Latest results on b-spectroscopy from CDF

Elena Vataga (Univ. of New Mexico, USA)
On behalf of the CDF Collaboration
CERN- October 31, 2006
Why B spectroscopy?

- **We are not looking for New Physics** (but may find subtle discrepancy…)
- Standard Model is extraordinary. Deserves thorough elucidation.

B-quark discovered in 1977. Wealth of b-mesons is found. Only one b-baryon well established so far.

Effective theories derived from QCD needed for dynamical understanding: HQET

- $m_c, m_b, m_t >> \Lambda_{QCD} >> m_u, m_d, m_s \Rightarrow$ Heavy Quark Symmetry

HQET extensively tested for Qq systems; interesting to check predictions for Qqq systems
What’s new?

- Observation of orbitally excited B_s^{**} mesons
- Observation and mass measurement of $B_c \rightarrow J/\psi \pi$
- Search for $\eta_b \rightarrow J/\psi J/\psi$
- Observation of new beauty baryons $\Sigma_b^{\pm(*)}$
Tevatron

- Excellent performance of Tevatron in last years
- Record Instantaneous luminosity > 2×10^{32} cm$^{-2}$ s$^{-1}$
- Now: delivered $\int L dt = 1.8$ fb$^{-1}$
- Good for b-physics on tape $\int L dt = 1.3$ fb$^{-1}$
The CDF II detector

96 layer drift chamber
44 < r < 132 cm, |z| < 155 cm
|\eta| \leq 1.0, 30k channels

\(r_{00} = 1.3 \div 1.6 \) cm

silicon layers:
90 cm long, |\eta| \leq 2.0

|Trigger: 3 levels|
25000 / 300 / 100 Hz
L1: COT tracks
L2: silicon tracks
dead time < 5%

|Resolution:|
\(p_T \sim 0.15\% \ p_T \)
vertex r-\(\phi \) \sim 30 \mu m; r-z \sim 80 \mu m
J/\psi \) mass \sim 14 \text{MeV/c}^2

\(\mu \) coverage
|\eta| \leq 1
84% in \phi

\(\psi \) mass \sim 14 \text{MeV/c}^2
B physics @ Tevatron

Compared to e^+e^- experiments on $\Upsilon(4S)$ or Z^0

- **Pro:**
 - $p\bar{p} \rightarrow b\bar{b}$ x-section is >1000 times larger ($\sim 10 \mu b$)
 - All species of b-hadrons: not just B^\pm/B^0, also B_s^0, B_c, Λ_b^0

- **Contro:**
 - QCD background $\times 10^3$ larger than $\sigma(bb)$
 - multiple interactions, large combinatorics
 - Collision rate ~1.7 MHz \rightarrow tape writing limit ~ 100 Hz

Flavor creation (annihilation)
Flavor creation (gluon fusion)
Flavor excitation
Gluon splitting
B physics @ CDF: triggers are crucial

Trigger configurations:

- **Di-muon**
- **Lepton plus displaced track**
- **2 displaced tracks**

Secondary Vertex Trigger (SVT) is unique to CDF!

First of its kind to trigger on fully hadronic b/c decays

BR~10^{-5} visible with just trigger confirmation!

~ 42 TB in BCHARM trigger!
B_s and Λ_b mass measurements

PRL 96, 202001 2006

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$M(B_s)$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphi</td>
<td>5374. ± 16. ± 2.</td>
</tr>
<tr>
<td>Aleph</td>
<td>5368.6 ± 5.6 ± 1.5</td>
</tr>
<tr>
<td>Opal</td>
<td>5359. ± 19. ± 7.</td>
</tr>
<tr>
<td>CDF</td>
<td>5369.9 ± 2.3 ± 1.3</td>
</tr>
<tr>
<td>CDF II (this)</td>
<td>5366.01 ± 0.73 ± 0.33</td>
</tr>
<tr>
<td>World average</td>
<td>5369.6 ± 2.4</td>
</tr>
</tbody>
</table>

