First Run II Measurement of the W Boson Mass with CDF

Oliver Stelzer-Chilton
University of Oxford

on behalf of the CDF Collaboration

Lake Louise Winter Institute
Chateau Lake Louise, Alberta, Canada, Feb 19 – 24, 2007
Outline

1. Motivation
2. W Production at the Tevatron
3. Analysis Strategy
4. Detector Calibration
 - Momentum Scale
 - Energy Scale
 - Recoil
5. Event Simulation
6. Results
7. Summary/Outlook
Motivation

- Derive W mass from precisely measured electroweak quantities

$$m_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2} G_F \sin^2 \theta_W (1 - \Delta r)}$$

$$\cos \theta_W = \frac{m_W}{m_Z}$$

- Radiative corrections r dominated by top quark and Higgs loop
 ⇒ allows constraint on Higgs mass

Current top mass uncertainty 1.2%
(2.1 GeV)
→ contributes 0.016%
(13 MeV) to δm_W

Current W mass uncertainty 0.036%
(29 MeV)
→ Higgs mass predicted: 85^{+39}_{-28} GeV

- Progress on W mass uncertainty now has the biggest impact on Higgs mass constraint

- With improved precision also sensitive to possible exotic radiative corrections
Recoil measurement allows inference of neutrino E_T (restricted to $u<15$ GeV)

Quark-antiquark annihilation dominates (80%)

precise charged lepton measurement is the key (achieved ~0.03%)

Combine information into transverse mass: $m_T = \sqrt{2p_T^l p_T^\nu (1 - \cos \phi_{lv})}$

Use $Z\to \mu\mu$ and $Z\to ee$ events to derive recoil model
Measurement Strategy

W mass is extracted from transverse mass, transverse momentum and transverse missing energy distribution

Detector Calibration
- Tracking momentum scale
- Calorimeter energy scale
- Recoil

Fast Simulation
- NLO event generator
- Model detector effects

W Mass templates

Data
Binned likelihood fit
W Mass

81 GeV
80 GeV

+ Backgrounds
- Silicon tracking detectors
- Central drift chambers (COT)
- Solenoid Coil
- EM calorimeter
- Hadronic calorimeter
- Muon scintillator counters
- Muon drift chambers
- Steel shielding

CDF Detector
Tracker Alignment

- Internal alignment is performed using a large sample of cosmic rays → Fit hits on both sides to one helix

- Determine final track-level curvature corrections from electron-positron E/p difference in $W \rightarrow e\nu$ decays

- Statistical uncertainty of track-level corrections leads to systematic uncertainty $\Delta M_W = 6$ MeV
Momentum Scale Calibration

Exploit large J/ψ and Upsilon datasets to set tracker scale

- Tune model of energy loss \(\rightarrow J/\psi \) independent of muon \(p_T \)
 \[\Delta M_{W} = 17 \text{ MeV} \]

Apply momentum scale to Z’s

- Tune resolution on width of di-muon mass peaks
 \[\Delta M_{W} = 3 \text{ MeV} \]

- Good agreement with PDG (91187±2 MeV)

Lake Louise 2007
Oliver Stelzer-Chilton - Oxford
Transfer momentum calibration to calorimeter using E/p distribution of electrons from W decay by fitting peak of E/p

Tune number of radiation lengths with E/p radiative tail

Correct for calibration E_T dependence

Add Z Mass fit to calibration (30% weight) $\Delta M_W = 30$ MeV

Apply energy scale to Z’s

Tune resolution on E/p and Z mass peak $\Delta M_W = 9$ MeV

$W \rightarrow e\nu$

$Z \rightarrow ee$

CDF II preliminary $\int L \, dt = 200 \, \text{pb}^{-1}$

S_E = $1 \pm 0.00025_{\text{stat}}$

$\chi^2/\text{dof} = 17/16$

$M_Z = (91190 \pm 67_{\text{stat}})$ MeV

$\chi^2/\text{dof} = 34/38$

good agreement with PDG $(91187 \pm 2$ MeV)
Hadronic Recoil Definition

Recoil definition:
→ Vector sum over all calorimeter towers, excluding:
 - lepton towers
 - towers near beamline ("ring of fire")

Electrons: Remove 7 towers keystone
\[\Delta M_W = 8 \text{ MeV} \]

Muons: Remove 3 towers (MIP)
\[\Delta M_W = 5 \text{ MeV} \]

Model tower removal in simulation
• Use Z balancing to calibrate recoil energy scale and to model resolution

• Calibrate scale \(R = u_{\text{meas}} / u_{\text{true}} \) with balance along bisector axis \(\Delta M_W = 9 \text{ MeV} \)

• Resolution has two components
 - soft (underlying event)
 - hard (jets)

• Calibrate along both axes, \(\eta \) & \(\xi \)
 \(\Delta M_W = 7 \text{ MeV} \)
Recoil Model Checks

- Apply model to W sample to check recoil model from Z's
- Recoil projection along lepton $u_{||}$ → directly affects m_T fits
 → Sensitive to lepton removal, scale, resolution, W decay

- Recoil distribution → sensitive to recoil scale resolution and boson p_T
- Recoil model validation plots confirm consistency of the model
Boson p_T Model

- Model boson p_T using RESBOS generator [Balazs et al. PRD56, 5558 (1997)]

- Non-perturbative regime at low p_T parametrized with g_1, g_2, g_3 parameters

- g_2 parameter determines position of peak in p_T distribution

- Measure g_2 with Z boson data (other parameters negligible)

