$ GeV/c, $120 \mu m < d0(Trk) < 1mm$, $p_T(Trk) > 2$ GeV/c
 - Semileptonic decays, Lifetimes, flavor tagging
 - B Yields 3x Run I

- **Two displaced vertex tracks - hadronic sample (CDF)**
 - $p_T(Trk) >2$ GeV/c, $120 \mu m < d0(Trk) < 1mm$, $\Sigma p_T > 5.5$ GeV/c
 - X-section, branching ratios, B_s mixing…
INCLUSIVE CROSS-SECTION MEASUREMENTS
Prompt Charm Meson X-Section

- Measure prompt charm meson production cross section using the CDF Two Track Trigger
- Large and clean signal Measurement not limited by statistics

Separate prompt and secondary charm based on their impact parameter distribution

Direct Charm Meson Fraction:
- D^0: $f_D = 86.5 \pm 0.4 \pm 3.5\%$
- D^{*+}: $f_D = 88.1 \pm 1.1 \pm 3.9\%$
- D^+: $f_D = 89.1 \pm 0.4 \pm 2.8\%$
- D^+_s: $f_D = 77.3 \pm 4.0 \pm 3.4\%$
Prompt Charm Meson X-Section

Calculation from M. Cacciari and P. Nason: Resummed perturbative QCD (FONLL)

CTEQ6M PDF
$M_c = 1.5 \text{ GeV}$,
Fragmentation: ALEPH measurement
Renorm. and fact. Scale: $m_T = (m_c^2 + p_T^2)^{1/2}$
Theory uncertainty: scale factor 0.5-2.0

\[
\sigma(D^0, p_T \geq 5.5\text{GeV}, |Y| \leq 1) = 13.3 \pm 0.2 \pm 1.5 \mu b
\]
\[
\sigma(D^{*+}, p_T \geq 6\text{GeV}, |Y| \leq 1) = 5.2 \pm 0.1 \pm 0.8 \mu b
\]
\[
\sigma(D^+, p_T \geq 6\text{GeV}, |Y| \leq 1) = 4.3 \pm 0.1 \pm 0.7 \mu b
\]
\[
\sigma(D_s^+, p_T \geq 8\text{GeV}, |Y| \leq 1) = 0.75 \pm 0.05 \pm 0.22 \mu b
\]
Inclusive J/ψ X-Section

CDF: Lower p_T trigger threshold for μ: $p_T(\mu) \geq 1.5$ GeV

J/ψ acceptance down to $p_T=0$

D0: Larger acceptance for μ
Inclusive J/ψ X-Section

$$\sigma(p\bar{p} \rightarrow J/\psi X, |y(J/\psi)| < 0.6) = 4.08 \pm 0.02^{+0.60}_{-0.48} \text{(stat)} \mu b$$

CDF: 39.7 pb$^{-1}$

D0: 4.8 pb$^{-1}$
The J/ψ inclusive cross-section includes contribution from

- Direct production of J/ψ
- Decays from excited charmonium: $\Psi(2S) \rightarrow J/\psi \pi^+\pi^-$, …
- Decays of b-hadrons: $B \rightarrow J/\psi X$, …

b hadrons have long lifetime,
J/ψ decayed from b hadrons
Will be displaced from primary Vertex!
Inclusive b X-Section (CDF)

- RunI b cross-section \(\sim 3\times\) old NLO QCD
- Theoretical approaches: new physics, Next-to-Leading-log resummations, non perturbative fragmentation function from LEP, new factorization schemes…

- An unbinned maximum likelihood fit to the flight path of the J/\(\psi\) in the \(r-\phi\) plane to extract the b fraction

\[
\sigma(p\bar{p} \rightarrow bX)|_{|y|<1.0} = (29.4 \pm 0.6(\text{stat}) \pm 6.2(\text{sys})) \mu b
\]

FONLL \[
\sigma(p\bar{p} \rightarrow bX)|_{|y|<1.0} = (27.5^{+11}_{-8.2}) \mu b
\]
Using μp_T spectrum to fit the b and non b content as a function of jet E_T
\(\gamma + b/c \) X-Section

