Non-SUSY Exotics Searches at the Tevatron

Ben Brau (University of California, Santa Barbara) for the CDF and D0 Collaborations

Les 21st Rencontres de Physique de la Vallee d’Aoste
La Thuile, Aoste Valley, Italy
March 9, 2007
Overview

- Tevatron, CDF & DØ
- Model-inspired searches
 - Theory driven
 - Standard model and new physics known; optimize for sensitivity.
 - Extra Dimensions, Extra Gauge Bosons (Z’, W’), New quarks (b’), Leptoquarks
- Signature-based searches
 - Final-state driven
 - Standard model is known. Look for any deviations everywhere
 - Because we can
- Today: Emphasis on 1 fb⁻¹ results
- Outlook
Tevatron Performance

- DØ and CDF each have >2 fb\(^{-1}\) recorded; expect 4-8 fb\(^{-1}\) by 2009
- Records: Initial Luminosity: 292.3 \(\times\) 10\(^{30}\) cm\(^{-2}\)s\(^{-1}\)
D0 and CDF Detectors

- Multipurpose Charged Tracking Spectrometers with Microstrip Silicon Vertex Detectors, Electromagnetic and Hadronic Calorimetry and Muon chambers.

- Reconstruct $e, \mu, \tau, \gamma, \text{jets, b-jets}, \text{missing } E_T$ (MET)
Extra Dimensions

Extra dimension models provide a solution to the hierarchy problem

• Arkani-Hamed, Dimopoulos, Dvali (ADD)
 • n compact extra dimensions; $M_{Pl}^2 \sim R^n M_D^{2+n}$
 • Standard Model confined to a 4-dimensional brane
 • Only gravity lives in full 4+n dimensional bulk

• Randall-Sundrum I (RS)
 • Warped extra dimension(s), exponential warp factor solves hierarchy problem
 • Two branes, TeV and Planck. Gravitons live everywhere, SM confined to TeV brane.
 • Signature: High-Mass Graviton Resonances
 • $pp \rightarrow G_n, m_n \sim x_n k/M_{Pl}$

Weakness of gravity due to being diluted by volume of extra dimensions
Search for Large Extra Dimensions: Monojet + Missing E_{T}

- Direct production $qq \rightarrow Gg$, $qg \rightarrow Gq$, $gg \rightarrow gG$
- Jet $E_{T} > 150$ GeV, MET > 120 GeV
- Backgrounds: $Z \rightarrow \nu\nu$+jets, $W \rightarrow l\nu$+jets, QCD dijet. Measured with data.
- Expected 819 ± 71, Observed 779.
Search for Randall Sundrum Gravitons: $G \rightarrow \gamma \gamma$

- Direct search for a bump in $\gamma \gamma$ mass spectrum
- Data-based fake background estimation
- Randall-Sundrum Graviton limits
 - $k/M_{PL}=0.1$, $m_G > 850$ GeV
 - Combination $\gamma \gamma + e^+e^-$
 - $k/M_{PL}=0.1$, $m_G > 889$ GeV

Benjamin Brau
La Thuile, March 9, 2007
Search for Randall-Sundrum Gravitons: Combined ee, γγ

- ee and γγ are combined for maximum sensitivity
- Data-based mis-id background estimate
- For $k/M_{Pl} = 0.1$, $m_G < 865$ GeV excluded at 95% CL
Search for New Heavy Particles in Z^0Z^0

- RS Graviton Model: for $m_G = 500$ GeV, $k/M_{Pl} = 0.1$ $\sigma = 292$ fb
- Four isolated very loose electrons
- Very clean; almost no background
- Expect 0.02, see 0 events with $M > 500$ GeV

$$\chi^2 = \sum \left(\frac{m_{ee} - m_{Z^0}}{\sigma} \right)^2 \approx 3 \text{ GeV}$$
Search for $Z' \rightarrow ee$