- Find: $g_2 = 0.685 \pm 0.048$

$\Delta M_W = 3$ MeV
Production, Decay and Backgrounds

• QED radiative corrections:
 - use complete NLO calculation (WGRAD) [Baur et al. PRD59, 013002 (1998)]
 - simulate FSR, apply (10±5)% correction for 2nd γ
 \(\Delta M_W = 11 \ (12) \text{ MeV for e (μ)} \)

• Parton Distribution Functions:
 - affect kinematics through acceptance cuts
 - use CTEQ6 ensemble of 20 uncertainty PDFs
 \(\Delta M_W = 11 \text{ MeV} \)

• Backgrounds:
 - have very different lineshapes compared to W signal
 - distributions are added to template
 - QCD measured with data
 - EWK predicted with Monte Carlo
 \(\Delta M_W = 8 \ (9) \text{ MeV for e (μ)} \)

<table>
<thead>
<tr>
<th>Background</th>
<th>% (Muons)</th>
<th>% (Electrons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic Jets</td>
<td>0.1±0.1</td>
<td>0.25±0.15</td>
</tr>
<tr>
<td>Decay in Flight</td>
<td>0.3±0.2</td>
<td>-</td>
</tr>
<tr>
<td>Cosmic Rays</td>
<td>0.05±0.05</td>
<td>-</td>
</tr>
<tr>
<td>(Z \rightarrow ll)</td>
<td>6.6±0.3</td>
<td>0.24±0.04</td>
</tr>
<tr>
<td>(W \rightarrow tn)</td>
<td>0.89±0.02</td>
<td>0.93±0.03</td>
</tr>
</tbody>
</table>

Lake Louise 2007
Oliver Stelzer-Chilton - Oxford
Transverse mass fits:

Muons

CDF II preliminary

$\int L \, dt \approx 200 \, \text{pb}^{-1}$

$m_W = (80349 \pm 54_{\text{stat}}) \, \text{MeV}$

$\chi^2/\text{dof} = 59 / 48$

Electrons

CDF II preliminary

$\int L \, dt \approx 200 \, \text{pb}^{-1}$

$m_W = (80493 \pm 48_{\text{stat}}) \, \text{MeV}$

$\chi^2/\text{dof} = 86 / 48$

$m_W = 80417 \pm 48 \, \text{MeV (stat + syst)}$

combination yields $P(\chi^2) = 7\%$
W Mass Fits

Also fit E_T and E_T' distributions in muon and electron channel and combine with transverse mass fits:

Electron E_T fit

![Electron E_T fit graph]

Muon E_T' fit

![Muon E_T' fit graph]

$M_W = (80451 \pm 58_{\text{stat}}) \text{ MeV}$

$\chi^2/\text{dof} = 63 / 62$

$M_W = (80396 \pm 66_{\text{stat}}) \text{ MeV}$

$\chi^2/\text{dof} = 44 / 62$

$m_W = 80413 \pm 48 \text{ MeV (stat + syst)}$

combination of all six fits yields $P(\chi^2) = 44\%$

Lake Louise 2007

Oliver Stelzer-Chilton - Oxford
Systematic Uncertainty

Systematic uncertainty on transverse mass fit

<table>
<thead>
<tr>
<th>CDF II preliminary</th>
<th>L = 200 pb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_T) Uncertainty [MeV]</td>
<td>Electrons</td>
</tr>
<tr>
<td>Lepton Scale</td>
<td>30</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>7</td>
</tr>
<tr>
<td>(u_{ll}) Efficiency</td>
<td>3</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>8</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>8</td>
</tr>
<tr>
<td>(p_T(W))</td>
<td>3</td>
</tr>
<tr>
<td>PDF</td>
<td>11</td>
</tr>
<tr>
<td>QED</td>
<td>11</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>39</td>
</tr>
<tr>
<td>Statistical</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>

⇒ Combined Uncertainty: 48 MeV for 200 pb\(^{-1}\)
Results

- New CDF result is the world’s most precise single measurement
- World average increases: 80392 to 80398 MeV
- Uncertainty reduced ~15% (29 to 25 MeV)

- Standard Model Higgs constraint: 80^{+36}_{-26} GeV (previous: 85^{+39}_{-28} GeV)
Summary/Outlook

- First Run II W mass measurement completed using 200 pb\(^{-1}\) of data
- With a total uncertainty of 48 MeV
 \[\rightarrow \text{worlds most precise single measurement}\]
- Projection from previous Tevatron measurements

\[\Delta M_W < 25 \text{ MeV} \quad \text{with 1.5 fb}^{-1} \text{ already collected}\]
Backup
Systematic Uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
<th></th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T Uncertainty [MeV]</td>
<td></td>
<td></td>
<td></td>
<td>MET Uncertainty [MeV]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepton Scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
<td>Lepton Scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>Lepton Resolution</td>
<td>9</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>Recoil Scale</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Recoil Resolution</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>u_{ll} Efficiency</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>u_{ll} Efficiency</td>
<td>16</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Lepton Removal</td>
<td>16</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>9</td>
<td>19</td>
<td>0</td>
<td>Backgrounds</td>
<td>7</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>$p_T(W)$</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PDF</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>PDF</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>QED</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>QED</td>
<td>9</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>Total Systematic</td>
<td>54</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>Statistical</td>
<td>58</td>
<td>66</td>
<td>0</td>
<td>Statistical</td>
<td>57</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>77</td>
<td>35</td>
<td>Total</td>
<td>79</td>
<td>80</td>
<td>42</td>
</tr>
</tbody>
</table>
Signed χ

CDF II preliminary

$\int L \, dt \approx 200 \text{ pb}^{-1}$

$m_T (\text{GeV})$ vs. χ