- It probes the heavy flavor content of the proton, sensitive to new Physics
- Basic requirements:
 - One isolated and High \(E_T \) \(\gamma \) (> 25 GeV)
 - One jet with a secondary vertex (b/c “like” jet)
- Fit on the secondary vertex mass distribution of the tagged jets to determine the number of events containing b, c and uds quarks in the data

Cross-section measurements agree with the QCD predictions

\[
\sigma(b + \gamma) = 40.6 +/- 19.5 \text{ (stat.)} + 7.4 - 7.8 \text{ (sys.) pb} \\
\sigma(c + \gamma) = 486.2 +/- 152.9 \text{ (stat.)} + 86.5 - 90.9 \text{ (sys.) pb}
\]
Once the overall picture is under control, I will talk about some recent measurements from exclusive modes…

Results from ‘exclusive’ channels
Yields in Exclusive B Decays

B^0

\[B^0 \rightarrow J/\psi + K^* \]

\[N = 1857 \pm 72 \]

B^+

\[B^+ \rightarrow J/\psi + K^* \]

\[N = 4306 \pm 89 \]

CDF II Preliminary

361 ± 28 \(\Lambda_b \rightarrow \Lambda_c \pi \) candidates

- Four-prong B reflections
- Other B meson decays
- Other \(\Lambda_b \) decays
- \(\Lambda_b \rightarrow \Lambda_c K \)
- Combinatorial background

\(L \approx 180 \text{ pb}^{-1} \)

CDF Run II Preliminary

\(R_\phi \rightarrow \pi^+ D_s^- X \)

\[N(D_{s0}^-) = 1400 \]
Mass measurements in fully reconstructed B decays:

- Small systematic uncertainties
- Best B$^+$ and B0 single measurements
- Best B_s and $Λ_b$ w.r.t the combined PDG

<table>
<thead>
<tr>
<th>Mass (Mev/c2)</th>
<th>CDF preliminary</th>
<th>PDG value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^+</td>
<td>5279.10 ± 0.41 ± 0.34</td>
<td>5279.0 ± 0.5</td>
</tr>
<tr>
<td>B^0</td>
<td>5279.57 ± 0.53 ± 0.30</td>
<td>5279.4 ± 0.5</td>
</tr>
<tr>
<td>B_s</td>
<td>5366.01 ± 0.73 ± 0.30</td>
<td>5369.6 ± 2.4</td>
</tr>
<tr>
<td>$Λ_b$</td>
<td>5619.7 ± 1.2 ± 1.2</td>
<td>5624 ± 9</td>
</tr>
</tbody>
</table>

To be reprocessed with extended tracking ⇒ improve yield by 50%
• The huge amount data collected by the CDF Two Track Trigger have been used for this analysis

Relative branching ratios:
\[\frac{\Gamma(D^0 \rightarrow K^+K^-)}{\Gamma(D^0 \rightarrow K\pi)} \]
\[\frac{\Gamma(D^0 \rightarrow \pi^+\pi^-)}{\Gamma(D^0 \rightarrow K\pi)} \]
\[\frac{\Gamma(D^0 \rightarrow KK)}{\Gamma(D^0 \rightarrow \pi\pi)} \approx 2.8 \text{ (SM)} \]

Direct CP-violating decay rate asymmetries:
\[A_{CP} = \frac{\Gamma(D^0 \rightarrow f) - \Gamma(\bar{D}^0 \rightarrow f)}{\Gamma(D^0 \rightarrow f) + \Gamma(\bar{D}^0 \rightarrow f)} \approx 0 \text{ (SM)} \]

• Candidates selected as: \(D^{*+/0} \rightarrow D^0 \pi \) (unbiased tag of the \(D^0 \) flavor)

\(\sim 2 \times 90000 \ D^{*+/0} \) !!!
CP Asymmetries and Decay Rate Ratios

CDF Run II Preliminary

$L = 123 \pm 7 \text{ pb}^{-1}$

$D^{+} \rightarrow D^{0} \pi^{+} \rightarrow [K^{-} K^{+}] \pi^{+}$

$N_{D^{0}} = 8190 \pm 140$

$D^{+} \rightarrow D^{0} \pi^{+} \rightarrow [\pi^{-} \pi^{+}] \pi^{+}$

$N_{D^{0}} = 3660 \pm 69$

$D^{*+} \rightarrow D^{0} \pi^{+} \rightarrow [K^{+} K^{-}] \pi^{-}$

$N_{D^{0}} = 8030 \pm 140$

$D^{*+} \rightarrow D^{0} \pi^{+} \rightarrow [\pi^{+} \pi^{-}] \pi^{+}$

$N_{D^{0}} = 3674 \pm 68$
CP Asymmetries and Decay Rate Ratios

Very important to understand the asymmetry of the CDF detector!!!