Delphi

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$M(\Lambda_b)$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>5668. ± 16. ± 8.</td>
</tr>
<tr>
<td>Aleph</td>
<td>5614. ± 21. ± 4.</td>
</tr>
<tr>
<td>CDF II (this)</td>
<td>5621.0 ± 4.0 ± 3.0</td>
</tr>
<tr>
<td>World average</td>
<td>5624.0 ± 9.0</td>
</tr>
</tbody>
</table>

better precision than the current world average!
Lambda_b Lifetime

- Measured with fully reconstructed $\Lambda_b \rightarrow J/\psi \Lambda^0$ decay
- 542 Λ_b candidates
- World best $\tau(\Lambda_b)$ measurement!

\[\tau(\Lambda_b^0) = 1.593^{+0.083}_{-0.078} \text{(stat)} \pm 0.02 \text{(syst)} \text{ ps} \]

\[\frac{\tau(\Lambda_b^0)}{\tau(B^0)} = 1.037 \pm 0.058 \text{ (\tau(B^0) from World Average)} \]
E.Vataga - Latest results on b-spectroscopy from CDF

\[\Lambda_b \text{ Lifetime vs theory} \]

As precise as previous world average

3.1 \sigma different though!

World Average (without this result)

(C.Tarantino et al., hep-ph/0203089)

CDF New Result

CERN - October 31, 2006
Observation of orbitally excited (L=1) B_s^{**} mesons
Orbitally Excited B_{sJ} Mesons

- **B_{sJ} states have $l=0$**

<table>
<thead>
<tr>
<th>j_q</th>
<th>J^p</th>
<th>B_{sJ}</th>
<th>Decay</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0+</td>
<td>B_{s0}</td>
<td>BK</td>
<td>Broad (S-wave)</td>
</tr>
<tr>
<td>1/2</td>
<td>1+</td>
<td>B_{s1}</td>
<td>B^*K</td>
<td>Broad (S-wave)</td>
</tr>
<tr>
<td>3/2</td>
<td>1+</td>
<td>B_{s1}</td>
<td>B^*K</td>
<td>Narrow (D-wave)</td>
</tr>
<tr>
<td>3/2</td>
<td>2+</td>
<td>B_{s2}^*</td>
<td>BK, B^*K</td>
<td>Narrow (D-wave)</td>
</tr>
</tbody>
</table>

- $B^{**} \rightarrow B^+\gamma$, where γ is undetected
- Shift of possible B_{s2}^*, B_{s1} peaks by $\Delta M(B^{**} - B^+) = 45.78$ MeV/c² (see PDG)
- Two channels: $B^+ \rightarrow J/\psi K$, $B^+ \rightarrow D\pi$
B\(^+\) sample: \(~58\ 000!\)

Use Neural Network to optimize both B\(^+\) and B\(_s\)**
Two signals:

- B^*_{s2} already seen by OPAL, DELPHI and DØ
- B^*_{s1} ⇒ first observation!

Orbitally Excited B_s-mesons
Discovery of B_{s1}

- $N(B^{*}_{s2}) = 94.8 \pm 23.4\text{ (stat)}$
- $N(B_{s1}) = 36.4 \pm 9.0\text{ (stat)}$

P-value from Toy MC $\sim 2 \times 10^{-7}$

Greater than 5 σ!

$m(B_{s1}) = 5829.41 \pm 0.21\text{ (stat)} \pm 0.14\text{ (syst)} \pm 0.6\text{ (PDG)} \text{ MeV/c}^2$

$m(B^{*}_{s2}) = 5839.64 \pm 0.39\text{ (stat)} \pm 0.14\text{ (syst)} \pm 0.5\text{ (PDG)} \text{ MeV/c}^2$
Observation of $B_c \rightarrow J/\psi \pi$
and mass measurement of B_c
$B_c^\pm \rightarrow J/\psi \pi^\pm$

- B_c is not produced at B factories
- Observed in semileptonic mode
- Full reconstruction allows for precise mass measurement
- New analysis
 - Tune selection on $B^+ \rightarrow J/\psi K^+$
 - After approval, “open box”.
 - Wait for significant excess
 - Measure properties of the B_c
$B_c^{±} \rightarrow J/\psi \pi^{±}$

$\mathcal{N}(B_c) = 45.2 \pm 9.4, \frac{S}{\sqrt{B}} = 7.5$

$m(B_c) = 6276.5 \pm 4.0$ (stat) ± 2.7 (syst) MeV/c2
Search for $\eta_b \rightarrow J/\psi J/\psi$
Introduction

- Spin-singlet $b\bar{b}$ bound state
- $\sigma(p\bar{p} \rightarrow \eta_b X) \sim \mu b$ level at Tevatron energy scale
- Large uncertainty on decay branching fraction:
 - $\text{BR}(\eta_b \rightarrow J/\psi J/\psi \rightarrow \mu\mu\mu\mu) \sim 10^{-7} \div 5$
Search for $\eta_b \to J/\psi J/\psi$

- Exclusive search from CDF RunI and LEP
- Inclusive search from CLEO
 \((\Upsilon(nS) \to \eta_b \gamma; h_b \to \eta_b \gamma) \)
- No significant evidence yet.

