W Boson mass and width measurements at the Tevatron

Emily Nurse

University College London

MORIOND QCD, March 2007
Why measure the W mass/width?

\[M_W^2 = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} G_F} \left(\frac{1}{1 - (M_W^2 / M_Z^2)} \right) \frac{1}{1 - \Delta r} \]

\[\Delta r: \text{O(3\%)} \text{ radiative corrections dominated by } tb \text{ and Higgs loops} \]

\[\Delta M_W \propto M_{top}^2 \]

\[\Delta M_W \propto \ln M_H \]

\[\therefore \text{we can constrain } M_H \text{ by precisely measuring } M_W \text{ and } M_{top}: \]

Measuring W width (\(\Gamma_W \)) tests the SM.

\(\Gamma_W \) is an input to the \(M_W \) measurement: \(\Delta M_W \approx \Delta \Gamma_W / 7 \).
$m_T = \sqrt{2p_T^l p_T^\nu (1 - \cos \phi_{l\nu})}$

- μ-channel: central tracker
- e-channel: EM calorimeter

The measurements are performed in the $\mu \nu \mu$ and $e\nu_e$ channels using 200pb$^{-1}$ (350pb$^{-1}$) for M_W (Γ_W)

W production at the Tevatron

The measurements are performed in the $\mu \nu \mu$ and $e\nu_e$ channels using 200pb$^{-1}$ (350pb$^{-1}$) for M_W (Γ_W)
Analysis strategy

- Simulate M_T distribution with a dedicated fast parameterised MC (using Breit-Wigner lineshape).
- MC simulates QCD (RESBOS) and QED (WGRAD) corrections.
- Utilise well understood data samples to calibrate detector to high precision.
- Fit templates (with M_W/Γ_W varying) to the data:
 - Γ_W fit range: 90-200 GeV
 - M_W fit range: 65-90 GeV
Sources of systematic error

• The mass/width analyses are very similar with different dominant systematics:
 – Momentum scale/resolution
 – Calorimeter scale/resolution
 – Hadronic recoil
 – Backgrounds

• Current world average uncertainties:
 – $\Delta M_W = 29$ MeV
 – $\Delta \Gamma_W = 60$ MeV
Momentum scale set with di-muon resonance peaks in data:

\[J/\Psi \rightarrow \mu\mu; \quad \Upsilon(1S) \rightarrow \mu\mu; \quad Z \rightarrow \mu\mu \]

\[\Delta M_W (\mu) = 17 \text{ MeV} \]
\[\Delta \Gamma_W (\mu) = 17 \text{ MeV} \]

\[\Delta M_W (\mu) = 3 \text{ MeV} \]
\[\Delta \Gamma_W (\mu) = 26 \text{ MeV} \]
Electron energy calibration (p_T^e)

Calorimeter scale and resolution set using:
- E/p in $W\rightarrow e\nu$ data
- M_{ee} in $Z\rightarrow ee$ data

E scale known to 0.034%

Energy loss in tracker (bremsstrahlung)

scale: E/p
- $\Delta M_W(e) = 30$ MeV
- $\Delta \Gamma_W(e) = 17$ MeV

resolution:
- $\Delta M_W(e) = 3$ MeV
- $\Delta \Gamma_W(e) = 31$ MeV

W mass and width

Emily Nurse, UCL
Hadronic Recoil: \(U (p_T^\nu) \)

- \(U = (U_x, U_y) = \sum_{\text{towers}} E \sin \theta (\cos \phi, \sin \phi) \)
- Vector sum over calorimeter towers
 - Excluding those surrounding lepton

\[
p_T^\nu = E_T^{\text{miss}} = -(U + p_T^{\text{lep}})
\]

- \(U \) split into components parallel (\(U_1 \)) and perpendicular (\(U_2 \)) to \(Z p_T \)
- 7 parameter model describes the recoil response and resolution: fit to \(Z \) data
Hadronic Recoil: $U (p_T^\gamma)$