Results are computed after applying a correction for the intrinsic charge asymmetry of the detector response and tracking algorithms

<table>
<thead>
<tr>
<th>Ratio</th>
<th>CDF</th>
<th>FOCUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(D^0 \to KK)/\Gamma(D^0 \to K\pi)$</td>
<td>(9.96 +/- 0.11 +/- 0.12)%</td>
<td>(9.93 +/- 0.14 +/- 0.14)%</td>
</tr>
<tr>
<td>$\Gamma(D^0 \to \pi\pi)/\Gamma(D^0 \to K\pi)$</td>
<td>(3.608 +/- 0.054 +/- 0.040)%</td>
<td>(3.53 +/- 0.12 +/- 0.06)%</td>
</tr>
<tr>
<td>$\Gamma(D^0 \to KK)/\Gamma(D^0 \to \pi\pi)$</td>
<td>(2.762 +/- 0.040 +/- 0.034)%</td>
<td>(2.81 +/- 0.10 +/- 0.06)%</td>
</tr>
</tbody>
</table>

$A(D^0 \to KK) = (2.0 +/- 1.2 \text{ (stat.)} +/- 0.6 \text{ (syst.)})\%$

$A(D^0 \to \pi\pi) = (1.0 +/- 1.3 \text{ (stat.)} +/- 0.6 \text{ (syst.)})\%$

$A(D^0 \to KK) = (0.0 +/- 2.2 \text{ (stat.)} +/- 0.8 \text{ (syst.)})\%$

$A(D^0 \to \pi\pi) = (1.9 +/- 3.2 \text{ (stat.)} +/- 0.8 \text{ (syst.)})\%$
Observation of $B \rightarrow \mu \nu D^{**} X$

Start from “$B \rightarrow \mu \nu D^{*-} + X$” sample, and “reconstruct another π^+”. Look at mass of $D^{*-} \pi^+$ system.

Excess in right-sign combinations can be interpreted as combined effect of D_1^0 and D_2^{*0}

From topological analyses at LEP we know:

$\text{Br}(B \rightarrow D^{*-} \pi^- \mu \nu X) = 0.48 \pm 0.10 \%$

DØ’s preliminary result constrains the resonant contribution

$\text{Br}(B \rightarrow \{D_1^0, D_2^{*0}\} \mu \nu X) \cdot \text{Br}(\{D_1^0, D_2^{*0}\} \rightarrow D^{*-} \pi^-) = 0.280 \pm 0.021 \text{ (stat)} \pm 0.088 \text{ (syst)} \%$
The B^0/B^0 mixing frequency Δm_d has been measured with high precision, most recently at the B factories. Measurements of Δm_d constrain $|V_{td}|$, but current limitations are due to theoretical inputs.

Why is B^0 Mixing analysis so important?:
- Benchmark the initial state flavor tagging
- A step toward B_s Mixing

Semileptonic B decays ($D0$, CDF analysis in progress)
Fully reconstructed B decays (CDF)
“Ingredients” to get a $B_{(d,s)}$ mixing measurement:

- Measure proper decay time:
 \[c\tau = \frac{L_{xy}}{\beta\gamma} = \frac{L_{xy} m(B)}{P_T(B)} \rightarrow \sigma_{cl} = \frac{m(B)}{P_T(B)} \sigma_{Lxy} \oplus c\tau \left(\frac{\sigma_{P_{T}(B)}}{P_T(B)} \right) \]

- Identify B flavor at decay:
 Reconstruct the final state with good S/B
 (precise tracking, vertexing, particle ID)

- Identify the flavor of B at production:
 B - flavor tagging algorithms
B^0 yields
Mixing and Flavor Tagging

Figure of merit: \(\epsilon D^2 \)