Run I history (80 pb\(^{-1}\)):
- 7 events observed/ 1.8 backgr. (2.2 \(\sigma\))
- Upper limit 18 pb
Results

- Expected 3.6 bkg events; observe 3 events
- Set upper limit for production cross section

\[
\frac{\sigma(p\bar{p} \rightarrow \eta_b X) \cdot Br(\eta_b \rightarrow J/\psi J/\psi)}{\sigma(p\bar{p} \rightarrow b \rightarrow J/\psi X)} < 4.98 \times 10^{-3}
\]

\[
\sigma(p\bar{p} \rightarrow \eta_b X, |y(\eta_b)| < 0.6, p_T(\eta_b) > 3 GeV) \cdot Br(\eta_b \rightarrow J/\psi J/\psi) \cdot [Br(J/\psi \rightarrow \mu\mu)]^2 < 2.6 \text{ pb}
\]
Observation of new beauty baryons $\Sigma_b^{\pm(*)}$

Bottom Baryon States with $B=1, C=0, J^P = 1/2^+, 3/2^+$

<table>
<thead>
<tr>
<th>Notation</th>
<th>Quark content</th>
<th>J^P</th>
<th>SU(3)</th>
<th>(I,I_3)</th>
<th>S</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ_b^0</td>
<td>b[ud]</td>
<td>$1/2^+$</td>
<td>3*</td>
<td>(0,0)</td>
<td>0</td>
<td>5619.7±1.2 MeV</td>
</tr>
<tr>
<td>Σ_b^0</td>
<td>b{ud}</td>
<td>$1/2^+$</td>
<td>6</td>
<td>(1,1)</td>
<td>0</td>
<td>5.82 GeV</td>
</tr>
<tr>
<td>Σ_b^-</td>
<td>b{sd}</td>
<td>$1/2^+$</td>
<td>6</td>
<td>(1,-1)</td>
<td>0</td>
<td>5.82 GeV</td>
</tr>
<tr>
<td>Ξ_b^0</td>
<td>b[su]</td>
<td>$1/2^+$</td>
<td>6</td>
<td>(1/2,1/2)</td>
<td>-1</td>
<td>5.80 GeV</td>
</tr>
<tr>
<td>Ξ_b^-</td>
<td>b[sd]</td>
<td>$1/2^+$</td>
<td>6</td>
<td>(1/2,-1/2)</td>
<td>-1</td>
<td>5.80 GeV</td>
</tr>
<tr>
<td>Ω_b^0</td>
<td>bss</td>
<td>$1/2^+$</td>
<td>6</td>
<td>(0,0)</td>
<td>-2</td>
<td>6.04 GeV</td>
</tr>
<tr>
<td>Σ_b^*</td>
<td>b[uud]</td>
<td>$3/2^+$</td>
<td>6</td>
<td>(1,1)</td>
<td>0</td>
<td>5.84 GeV</td>
</tr>
<tr>
<td>Σ_b^{*0}</td>
<td>bud</td>
<td>$3/2^+$</td>
<td>6</td>
<td>(1,0)</td>
<td>0</td>
<td>5.84 GeV</td>
</tr>
<tr>
<td>Σ_b^{*-}</td>
<td>b[ddd]</td>
<td>$3/2^+$</td>
<td>6</td>
<td>(1,-1)</td>
<td>0</td>
<td>5.84 GeV</td>
</tr>
<tr>
<td>Ξ_b^{*0}</td>
<td>b[ud]</td>
<td>$3/2^+$</td>
<td>6</td>
<td>(1/2,1/2)</td>
<td>-1</td>
<td>5.94 GeV</td>
</tr>
<tr>
<td>Ξ_b^{*-}</td>
<td>b[sd]</td>
<td>$3/2^+$</td>
<td>6</td>
<td>(1/2,-1/2)</td>
<td>-1</td>
<td>5.94 GeV</td>
</tr>
<tr>
<td>Ω_b^{*}</td>
<td>bss</td>
<td>$3/2^+$</td>
<td>6</td>
<td>(0,0)</td>
<td>-2</td>
<td>6.06 GeV</td>
</tr>
</tbody>
</table>