Data

$Z \rightarrow ee$

MC

$Z \rightarrow ee$

$\Delta M_W (\mu) = 12 \, \text{MeV}$

$\Delta \Gamma_W (\mu) = 49 \, \text{MeV}$

$\Delta M_W (e) = 14 \, \text{MeV}$

$\Delta \Gamma_W (e) = 54 \, \text{MeV}$
Backgrounds

- Electroweak backgrounds ($Z \rightarrow l \bar{l}$, $W \rightarrow \tau \nu$) found from full GEANT MC samples.
- Data used to estimate:
 - multijet: Fit low E_T^{miss} distribution.
 - kaons decaying-in-flight to μ: Fit high χ^2_{track} distribution.

\[
\begin{align*}
\Delta M_W (\mu) &= 9 \text{ MeV} \\
\Delta \Gamma_W (\mu) &= 33 \text{ MeV} \\
\end{align*}
\]

\[
\begin{align*}
\Delta M_W (e) &= 8 \text{ MeV} \\
\Delta \Gamma_W (e) &= 32 \text{ MeV} \\
\end{align*}
\]
Results: M_W fits

$M_W = (80417 \pm 48 \text{ (stat + syst)}) \text{ MeV}$

e + μ combination $P(\chi^2) = 7\%$

Include fits to p_T^e and p_T^ν:

$M_W = (80413 \pm 48 \text{ (stat + syst)}) \text{ MeV}$
Results: Γ_W fits

$\Gamma_W = (1948 \pm 67)$ MeV
χ^2/dof [fit range] = 17/21
χ^2/dof [full range] = 21/29

CDF II Preliminary (350 pb$^{-1}$)

$\Gamma_W = 2032 \pm 71$ (stat + syst) MeV
χ^2/dof [fit range] = 19/21
χ^2/dof [full range] = 32/29

χ^2/dof [fit range] = 19/21
χ^2/dof [full range] = 32/29

$\Gamma_W = (2118 \pm 60)$ MeV
χ^2/dof [fit range] = 19/21
χ^2/dof [full range] = 32/29

χ^2/dof [fit range] = 19/21
χ^2/dof [full range] = 32/29

$\Gamma_W = 2032 \pm 71$ (stat + syst) MeV
$e + \mu$ combination $P(\chi^2) = 20\%$
Systematic uncertainties

M_W uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>u_\perp Efficiency</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PDF</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>QED</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>39</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Statistical</td>
<td>48</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>60</td>
<td>26</td>
</tr>
</tbody>
</table>

Γ_W uncertainties

CDF Run II Preliminary (350 pb$^{-1}$)

<table>
<thead>
<tr>
<th>Source</th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Scale</td>
<td>17</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>31</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Simulation</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Recoil</td>
<td>54</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Lepton ID</td>
<td>10</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>32</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>PDF</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>QED</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W mass</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Total systematic</td>
<td>78</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>Statistical</td>
<td>60</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>97</td>
<td>23</td>
</tr>
</tbody>
</table>
Results

World’s most precise single measurements!

Central value increases by 6 MeV:
80392 → 80398 MeV

Uncertainty reduced by 15%:
29 → 25 MeV

Central value decreases by 44 MeV:
2139 → 2095 MeV

Uncertainty reduced by 22%:
60 → 47 MeV
Implications

Previous World Data:

\[m_H = 85^{+39}_{-28} \text{ GeV} \]

\[m_H < 166 \text{ GeV @ 95\% C.L.} \]

Including New \(M_W \):

\[m_H = 80^{+36}_{-26} \text{ GeV} \]

\[m_H < 153 \text{ GeV @ 95\% C.L.} \]

Including New \(M_{\text{top}} \):

Later this session…(M. Wang)

Direct search from LEP II:

\[m_H > 114.4 \text{ GeV @ 95\% C.L.} \]
Summary

- Two new measurements from CDF:
 - W mass: 80413 ± 48 MeV (stat + syst)
 - W width: 2032 ± 71 MeV (stat + syst)
- Both are the world’s most precise single measurements!!
- Getting to this point requires a “precision” level calibration of the detector.
- Continuing to squeeze the phase space available to the SM Higgs.
- Analyses utilised 200 pb\(^{-1}\) and 350 pb\(^{-1}\) respectively, both CDF and DØ already have \(\sim2\) fb\(^{-1}\) on tape.
- Expect improved mass/width measurements to further test the SM and constrain \(m_H\)