New Physics Searches at the Tevatron

Amitabh Lath
Rutgers University/CDF
For the CDF and D0 Collaborations

ICHEP 2004
Beijing
Tevatron: The Energy Frontier

- 1.96 TeV CM Energy
- 500 pb\(^{-1}\) to tape NOW
- 4 fb\(^{-1}\) to tape by FY 2009.

(8 fb\(^{-1}\) possible?)

- *When will new physics show up?*
- *What will it look like?*
- *Will our triggers and analyses be sensitive to it?*

We need to think beyond established theories
New Physics: Beyond Higgs, SUSY

- **Use familiar objects:** $e, \mu, \tau, \gamma, \text{jet, } E_T$
 - **Massive Objects:**
 - Z'/W', Gravitons (leptons, photons)
 - Leptoquarks (leptons, E_T, jets)
 - Extra dimensions (leptons, jets, E_T)
 - **Compositeness:**
 - Excited Fermions (leptons, photons)
 - Technicolor (leptons)
- **Truly Exotic Objects**
 - Charged Massive Particles (CHAMPS)
 - Magnetic Monopoles
The Classic Searches

e^+e^-: Probe Z’, RS Graviton...

CDF Run II Preliminary (200 pb$^{-1}$)

D0 Run II 200 pb$^{-1}$

DiEM Mass Spectrum

Note: agreement over 2 orders of magnitude in m_{ee}.

Hypothetical Z’

Large Extra dimensions
The Classic Searches continued

$\mu^+\mu^- : \text{Probe Z}', \ RS \ Graviton...$

e,\mu \text{ complimentary:}

e \rightarrow \text{uses EM calorimeter, resolution better at harder e.}

$\mu \rightarrow \text{uses tracker, resolution better at softer } \mu.$
Historically ee, (µµ) searches have paid off handsomely at hadron machines.

Insensitive to QCD remnants.
Dilepton Cross-Section Limits: ee

CDF Run II Preliminary (200 pb$^{-1}$)

D0 Run II Preliminary

CDF : $Z' \rightarrow ee$ Limit 750 GeV/c2

D0: $Z' \rightarrow ee$ Limit 780 GeV/c2

D0 200 pb$^{-1}$
Dilepton Cross-Section Limits: $\mu\mu$

CDF Run II Preliminary (200 pb$^{-1}$)

- $\sigma_{BR}(Z' \rightarrow \mu\mu)$ (95% C.L.)
- $\sigma_{BR}(Z_H \rightarrow \mu\mu)$ (LO\times1.3)

D0 250 pb$^{-1}$

- $\sigma \times BR(Z' \rightarrow \mu\mu)$ (LO\times1.3)

Limiting Values

- **CDF**: $Z' \rightarrow \mu\mu$ Little Higgs
 - $\cot\theta = 0.7$: 720 GeV/c2
- **D0**: $Z' \rightarrow \mu\mu$ (SM)
 - > 680 GeV/c2

Limits

- ~ 60 fb
Almost there! Need another order of magnitude
Another promising channel: Diphoton

Diphoton Mass = 405 GeV
Photon Et = 172, 175 GeV

$\gamma \rightarrow$ an e without a track.

CDF Preliminary, 345 pb$^{-1}$

Entries/5 GeV/c2

10^3

10^2

10^1

10^{-1}

10^{-2}

10^{-3}

0 50 100 150 200 250 300 350 400 450 500

$m_{\gamma\gamma}$ (GeV/c2)

Total Background

CDF Run II Preliminary (345 pb$^{-1}$)

σBR(G \rightarrow $\gamma\gamma$) limit (95 % C.L.)

σBR(G \rightarrow $\gamma\gamma$) (PYTHIA \times 1.3)

Randall-Sundrum Model

LIMTS

\sim70 fb

365 GeV/c2

565 GeV/c2

690 GeV/c2
Combined Limits: Graviton, LED

- Pairs of hard, isolated leptons and photons are powerful tools to hunt new physics.
- The SM backgrounds are small and well understood.
- The results are $\sigma \times \text{BR}$, which can be interpreted in a variety of ways by different models (some of which haven’t been published yet!)

$\eta = \frac{F}{M_s^4}$

η limit: 0.24 TeV$^{-1}$

$M_{\text{PL}} > 1.43$ TeV (GRW) World’s best limit on M_{PL}
Adding E_T: W' Search

- Electron + E_T
 - Neutrinos show up as MET
- Many sources of E_T tails:
 - Muons
 - Cracks in detector
 - Energy calib.
- Plot shows we have good understanding of E_T.

W' limit plot
work in progress.
e+γ: Compositeness (Excited electrons)

- **Compositeness**
- **Contact**
- **Gauge mediated**

3 events seen

![Graph showing entries and integrated number of entries](image)

- **CDF Run II Preliminary**
- **L = 200 pb⁻¹**
- **Zeγ**
- **m_{eγ}**
- **Integrated # of Entries**
- **Total Background**
- **Total Uncertainty**
- **Meγ (GeV)**
Limits on excited electrons

CDF Run II Preliminary
\[\int L \cdot dt = 200 \text{ pb}^{-1} \]

\(\sigma \cdot BR(e^* \rightarrow e \gamma) \) (pb)

\(M_{e^*} \) (GeV)

95% CL Limit

208 GeV

CDF Run II Preliminary

95% C.L. Exclusion Region

\(f/\Lambda \) (GeV\(^{-1}\))

\(\Gamma/\Gamma_{\text{meas}} = 2, \Gamma \text{ Full BW Width} \)

ZEUS (1994–1997)

H1

L3

LIMITS
\(~70 \text{ fb}\)
Electrons+Jets: Leptoquarks

Two energetic electrons.