Mass predictions from hep-ph/9406359
Predictions on Σ_b^-(*)/Σ_b^+(*) properties

<table>
<thead>
<tr>
<th>Σ_b property</th>
<th>Expected val. (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(Σ_b) − m(Λ_b)</td>
<td>180 ÷ 210</td>
</tr>
<tr>
<td>m(Σ_b^*) − m(Σ_b)</td>
<td>10 ÷ 40</td>
</tr>
<tr>
<td>m(Σ_b^-) − m(Σ_b^+)</td>
<td>5 ÷ 7</td>
</tr>
<tr>
<td>Γ(Σ_b), Γ(Σ_b^*)</td>
<td>~8, ~15</td>
</tr>
</tbody>
</table>

- NRQCD, HQET
- Potential models
- 1/N_c expansions
- Lattice QCD calculations

Strong decay with π emission:

Σ_b → Λ_b π
Methodology

Decay chain:
\[\Sigma_b^{(*)} \rightarrow \Lambda_b^0 \pi^- \]
\[\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \]
\[\Lambda_c^+ \rightarrow p K^- \pi^+ \]
Strategy

- Optimize Λ_b yield
- Blind Σ_b signal region
 - Check for possible reflections from other B decays
 - Evaluate different background contributions
- Optimize Σ_b selection (MC)
- Estimate detector resolution for Σ_b (MC)
- Measure Σ_b yields and Masses
- Set the limit

Understanding of background is crucial!

OPEN THE BOX
Discriminating variable

- Search for narrow resonances in
 - \(Q = m(\Lambda_b\pi) - m(\Lambda_b) - m(\pi) \)
- Blinded region \(0.03 < Q < 0.10 \) GeV/c^2
- Work with 2 distributions
 - (expect \(m(\Sigma_b^-) > m(\Sigma_b^+) \))
- Same Charge (SC):
 - \(\Sigma_b^- (*) \rightarrow \Lambda_b^0 \pi^- \rightarrow \Lambda_c^+ \pi^- \pi^- (+ c.c) \)
- Opposite charge (OC):
 - \(\Sigma_b^+ (**) \rightarrow \Lambda_b^0 \pi^+ \rightarrow \Lambda_c^+ \pi^- \pi^+ (+ c.c) \)

- Remove \(\Lambda_b \) resolution
- 5.787 < \(m(\Sigma_b) < 5.857 \) GeV/c^2
- \(\Sigma_b^- (bdd) \) and anti-\(\Sigma_b^- \)
- \(\Sigma_b^+ (buu) \) and anti-\(\Sigma_b^+ \)
- Two \(\pi \) have same/opposite charge

CERN - October 31, 2006
E. Vataga - Latest results on b-spectroscopy from CDF
Expected background

\[\Sigma_b \text{ signal region} \]
(expect two narrow states)

B meson bkg
(possible peaks from \(B^{**}, D^{*}\ldots\)?)

Combinatorial background
(under control)

\[\Lambda_b \text{ hadronization + Underlying Event} \]
(dominant bkg)
Λ_b sample

CDF II Preliminary, $L = 1.1 \text{ fb}^{-1}$

Signal region: [5.565, 5.670]

- $\Lambda_b \rightarrow \Lambda_c \rho, \Lambda_b \rightarrow \Sigma_c \pi, \text{Comb. Bkgnd.}$
- Λ_b semileptonic + other
- B semileptonic + other
- Λ_b and B 4-track decays
- $\Lambda_b \rightarrow \Lambda_c K$

$N(\Lambda_b)$	86 %
$N(B)$	10 %
comb	4 %

Largest in the World!
Σ_b optimization

- Cut are optimized with signal region blinded.
- Signal is taken from PYTHIA
- Background is taken from the sidebands.
- Optimization is done maximizing FOM $\varepsilon(S)/\sqrt{B}$
- No cut on $p_T (\pi_\Sigma)$