- \(\epsilon \): tag efficiency
- \(D \): dilution

\[
A(t) \equiv \frac{N_R(t) - N_W(t)}{N_R(t) + N_W(t)} = D \cos(\Delta m t)
\]
\[
A \equiv \frac{N_R - N_W}{N_R + N_W} = D = 1 - 2 P_{Tag}
\]

- **Strategy:**
 - use data for calibration (e.g., \(B^\pm \rightarrow J/\psi K^\pm, B^\pm \rightarrow D^0 \pi^\pm, B \rightarrow \text{lepton} \ldots \))
 - allow to measure \(\epsilon, D \) and \(\epsilon D^2 \) in data and optimize the taggers
 - can then apply them in any sample without bias

\[
\Delta m_d (\text{ps}^{-1})
\]

High precision measurement in \(B_d \) mixing

- **ALEPH** (3 analyses)
- **DELPHI** * (5 analyses)
- **L3** (3 analyses)
- **OPAL** (5 analyses)
- **CDF** * (4 analyses)
- **BABAR** * (3 analyses)
- **BELLE** * (4 analyses)

- **ARGUS+CLEO** (\(\chi^2 \) measurements)

- **World average**

- **Working group average without adjustments**

- **Average of above after adjustments**
Flavor Tagging algorithms

OST (Opposite Side Tagging):

B’s are produced in pairs → measure flavor of opposite B

- **JETQ**: sign of the weighted average charge of opposite B-Jet
- **(*) SLT**: identify the soft lepton from semileptonic decay of opposite B
- **Opposite Side K**: due to $b \rightarrow c \rightarrow s$ it is more likely that a B meson will contain in final state a K^+ than a K^-. Identify K^- in the opposite side

SST (Same Side Tagging):

- **(*) SS pion T**: B^0 is likely to be accompanied close by a π^+ from fragmentation
- **SS Kaon T**: B_s is likely to be accompanied close by a K^+ from fragmentation
B^0 mixing results from CDF

CDF uses fully reconstructed B^0 decays to measure Δm_d:

- This analysis uses Same-Side Pion Tag
- Preliminary results:
 $\Delta m_d = 0.55 \pm 0.10 \text{ (stat.)} \pm 0.01 \text{ (syst.)} \text{ ps}^{-1}$

Work in progress:
- improve SST
- other tagging methods:
 - JQT, SMT, SET
- add more fully reconstructed decay channels
- use semileptonic B decays!
B^0 mixing results from DØ

DØ uses a large sample of semileptonic B^0 decays to measure Δm_d:

- This analysis uses Opposite-Side Muon tag
- Preliminary results:

 $\Delta m_d = 0.506 \pm 0.055 \text{ (stat.)} \pm 0.049 \text{ (syst.)} \text{ ps}^{-1}$

- Consistent with world average:

 $0.502 \pm 0.007 \text{ ps}^{-1}$

- Tagging efficiency: $4.8 \pm 0.2 \%$
- Tagging purity, $N_R/(N_R+N_W) = 73.0 \pm 2.1 \%$

Work in progress:

- other tagging methods: JQT, SST
- add more decay channel
- add fully reconstructed decays
Pentaquarks searches

Summary of the new CDF results on the search for Pentaquarks:
CDF has looked at all known channels and has nothing so far

• Channels:
 • $\Theta^+ \rightarrow p K_s \rightarrow p \pi^+ \pi^-$
 • $\Xi^0_{3/2} \rightarrow \Xi^- \pi^+ \rightarrow \Lambda \pi^+ \pi^-$
 • $\Xi^-_{3/2} \rightarrow \Xi^- \pi^- \rightarrow \Lambda \pi^- \pi^-$
 • $\Theta_c \rightarrow D^*^- p \rightarrow D^0 \pi^- p$
Search for $\Theta^+ \rightarrow p K_s$

- Use 2 energy ranges (min bias and jet20)
- Identify protons using TOF

No evidence for narrow resonance

CDF is working on limit for s ($\Theta^+/\Lambda(1520)$)
Search for $\Xi^0/^{--}_{3/2} \rightarrow \Xi \pi$

- CDF has developed tracking of long lived hyperons in the SVX detector
- Silicon tracking of hyperons improves momentum and impact parameter resolution as well as background reduction