- Many SM extensions introduce additional gauge bosons
- Di-Electron Search in $|\eta| < 3.0$, 1.3 fb$^{-1}$
- Dominant backgrounds from Drell-Yan, QCD
- $Z'_{\text{SM}} > 923$ GeV

<table>
<thead>
<tr>
<th>E$!!!_6Z'$</th>
<th>Z_1'</th>
<th>Z_ψ'</th>
<th>Z_χ'</th>
<th>Z_η'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Limit (GeV)</td>
<td>729</td>
<td>822</td>
<td>822</td>
<td>891</td>
</tr>
</tbody>
</table>
Search for $W' \rightarrow e\nu$

- Signature: >30 GeV e^+, $0.7 < E_T/MET < 1.3$
- Main background is SM W
- Assuming SM Couplings to fermions, exclude $m_{W'} < 965$ GeV (95%CL)
Search for Excited Electrons in $ee\gamma$

- Possible sign of compositeness
- Produced in contact interactions $pp \rightarrow ee' \rightarrow ee\gamma$
- Sets limit $m_{e'} > 756$ GeV (95% CL) for compositeness scale $\Lambda = 1$ TeV
Search for second-generation leptoquarks $\mu \nu qq$

- Signature: μ^+ 2 jets + MET
- Normalizes W+jets to data before LQ selection
- Sets limit $m_{LQ} > 214$ GeV (95% CL) for $\beta = 0.5$
Search for b’ in Z+Jets

- Signature: pair-produced b’ \rightarrow bZ, Z \rightarrow \ell \ell
- Signal region: 3 Jets with $E_T > 30$ GeV; discrimination in sum of jet $E_T (J_T)$
- Fit data in $n_{\text{Jet}} < 3$ bins; extrapolate to $n_{\text{Jet}} \geq 3$ signal region
- Method developed with MC
- Background method verified in W+jets by measuring t-tbar cross section

Search for New Particles Decaying to $Z^0_{\text{b'}}$+jets

CDF Run II Preliminary, 1.1 fb

Search for New Particles Decaying to $Z^{\text{b'}}_{\text{b'}}$+jets

CDF Run II Preliminary, 1.1 fb

W+jets Control Sample

La Thuile, March 9, 2007
Search for b' in Z+Jets

- Look in data in Z+jets \geq 3 jet bin
- No excess observed; set limit $m_{b'} > 271$ GeV
Signature-Based Search for High-p_T Z

- Sensitive to heavy particles decaying to Z
- Set limits on anomalous Z production versus p_T
Signature-Based Search for Dilepton + X

- Search for anomalous production of ll+X, with X = γ, H_T, MET, high E_T jets, lepton
 - Results in eμ and same-sign ee,μμ
 - $H_T = \sum E_T + \text{MET}$

<table>
<thead>
<tr>
<th></th>
<th>$e\mu$</th>
<th>Same sign ee/μμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥2 jets SM</td>
<td>2.9±1.5</td>
<td>1.5±0.8</td>
</tr>
<tr>
<td>Data</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

- Applied to BPT heavy quark model, hep-ph 0206116
 - $\sigma < 2.1 \times \sigma_Q$ (90%CL) $\sigma_Q = 0.289\text{pb}$, $m_Q = 300\text{GeV}$
- One event has $H_T = 864\text{ GeV}$; consistent with top dilepton + jets
 - eμjjjjb MET

$\sigma < 2.1 \times \sigma_Q$ (90%CL) $\sigma_Q = 0.289\text{pb}$, $m_Q = 300\text{GeV}$

1 event has $H_T = 864\text{ GeV}$; consistent with top dilepton + jets

- eμjjjjb MET

CDF Run II Preliminary (929 pb⁻¹)

- Data
- W→μν
- Z→ττ
- Z→μμ
- top, Dibosons

Events per 20 GeV

- ≥2 jets
- $e\mu$
- Same sign ee/μμ
- SM: 2.9±1.5, 1.5±0.8
- Data: 2, 0

- Applied to BPT heavy quark model, hep-ph 0206116
 - $\sigma < 2.1 \times \sigma_Q$ (90%CL) $\sigma_Q = 0.289\text{pb}$, $m_Q = 300\text{GeV}$
- One event has $H_T = 864\text{ GeV}$; consistent with top dilepton + jets
 - eμjjjjb MET
Signature-Based Search for $\gamma\gamma + e/\mu/\gamma$/MET