<table>
<thead>
<tr>
<th>Cut</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T (\Sigma_b)$</td>
<td>> 9.5 GeV/c</td>
</tr>
<tr>
<td>$</td>
<td>d0/\sigma(d0)</td>
</tr>
<tr>
<td>$\cos \theta^* (\pi_\Sigma)$</td>
<td>> -0.35</td>
</tr>
</tbody>
</table>

cross-check on $D^ \rightarrow D^0 \pi$, included in systematic*
Background Composition

<table>
<thead>
<tr>
<th>Background type</th>
<th>Sample</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ_b HA+UE</td>
<td>PYTHIA</td>
<td>Dominant</td>
</tr>
<tr>
<td>Combinatorial</td>
<td>Upper Λ_b sideband $m(\Lambda_b) \in [5.8, 7.0]$</td>
<td>Small (~ 5%)</td>
</tr>
<tr>
<td>B mesons</td>
<td>data</td>
<td>Small (~10%)</td>
</tr>
</tbody>
</table>
| B meson reflections | π_Σ from B HA+UE | PYTHIA
| | π_Σ from B decay (D^*, D^{**}) | Inclusive BGen
| | π_Σ from B^{**} | B0 PYTHIA
| | π_Σ from B^{**} | negligible
| | π_Σ from B^{**} | negligible

The Λ_b HA+UE background is the dominant contribution, followed by the combinatorial background and then B mesons. The B meson reflections are negligible.
Corrections to MC samples

- **PYTHIA $\Sigma_b \rightarrow \Lambda_b \pi$**
- **Do not expect perfect description for b-baryons** – experimental data are limited
- **Needs reweighting**
 - $P_T(\Sigma_b)$
 - $P_T(\text{soft } \pi)$
- **Included in systematic**
Fitting background

Combinatorial

B mesons

Λb HA+UE

\[f(Q; \alpha, Q_{\text{max}}, \gamma) = \left(\frac{Q}{Q_{\text{max}}} \right)^{\alpha} e^{-\frac{\alpha}{\gamma} \left(\frac{Q}{Q_{\text{max}}} \right)^{\gamma}} \left(\frac{Q}{Q_{\text{max}}} \right)^{\gamma} - 1 \]

alternative fit shapes in systematics
Detector resolution and signal width

- Estimated detector resolution from MC generating signal with 0 natural width $\sim 2 \text{ MeV}/c^2$
- Cross-check on $D^* \rightarrow D^0\pi$ (MC)
- $\Gamma(\Sigma_b)$ is predicted by HQET:

\[\Gamma_{\Sigma_q \rightarrow \Lambda_q\pi} = \frac{1}{6\pi} \frac{M_{\Lambda_q}}{M_{\Sigma_q}} |f_p|^2 |\vec{p}_\pi|^3 \]

- Dominated by natural width

$\Gamma_{\Sigma_q \rightarrow \Lambda_q\pi} = \frac{1}{6\pi} \frac{M_{\Lambda_q}}{M_{\Sigma_q}} |f_p|^2 |\vec{p}_\pi|^3$

$ f_p \equiv g_A / f_\pi; \quad g_A = 0.75 \pm 0.05$

hep-ph/9406359
Sum of Background Fits

- Smooth background shape in signal window
- Fixed fit parameters before opening the box
Unblinded Q distribution

![Graph showing Q distribution with data points and fits for different samples: SC and OC.](image)

Significant excess in both distributions!

<table>
<thead>
<tr>
<th>Sample</th>
<th>Data</th>
<th>Bkg</th>
<th>Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>416</td>
<td>268</td>
<td>148</td>
</tr>
<tr>
<td>OC</td>
<td>406</td>
<td>298</td>
<td>108</td>
</tr>
</tbody>
</table>