No excess is observed in the CDF data

<table>
<thead>
<tr>
<th>Channel (TTT)</th>
<th># of events</th>
<th>$R(\Xi_{1860}/\Xi_{1530})$ U. L. 95% C.L.</th>
<th>$R(\Xi_{1860}/\Xi_{1530})$ NA49</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi^-\pi^+$</td>
<td>57 +/- 51</td>
<td>0.07</td>
<td>~ 0.21</td>
</tr>
<tr>
<td>$\Xi^-\pi^-$</td>
<td>-54 +/- 47</td>
<td>0.04</td>
<td>~ 0.24</td>
</tr>
<tr>
<td>$\Xi^-\pi^{+-}$</td>
<td>47 +/- 70</td>
<td>0.08</td>
<td>~ 0.45</td>
</tr>
</tbody>
</table>
Search for $\Theta_c \rightarrow D^- p$

- Identify protons using TOF ($p < 2.75$ GeV/c) or dEdx ($p > 2.75$ GeV/c)
- Large sample of D^- (0.5M)

- No evidence of charmed Pentaquark seen
- Combined upper limit: < 29 events (90% C.L.)
Summary

• Inclusive cross-section measurements agree, within the errors, with the theoretical expectations

<table>
<thead>
<tr>
<th>Results in Mev/c^2</th>
<th>CDF preliminary</th>
<th>PDG value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^+</td>
<td>5279.10 ± 0.41 ± 0.34</td>
<td>5279.0 ± 0.5</td>
</tr>
<tr>
<td>B^0</td>
<td>5279.57 ± 0.53 ± 0.30</td>
<td>5279.4 ± 0.5</td>
</tr>
<tr>
<td>B_s</td>
<td>5366.01 ± 0.73 ± 0.30</td>
<td>5369.6 ± 2.4</td>
</tr>
<tr>
<td>Λ_b</td>
<td>5619.7 ± 1.2 ± 1.2</td>
<td>5624 ± 9</td>
</tr>
</tbody>
</table>

• Charm Physics:
 • A(D^0 → KK) = (2.0 +/- 1.2 (stat.) +/- 0.6 (syst.))%
 • A(D^0 → ππ) = (1.0 +/- 1.3 (stat.) +/- 0.6 (syst.))%
 • Observation of narrow D** states in semileptonic B decays

• B^0 Mixing measurement already established in both experiments, another step toward B_s mixing

• No evidence of Pentaquarks in the Tevatron data so far

Work in progress, stay tuned!
Backup Slides...
Rare B decays: $B_{s(d)} \rightarrow \mu^+\mu^-$ from CDF

- No excess has been found unfortunately
- Limits on the Branching fractions have been set

(Expected/Observed) **BR limits vs. luminosity**

Already Submitted to PRL!

<table>
<thead>
<tr>
<th></th>
<th>$B_{s} \rightarrow \mu^+\mu^-$</th>
<th>$B_{d} \rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>1.05 ± 0.30</td>
<td>1.07 ± 0.31</td>
</tr>
<tr>
<td>Data</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BR limit @95% C.L.</td>
<td>7.5×10^{-7}</td>
<td>1.9×10^{-7}</td>
</tr>
<tr>
<td>BR limit @90% C.L.</td>
<td>5.8×10^{-7}</td>
<td>1.5×10^{-7}</td>
</tr>
</tbody>
</table>

Best world result

Slightly better results than Belle and BaBar

1.6×10^{-7}

2.0×10^{-7}
$B_s \rightarrow \mu^+ \mu^-$ sensitivity study from D0

Optimised cuts using Random Grid Search [Prosper, CHEP’95; Punzi, CSPP’03] based on the mass sidebands

After optimisation:

expect 7.3 ± 1.8 background events in signal region

Expected limit (Feldman/Cousins):

\[
\text{Br}(B_s \rightarrow \mu^+ \mu^-) < 9.1 \times 10^{-7} \ @ \ 95 \% \ CL \quad (\text{stat only}) \\
\text{Br}(B_s \rightarrow \mu^+ \mu^-) < 1.0 \times 10^{-6} \ @ \ 95 \% \ CL \quad (\text{stat + syst}) \\
\text{(expected signal has been normalised to } B^\pm \rightarrow J/\Psi K^\pm)
\]

Published CDF Run I result (98 pb$^{-1}$):

\[
\text{Br}(B_s \rightarrow \mu^+ \mu^-) < 2.6 \times 10^{-6} \ @ \ 95 \% \ CL
\]

The analysis has not been unblinded yet (signal region still hidden)
Branching ratio for $B_s \rightarrow \mu^+\mu^-$ as a function of $m_{1/2}$ for $m_0 = 300, 500$ and 800 in R-parity violation SUSY scenario. Other mSUGRA parameters are fixed to be $\tan\beta = 10$, $A_0 = 0$ and $m > 0$.