Two jets

1st gen. LQ

Scalar Energy sum, e_ejj
Electrons+Jets: Leptoquarks

Two energetic electrons. Two jets

- Limit ~ 100 fb
- More challenging at lower mass.
 - QCD bg requires hard cuts that affect limit at low mass.

- Jets harder to study than e, γ
 - Jet multiplicity hard to simulate.
 - Jet \(\leftrightarrow \) quark, g correspondence hard to disentangle
 - Jet energy resolution not nearly that of e, γ.
Electron+Jets+E_T: Leptoquarks

- One energetic electron.
- E_T
- Two jets

Limit ~ 100 fb
Jets + E_T: Leptoquark

CDF Run II Preliminary

$\int L \, dt = 191 \text{ pb}^{-1}$

- Data
- QCD prediction
- + SM EWK / $t\bar{t}$ prediction
- LQ ($m = 125 \text{ GeV/c}^2$)

- CDF Upper Limit, 95% CL
- Theoretical cross section (PRL 79, 1997)
- CTEQ5M, $Q=m(LQ)$
- CTEQ5M, $Q=0.5m(LQ)$, $2m(LQ)$

No electrons in final state
Leptoquark goes to ν, jet.

Challenging at low mass.

Important for squark/gluino searches
Leptoquarks (1st Gen. Limits)

\[\beta = \text{Branching Ratio (LQ} \rightarrow \text{eq)} \]

\[\begin{array}{cccccc}
140 & 160 & 180 & 200 & 220 & 240 \\
\end{array} \]

\[\begin{array}{cccccc}
0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\end{array} \]

\[\begin{array}{cccccc}
0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\end{array} \]

\[\begin{array}{cccccc}
140 & 160 & 180 & 200 & 220 & 240 \\
\end{array} \]

DØ Run II Preliminary D0 200 pb\(^{-1}\)

\[\begin{array}{cccccc}
e^+\nu+2\text{jets} & e^-e^++2\text{jets} & \text{DØ Run II Combined Limit} \\
\end{array} \]
Now with \(\mu: \) LQ 2\(^{nd} \) Generation

Two muons,
Two jets.

Limit \(~ 70 \text{ fb}\)

CDF Run II Preliminary (198 pb\(^{-1}\))

Cylindrical sig/bkg discrimination

Int. Lum = 2.5 fb\(^{-1}\)

LQ m=220 MC

DY,Top MC

Search for 2\(^{nd} \) Generation
Scalar Leptoquarks, \(\beta = 1 \)

Leptoquark Mass (GeV/c\(^2\))

Limit

\(M_{LQ} > 241 \text{ GeV/c}\(^2\) \)

CDF upper limit, 95% CL

2 events observed

Theoretical Cross Sections, Phys Rev Lett 79, 341, '97

CTEQ4M, Q = M\(_{LQ}\)

CTEQ4M, Q = 0.5, 2 M\(_{LQ}\)

\(\sigma \times \beta^2 \) (pb)
Jets+MET: Large Extra Dimensions

QCD

Data

MC

Signal

Most stringent

No k factor

Need to understand calorimetry, tracking, acceptance in excruciating detail.

D0 Run II Preliminary

D0 Run I

CDF Run I

L3

Nd

Number of Dimensions

Events / 10

missing ET

Events / 10

second jet pT

D0 Run II Preliminary

Data

MC

Signal

D0 prelim.
A special sort of jet: $\tau \rightarrow \text{hadrons}$

See Weiming Yao’s talk for more on taus.
Truly Exotic: CHAMPS

- CHAMPS are \textit{slow moving}
 - Large Ionization loss
 - Long time of flight
- Highly penetrating
 - Will look like a muon

\[\int L \, dt = 53 \text{ pb}^{-1} \]

CDF Run 2 Preliminary

\[\text{Cross section (pb)} \]

\[\text{Stop Mass (GeV/c}^2 \text{)} \]

\[m_{\text{isolated-stop}} > 108 \text{ GeV/c}^2 \]

\[\approx 10,000 \text{ fb} \]
Truly Exotic: Monopole

- Bends in the *wrong* plane (→ high pt)
- Large ionization in scint (>500 Mips!)
- Large dE/dx in drift chamber

CDF Run II Preliminary

m_{monopole} > 350 GeV/c^2

95% CL Limit

LIMITS ~300 fb
Summary

- **Tevatron luminosity is ramping up.**
 - 4 fb\(^{-1}\) promised by 2009. *Exciting physics possible.*

- **Translating detector understanding to physics.**
 - Objects like \(e, \mu, \gamma, \tau, E_T, \) jets, (b) are now reconstructed w/ excellent efficiency, purity. We use these to search for \(V',\) Technicolor, LQ, excited fermions, extra dim...
 - Going to get even better: More luminosity, better understanding.
 - Now, limits \(~50 - 100\) fb (leptons, photons). *Soon, \(~10\) fb!*

- **We think outside the box.**
 - Hunt for new objects like CHAMPS, monopoles…
 - Could use help from theorists here.

- **We hope to see new physics soon.**
 We are sick and tired of making exclusion plots!
Backup slides
Tevatron Promises High Luminosity…

- Aug04: ~0.7fb⁻¹ delivered: > design
- 12 pb⁻¹ / week currently: above “design”
- 4 fb⁻¹ line: 2009? Earlier?

Slam dunk!

Oct 03
But can they deliver?

Recent news is encouraging!