• Naïve $S/\sqrt{(S+B)} \sim 9 \sigma$
Fitting the signal

- Simultaneous unbinned NLL fit for both $\Sigma_b^{-(*)}/\Sigma_b^{+(*)}$ distributions
- Background frozen
- 4 peaks: Breit-Wigner \otimes Gaussians
- $\Gamma(\Sigma_b) =$ function (Q)
- 7 Floating parameters:
 - Num of events in 4 peaks: $N(\Sigma_b)$
 - $Q(\Sigma_b^-)$ and $Q(\Sigma_b^+)$
 - Common parameter $Q(\Sigma_b^*) = Q(\Sigma_b)$
Fit: values and errors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q (\Sigma_b^-) [\text{MeV/c}^2]$</td>
<td>55.9</td>
<td>-0.96, +0.99</td>
</tr>
<tr>
<td>$Q (\Sigma_b^+) [\text{MeV/c}^2]$</td>
<td>48.4</td>
<td>-2.29, +2.02</td>
</tr>
<tr>
<td>$N (\Sigma_b^-)$</td>
<td>60</td>
<td>-13.8, +14.8</td>
</tr>
<tr>
<td>$N (\Sigma_b^+)$</td>
<td>29</td>
<td>-11.6, +12.4</td>
</tr>
<tr>
<td>$N (\Sigma_b^{*-})$</td>
<td>74</td>
<td>-17.4, 18.2</td>
</tr>
<tr>
<td>$N (\Sigma_b^{*-+})$</td>
<td>74</td>
<td>-16.3, 17.2</td>
</tr>
<tr>
<td>$Q (\Sigma_b^*) - Q (\Sigma_b) [\text{MeV/c}^2]$</td>
<td>21.3</td>
<td>-1.94, 2.03</td>
</tr>
<tr>
<td>NLL</td>
<td>-24553.5</td>
<td></td>
</tr>
</tbody>
</table>
Signal significance

- Naïve: 9σ
- \(P \) value calculation: $>5\sigma$ (not enough Toy MC)
- Evaluate Likelihood Ratio for different hypothesis:

$$LR \equiv \frac{L_{\text{no peak fit}}}{L_{4 \text{ peak fit}}}$$

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>(\Delta(-\ln(L)))</th>
<th>1/LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>“NULL”</td>
<td>44.7</td>
<td>2.6e19</td>
</tr>
<tr>
<td>“Two Peaks”</td>
<td>14.3</td>
<td>1.6e6</td>
</tr>
<tr>
<td>No (\Sigma_b^-) peak</td>
<td>10.4</td>
<td>3.3e4</td>
</tr>
<tr>
<td>No (\Sigma_b^+) peak</td>
<td>1.1</td>
<td>3</td>
</tr>
<tr>
<td>No (\Sigma_b^{-*}) peak</td>
<td>10.1</td>
<td>2.4e4</td>
</tr>
<tr>
<td>No (\Sigma_b^{++}) peak</td>
<td>9.8</td>
<td>1.8e4</td>
</tr>
</tbody>
</table>

4 peaks are 2.6×10^{19} more likely than no peak at all

Background fluctuation is statistically excluded

Hypothesis with 4 peaks in the most favorable
Summary

- We observe four $\Lambda_b \pi$ resonant states 240 events in total.

- The significance of the signal $> 5\sigma$.

- The signal is consistent with the lowest lying $\Sigma_b^{\pm(*)}$ states.

- We measure Q values:

 - $m(\Sigma_b^-) - m(\Lambda_b^0) - m(\pi) = 55.9^{+0.0}_{-1.0}$ (stat) ± 0.1 (syst) MeV/c2

 - $m(\Sigma_b^+) - m(\Lambda_b^0) - m(\pi) = 48.4^{+0.0}_{-2.3}$ (stat) ± 0.1 (syst) MeV/c2

 - $m(\Sigma_{b(*)}^-) - m(\Sigma_b^-) = m(\Sigma_{b(*)}^+) - m(\Sigma_b^+) = 21.3^{+0.0}_{-1.9}$ (stat) $^{+0.4}_{-0.2}$ (syst) MeV/c2
Plans

- Increase statistics by
 - $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ from different triggers (~ 1000)
 - $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ (~ 500)
 - $\Lambda_b^0 \rightarrow \Lambda_c^+ 3\pi$
- Measure $\Delta m = M(\Sigma_b^*) - M(\Sigma_b)$ for “+” and “−” separately
- Measure widths
Conclusions

- CDF makes fundamental contributions in b-spectroscopy
- Performing the world most precise measurements of \(\Lambda_b \ B_c \ B_s \ B^+ \ B^0 \) masses
- Discovering new particles:
 - \(\Sigma_b^{\pm(*)} \rightarrow \Lambda_b \pi \)
 - \(B_{s1} \rightarrow B^*K \)
 - \(B_c \rightarrow J/\psi \pi \)
- Setting new limits:
 - \(\eta_b \rightarrow J/\psi \ J/\psi \)
- And all these with only THE FIRST \(fb^{-1} \)!
\[\Sigma_b^{\pm(*)} \text{ masses} \]