Dashed lines are to indicate the models that are excluded via $b \rightarrow s\gamma$ constraints.
Exotic State: $X(3872) \rightarrow J/\psi \pi^+ \pi^-$

$\Delta M = 774.9 \pm 3.1 \text{(stat)} \pm 3.0 \text{ (sys)} \text{ MeV/c}^2$

$\Delta M + M(J/\psi) = 3871.8 \pm 4.3 \text{ MeV/c}^2$

Belle: $M_X = 3872.0 \pm 0.6 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV/c}^2$
lepton + displaced track trigger provides high statistics sample

Analysis:

- Trigger lepton used to estimate B flavor at production
- Identify μ charge on opposite side
- Cross check consistency with partially reconstructed lepton+$D^{+,0}$
- **Remainder:** this number is UNBIASED since we are using an independent (and high statistics) control sample

Detailed sample composition studies:

- Mass cut removes D decays: $2 < M(\ell + \text{track}) < 4\,\text{GeV/c}^2$
- Background subtraction variable separates B’s from background: signed IP of displaced track

$\varepsilon D^2 (SMT) = (0.7 \pm 0.1)\%$
Jet Charge Tag in Semileptonic Sample at CDF

- This work starts from the high-Pt version of the Run I Jet Charge Tagging algorithm.
- The algorithm is applied to and calibrated on the inclusive semileptonic events from the $e^{+}\text{svt}$ and $\mu^{+}\text{svt}$ trigger.

<table>
<thead>
<tr>
<th>Jet type</th>
<th>ϵ, %</th>
<th>D at $Q_{\text{jet}}=1$, %</th>
<th>ϵD^2, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^{-}\text{SVT}$ sample with $\mu^{-}\text{SVT}$ tuning:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SecVtx jets</td>
<td>9.9±0.1%</td>
<td>36.7±3.1%</td>
<td>0.226±0.016%</td>
</tr>
<tr>
<td>non-SecVtx jets</td>
<td>68.8±0.2%</td>
<td>12.0±1.2%</td>
<td>0.193±0.018%</td>
</tr>
<tr>
<td>combined</td>
<td>78.6±0.2%</td>
<td></td>
<td>0.419±0.024%</td>
</tr>
</tbody>
</table>

- First step on JQT
- Work in progress to improve it
CPV - Two body charmless decays $B \rightarrow h^+h^-$

- Time dependent asymmetry $B_d \rightarrow \pi\pi$ (α angle) and $B_s \rightarrow KK$ (γ angle)
- Direct CP asymmetry of the self tagging modes $B_d \rightarrow \pi K$ and $B_s \rightarrow K\pi$

1. extracting the signal

Online hadronic selection
+ B pointing prim. vertex, displaced & isolated

2. Separation of the components

- $dE/dx \sim 1.3s$ for K/π separation
- Statistical separation is still possible
- Unbinned log-likelihood fit defined including
 - Kinematical variables $M(\pi\pi)$ and $a=\frac{1-p1/p2}{q1}$
 - dE/dx

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield (65 pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow K\pi$</td>
<td>148 ± 17(stat.) ± 17(syst)</td>
</tr>
<tr>
<td>$B^0 \rightarrow \pi\pi$</td>
<td>39 ± 14(stat.) ± 17(syst)</td>
</tr>
<tr>
<td>$B_s \rightarrow KK$</td>
<td>90 ± 17(stat.) ± 17(syst)</td>
</tr>
<tr>
<td>$B_s \rightarrow K\pi$</td>
<td>3 ± 11(stat.) ± 17(syst)</td>
</tr>
</tbody>
</table>
CPV - Direct A_{CP} Selftagging Modes - Projections