- Motivated by Run I $ee+\gamma\gamma$+MET event
- No significant excess seen
- No $ee+\gamma\gamma$ events seen

$\gamma\gamma\gamma e$ $\gamma\gamma\mu$ $\gamma\gamma\gamma$ $\gamma\gamma+MET$

SM 6.8 ± 0.8 0.8 ± 0.1 2.2 ± 0.7 0.24 ± 0.22

Data 3 0 4 1
Signature-Based Search for $l\gamma$MET and $ll\gamma$

- Searches for $l\gamma$MET and $ll\gamma$
- Backgrounds from $W\gamma, Z\gamma$
- No significant excess

<table>
<thead>
<tr>
<th></th>
<th>$e\gamma$+MET</th>
<th>$\mu\gamma$+MET</th>
<th>$l\gamma$+MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>95±8</td>
<td>56±7</td>
<td>151±13</td>
</tr>
<tr>
<td>Data</td>
<td>96</td>
<td>67</td>
<td>163</td>
</tr>
<tr>
<td>$ee\gamma$</td>
<td>39±5</td>
<td>26±3</td>
<td>65±8</td>
</tr>
<tr>
<td>$\mu\mu\gamma$</td>
<td>21</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>$ll\gamma$</td>
<td>53</td>
<td>21</td>
<td>74</td>
</tr>
</tbody>
</table>

CDF Run II

- $l\gamma E_{T}$ Data($e+\mu$), 929 pb$^{-1}$
- $W\gamma$
- $Z\gamma$
- e fake γ
- Wj, $\gamma\gamma$, QCD, $Z\gamma\gamma$, $W\gamma\gamma$
Search for Delayed Photons

- Some models predict long-lived particles
 - Conventional searches assume prompt decays
- Use EM Timing system (installed mid Run-II)
 - Signal region $2 < t < 10$ ns.
 - Expect 1.3 ± 0.7, Observe 2.

La Thuile, March 9, 2007
Search for CHAMPS

- Many extensions of SM predict Charge Massive Stable Particles
- Signature: slow, highly ionizing, penetrating (looks like muon)
- Use time-of-flight (TOF) system to measure particle velocity

Reconstruct mass from ν and p

Model-independent limits: for CHAMP fiducial to TOF, $0.4<\beta<0.9$, $40<p_T<420$,
 - $\sigma<48$ fb if interacts with hadrons
 - $\sigma<10$ fb if no hadronic interactions

Benjamin Brau
La Thuile, March 9, 2007
Model-Independent Algorithmic (Vista+Sleuth)

- Classify events by their object content (final state)
- Simulate standard model with Monte Carlo
- Global fit to extract correction factors (luminosity, k-factors, mis-id rates, trigger efficiencies, jet energy scale)
- Look for anomalies in distributions (bulk)
- Look for excesses in high sum E_T distributions
 - Assumes NP will be at high sum E_T and appear as an excess
- Order final states by how discrepant they are
 - Flag interesting states for further study
- Iterative procedure to identify and account for detector effects
- Sensitivity to new physics depends on details of final state
- Provides a safety net to avoid missing the obvious
- 1 fb$^{-1}$ result expected soon
Outlook

- DØ and CDF are searching for many models and signatures of new physics
- No evidence of NP observed yet in Run II
- Both experiments have now recorded 2 fb⁻¹
 - Should soon have results with ~double the data
- Most of expected Run II data still to be collected and analyzed
 - Surprises could be just around the corner
Back-Up
Search for Z’ in ee

CDF Run II Preliminary

Expected Range for Min. Obs. Prob.

3 σ evidence level

$\int L \, dt = 1.3 \, fb^{-1}$