- Using \(m(\Lambda_b) = 5619.7 \pm 1.2 \text{(stat)} \pm 1.2 \text{(syst)} \)

\[
\begin{align*}
 m(\Sigma_b^-) &= 5816^{+1.0}_{-1.0} \text{ (stat)} \pm 1.7 \text{ (syst) MeV/c}^2 \\
 m(\Sigma_b^+) &= 5808^{+2.0}_{-2.3} \text{ (stat)} \pm 1.7 \text{ (syst) MeV/c}^2 \\
 m(\Sigma_b^{*-}) &= 5837^{+2.1}_{-1.9} \text{ (stat)} \pm 1.7 \text{ (syst) MeV/c}^2 \\
 m(\Sigma_b^{*+}) &= 5829^{+1.6}_{-1.8} \text{ (stat)} \pm 1.7 \text{ (syst) MeV/c}^2
\end{align*}
\]
Systematic Errors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tracking</th>
<th>Λ_b Comp.</th>
<th>Λ_b Norm.</th>
<th>Λ_b Shape</th>
<th>reweight</th>
<th>Det. Res.</th>
<th>Σ_b width</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ_b^- Q (Mev/c2)</td>
<td>0.06</td>
<td>0.00</td>
<td>0.009</td>
<td>0.000</td>
<td>0.04</td>
<td>0.0</td>
<td>0.009</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>-0.06</td>
<td>-0.03</td>
<td>-0.002</td>
<td>-0.011</td>
<td>-0.0004</td>
<td>-0.011</td>
<td>-0.005</td>
<td>-0.07</td>
</tr>
<tr>
<td>Σ_b^+ Q (Mev/c2)</td>
<td>0.06</td>
<td>0.03</td>
<td>0.013</td>
<td>0.013</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>-0.06</td>
<td>0.0</td>
<td>-0.013</td>
<td>0.0</td>
<td>-0.11</td>
<td>-0.014</td>
<td>-0.02</td>
<td>-0.13</td>
</tr>
<tr>
<td>$\Sigma_b^-*\Sigma_b$ Q (Mev/c2)</td>
<td>0.06</td>
<td>0.05</td>
<td>0.14</td>
<td>0.04</td>
<td>0.32</td>
<td>0.02</td>
<td>0.07</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>-0.06</td>
<td>0.0</td>
<td>-0.13</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.07</td>
<td>-0.16</td>
</tr>
<tr>
<td>Σ_b^- events</td>
<td>0.0</td>
<td>0.7</td>
<td>2.2</td>
<td>0.3</td>
<td>7.4</td>
<td>0.3</td>
<td>3.4</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-3.4</td>
<td>-4.0</td>
</tr>
<tr>
<td>Σ_b^+ events</td>
<td>0.0</td>
<td>3.3</td>
<td>2.1</td>
<td>1.2</td>
<td>2.3</td>
<td>0.3</td>
<td>1.8</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-2.1</td>
<td>0.0</td>
<td>-1.8</td>
<td>0.0</td>
<td>-2.0</td>
<td>-3.4</td>
</tr>
<tr>
<td>Σ_b^- events</td>
<td>0.0</td>
<td>0.4</td>
<td>4.8</td>
<td>0.3</td>
<td>14.7</td>
<td>0.1</td>
<td>1.7</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-1.7</td>
<td>-5.0</td>
</tr>
<tr>
<td>Σ_b^{*+} events</td>
<td>0.0</td>
<td>7.3</td>
<td>4.8</td>
<td>2.8</td>
<td>4.6</td>
<td>0.2</td>
<td>0.8</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>-4.8</td>
<td>0.0</td>
<td>-2.9</td>
<td>0.0</td>
<td>-0.8</td>
<td>-5.7</td>
</tr>
</tbody>
</table>
Σ_b Motivation

- Λ_b only established B baryon
- Enough statistics at Tevatron to probe other heavy baryons
- Next accessible baryons: Σ_b: b{qq}, q = u,d;

\[
J^P = S_Q + s_{qq} = 3/2^+ (\Sigma_b^*)
\]

\[
J^P = S_Q + s_{qq} = 1/2^+ (\Sigma_b)
\]