- First observation $B_s \rightarrow KK$
- Direct A_{CP} violation ~ 0

\[
\frac{BR(B_s \rightarrow K^\pm K^\mp)}{BR(B_d \rightarrow K^\pm \pi^\mp)} = 2.71 \pm 1.15
\]

\[
A_{CP}(B^0 \rightarrow K^- \pi^+) = 0.02 \pm 0.15 \text{ (stat)} \pm 0.02 \text{ (syst)}
\]

\[
A_{CP}(B^0) = A_{CP}^{dir} \cos \Delta m_d t + A_{CP}^{mix} \sin \Delta m_d t
\]

\[
A_{CP}(B_s) = A_{CP}^{dir} \cos \Delta m_s t + A_{CP}^{mix} \sin \Delta m_s t
\]

![CDF Run II Preliminary](image1.png)

A factor of 4 below Yellow Book

![CDF Run II Preliminary](image2.png)

$B_S \rightarrow KK$

$\in D^2 = 5\%$

$\sigma_t = 50 \text{ fs}$

$x_S = 50$

$x_S = 30$

$x_S = 20$
Towards B_s Mixing

- Measurement of Δm_s helps improve our knowledge of CKM triangle
 - $\Delta m_s > 14.4 \text{ps}^{-1}$ @95% C.L.
 - B_s fully mixes in < 0.15 lifetime!
- B_s oscillation much faster than B_d because of coupling to top quark

$V_{tb} \sim 1$, $\text{Re}(V_{td}) \approx 0.0071$

$V_{tb} \sim 1$, $\text{Re}(V_{ts}) \approx 0.04$

B_d Mixing

B_s Mixing
B$_s$ Mixing sensitivity

- D0: 2 fb$^{-1}$, $\Delta m_s = 15$ and $s_t = 150$ fs
 - Please, be careful with these numbers!
 - Single muon trigger:
 - $B_s \rightarrow D_s \mu X (3.5 \, \sigma)$
 - $B_s \rightarrow D_s e X (3.5 \, \sigma)$
 - $B_s \rightarrow D_s \pi (2.2 \, \sigma)$, μ in the other side
 - Dimuon trigger:
 - $B_s \rightarrow D_s \mu X (3.0 \, \sigma)$, μ in the other side
- CDF:
 - $\Delta m_s = 15$, $2 \, \sigma$ limit with 0.5 fb$^{-1}$
 - $\Delta m_s = 18$, discovery with 1.7 fb$^{-1}$
 - $\Delta m_s = 24$, discovery with 3.2 fb$^{-1}$

Semileptonic decays:
- Very good statistics, but poorer time resolution
- If $\Delta m_s \approx 15$ ps$^{-1}$ expect a 1-2 σ measurement with 500 pb$^{-1}$
CDF Trigger System Overview

- Crossing: 396 ns, 2.5 MHz
 - Level 1: hardware
 - Electron, Muon, track, missing E_t
 - 15-20kHz (reduction \simx200)
 - Level 2: hardware
 - Cal. Cluster, jet finding, Silicon track
 - 300-350 Hz (reduction \simx5)
 - Level 3: Linux PC farm
 - \(~\) Offline quantities
 - 50-70 Hz (reduction \sim x6)
b Hadron Differential Cross Section

\[
d\sigma(p\bar{p} \rightarrow H_b X, H_b \rightarrow J/\Psi X) \cdot Br(J/\Psi \rightarrow \mu\mu) / dp_T(J/\Psi)
\]

H_b denote both b hadron and anti b hadron
|Y(H_b)|<0.6

But:
- We can not extract b fraction when b hadron is at rest
- We want total b hadron cross section
- We want b cross section as a function of b hadron transverse momentum
b Hadron Differential X-Section

Bottom decays transfer about 1.7GeV p_T to the J/Ψ
We can probe b near $p_T=0$ if we can measure b fraction of J/Ψ with p_T below this value

Assume a b-hadron p_T spectrum
Unfold $p_T(H_b)$ from $p_T(J/\Psi)$ using MC
b-hadron X-section $d\sigma/dp_T(H_b)$
New b-hadron p_T spectrum
Iterate to obtain the correct p_T spectrum
b-hadron differential and total X-section