- HQET extensively tested for Qq systems; interesting to check predictions for Qqq systems
- Baryon spectroscopy also tests Lattice QCD and potential quark models

<table>
<thead>
<tr>
<th>Σ_b property</th>
<th>Expected values (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(Σ_b) - m(Λ_b^0)</td>
<td>180 - 210</td>
</tr>
<tr>
<td>m(Σ_b^*) - m(Σ_b)</td>
<td>10 - 40</td>
</tr>
<tr>
<td>m(Σ_b^-) - m(Σ_b^+)</td>
<td>5 - 7</td>
</tr>
<tr>
<td>Γ(Σ_b), Γ(Σ_b^*)</td>
<td>~8, ~15</td>
</tr>
</tbody>
</table>
Fit: correlation coeff.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Global</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Σ_b^- Q</td>
<td>0.31202</td>
<td>1.000</td>
<td>0.156</td>
<td>0.175</td>
<td>-0.014</td>
<td>-0.114</td>
<td>-0.018</td>
<td>-0.246</td>
</tr>
<tr>
<td>2 Σ_b^- events</td>
<td>0.29891</td>
<td>0.156</td>
<td>1.000</td>
<td>-0.060</td>
<td>0.005</td>
<td>-0.241</td>
<td>0.006</td>
<td>0.084</td>
</tr>
<tr>
<td>3 Σ_b^+ Q</td>
<td>0.71323</td>
<td>0.175</td>
<td>-0.060</td>
<td>1.000</td>
<td>-0.028</td>
<td>0.001</td>
<td>-0.012</td>
<td>-0.712</td>
</tr>
<tr>
<td>4 Σ_b^+ events</td>
<td>0.17878</td>
<td>-0.014</td>
<td>0.005</td>
<td>-0.028</td>
<td>1.000</td>
<td>0.000</td>
<td>-0.162</td>
<td>0.057</td>
</tr>
<tr>
<td>5 Σ_b^- events</td>
<td>0.25346</td>
<td>-0.114</td>
<td>-0.241</td>
<td>0.001</td>
<td>-0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>-0.002</td>
</tr>
<tr>
<td>6 Σ_b^+ events</td>
<td>0.19252</td>
<td>-0.018</td>
<td>0.006</td>
<td>-0.012</td>
<td>-0.162</td>
<td>-0.000</td>
<td>1.000</td>
<td>0.074</td>
</tr>
<tr>
<td>7 Σ_b^* - Σ_b Q</td>
<td>0.72939</td>
<td>-0.246</td>
<td>0.084</td>
<td>-0.712</td>
<td>0.057</td>
<td>-0.002</td>
<td>0.074</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Σ_b^+ peak is small – relies on Σ_b^* - Σ_b to determine it’s mean value.
$\Sigma_b \ N-1 \ scan$

Σ_b N-1 scan

PT (Σb) > 9.5 GeV/c

$|d0/\sigma(d0)| < 3.$

$\cos \theta^* > -0.35$

CERN - October 31, 2006

E.Vataga - Latest results on b-spectroscopy from CDF
Why b baryons?

- B quark discovered in 1977
- Wealth of b- mesons is found
- Only one b baryon well established so far
- Finding and studying b baryons completes tests of SM
- Systematic expansion of QCD: Heavy Quark Eff. Theory:
 - $m_c, m_b, m_t \gg \Lambda_{QCD} \gg m_u, m_d, m_s \Rightarrow$ Heavy Quark Symmetry
- Masses and decay rates test HQET
- HQET extensively tested for Qq systems; interesting to check predictions for Qqq systems
B_s mass measurement

Delphi: $5374.0 \pm 16.0 \pm 2.0$

Aleph: $5368.6 \pm 5.6 \pm 1.5$

Opal: $5359.0 \pm 19.0 \pm 7.0$

CDF: $5369.9 \pm 2.3 \pm 1.3$

CDF II (this): $5366.01 \pm 0.73 \pm 0.33$

World average: 5369.6 ± 2.4

better precision than the current world average!
Λ_b mass measurements

- Observed Λ_b decays:
 - Λ_b^0 → J/ψ Λ^0
 - Λ_b^0 → Λ_c^+π^-
 - Λ_b^0 → Λ_c^+μ^-ν_μ

Better precision than the current world average!

PRL 96, 202001 2006