Heavy Flavor Physics at CDF

Gavril Giurgiu, Johns Hopkins University
on behalf of CDF collaboration

BEACH 2008
The 8th International Conference on Hyperons, Charm and Beauty Hadrons

June 23, 2008, Columbia, South Carolina
Outline

- Introduction
 - Tevatron, CDF detector
 - B Physics at the Tevatron

- Recent results
 - B_c - mass
 - lifetime
 - B_s - lifetime
 - decay width difference
 - CP violation

- Topics not covered

- Conclusions
Tevatron

- $p\bar{p}$ collisions at 1.96 TeV

 $\sim 3.5 \text{ fb}^{-1}$ data on tape

- Initial instantaneous luminosity $3 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$
- Central tracking:
 - silicon vertex detector
 - drift chamber
 → excellent momentum, mass and vertex resolution
 → trigger on long lived particles

- Particle identification: dE/dx and TOF
- Good electron and muon ID by calorimeters and muon chambers
B Physics at the Tevatron

- Mechanisms for b production in $p\bar{p}$ collisions at 1.96 TeV

- At Tevatron, b production cross section is much larger compared to B-factories
 → Tevatron experiments CDF and DØ enjoy rich B Physics program

- Plethora of states accessible only at Tevatron: B_s, B_c, Λ_b, Ξ_b, Σ_b...
 → complement the B factories physics program

- Total inelastic cross section at Tevatron is ~1000 larger than b cross section
 → large backgrounds suppressed by triggers that target specific decays
B_c Mass in B_c → J/ψ π (2.4 fb⁻¹)

- **B_c** – unique meson as it contains two heavy quarks: bottom and anti-charm (b̅c)

- **Mass predictions:**
 - NR potential models 6247 - 6286 MeV
 - lattice QCD 6304 +/- 12 +18⁻⁰ MeV

- **Best mass measurement:**

 \[6275.6 \pm 2.9 \text{ (stat.)} \pm 2.5 \text{ (syst.)} \text{ MeV/}c^2\]

Diagram:

- **Signal yield**

 \[108 +/- 15\] significance 8σ

Graph:

- ** Entries per 10 MeV/c²**

 ![Graph](image-url)
B_c Lifetime in \(B_c \rightarrow J/\Psi \) **lepton (1 fb\(^{-1}\))**

http://www-cdf.fnal.gov/physics/new/bottom/080327.blessed-BC_LT_SemiLeptonic/

- Lepton can be either muon or electron

- Different contributions to total decay width:
 - c quark decays \(B_c^+ \rightarrow B_c^0 \pi^+ \)
 - b quark decays \(B_c^+ \rightarrow J/\Psi \ell^+ \nu \)
 - annihilation \(B_c^+ \rightarrow \ell^+ \nu. \)

- Lifetime expected \(\sim 1/3 \) of other B mesons (0.5ps compared to typical 1.5ps)

- Signal reconstruction from \(\sim 5.5 \) million J/\(\Psi \)

- Third lepton is vertexed with J/\(\Psi \)

- Partially reconstructed mode (missing neutrino)
 - use simulation to correct missing momentum

- Main challenge is understanding multiple backgrounds:
 - real J/\(\Psi \) + fake lepton
 - fake J/\(\Psi \) + real lepton
 - real J/\(\Psi \) + real lepton from bb events
 - prompt J/\(\Psi \) + \(\mu \)
B_c Lifetime Results

- Most precise B_c lifetime measurement (same precision as DØ)

 muon mode \[c\tau_\mu = 179.1^{+32.6}_{-27.2} \text{ (stat.) } \mu m, \]

 electron mode \[c\tau_e = 121.7^{+18.0}_{-16.3} \text{ (stat.) } \mu m. \]

- Combined:
 \[c\tau = 142.5^{+15.8}_{-14.8} \text{ (stat.) } \pm 5.5 \text{ (syst.) } \mu m. \]

- Speaker’s average (neglect correlations)
 \[\tau = 0.459 \pm 0.037 \text{ ps} \]

- Large theoretical uncertainties and model to model variations \[\tau = 0.47 \div 0.59 \text{ ps} \]

- Expect CDF B_c lifetime measurement in fully reconstructed B_c → J/Ψ π
Neutral B_s System

- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i \frac{d}{dt} \left(\left| B_s^0(t) \right> \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\left| B_s^0(t) \right> \right)$$

- Diagonalize mass (M) and decay (Γ) matrices → mass eigenstates

$$| B_s^H \rangle = p | B_s^0 \rangle - q | \bar{B}_s^0 \rangle \quad | B_s^L \rangle = p | B_s^0 \rangle + q | \bar{B}_s^0 \rangle$$

- Different mass eigenvalues: $\Delta m_s = m_H - m_L \rightarrow B_s$ oscillates with frequency $\sim \Delta m_s$

 CDF $\Delta m_s = 17.77 +/- 0.12$ ps$^{-1}$
 DØ $\Delta m_s = 18.56 +/- 0.87$ ps$^{-1}$

- Mass eigenstates have different decay widths (different lifetimes)

 $\Delta \Gamma = \Gamma_L - \Gamma_H$
CP Violation in B_s System

- Standard Model CP violation occurs through complex phases in the unitary CKM quark mixing matrix:

$$
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix} =
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
$$

- Expanded in $\lambda = \sin(\theta_{\text{Cabibbo}}) \approx 0.23$:

$$
\begin{pmatrix}
 1 - \frac{1}{2} \lambda^2 - \frac{1}{8} \lambda^4 \\
 -\lambda + \frac{1}{2} A^2 \lambda^5 [1 - 2(\rho + i\eta)] \\
 A\lambda^3 [1 - (1 - \frac{1}{2} \lambda^2)(\rho + i\eta)]
\end{pmatrix}
\begin{pmatrix}
 \lambda \\
 1 - \frac{1}{2} \lambda^2 - \frac{1}{8} \lambda^4 (1 + 4A^2) \\
 -A\lambda^2 + \frac{1}{2} A\lambda^4 [1 - 2(\rho + i\eta)]
\end{pmatrix}
\begin{pmatrix}
 A\lambda^3 (\rho - i\eta)
\end{pmatrix}
$$

- Unitary matrix $\rightarrow V_{us} V_{ub}^* + V_{cs} V_{cb}^* + V_{ts} V_{tb}^* = 0$

$$
\begin{vmatrix}
 |V_{ts} V_{tb}^*| \\
 |V_{us} V_{ub}^*| \\
 |V_{cs} V_{cb}^*|
\end{vmatrix} \sim 1
$$

$$
\begin{vmatrix}
 |V_{ts} V_{tb}^*| \\
 |V_{us} V_{ub}^*| \\
 |V_{cs} V_{cb}^*|
\end{vmatrix} \sim \lambda^2 \approx 0.05
$$

very small CPV phase β_s

accessible in $B_s \rightarrow J/\Psi \Phi$ decays
CP Violation in $B_s \to J/\Psi \Phi$ Decays

- Analogously to the neutral B^0 system, CP violation in B_s system occurs through interference of decay with and without mixing:

\[
\begin{align*}
B^0 & \to J/\Psi K^0_s & \bar{B}^0 & \to J/\Psi \Phi \\
\Rightarrow \sin(2\beta) & \Rightarrow \sin(2\beta_s)
\end{align*}
\]

- CP violation phase β_s in SM is predicted to be very small:

\[
\beta_s^{SM} = \arg\left(-V_{ts}^* V_{tb} / V_{cs}^* V_{cb}^* \right) \approx 0.02
\]

- New Physics affects the CP violation phase as:

\[
2\beta_s = 2\beta_s^{SM} - \phi_s^{NP}
\]

- If NP phase ϕ_s^{NP} dominates $\to 2\beta_s = -\phi_s^{NP}$
B_s Lifetime in B_s → J/ΨΦ Decays (1.7 fb⁻¹)

- ~2500 signal events in ~1.7 fb⁻¹
- **B_s lifetime measurements from B_s → J/ΨΦ decays**
- Measures average decay width $\Gamma_s = \frac{\Gamma_L + \Gamma_H}{2}$

$$\tau_s = \frac{1}{\Gamma_s} = 1.52 \pm 0.04 \text{ (stat)} \pm 0.02 \text{ (syst)} \text{ ps}$$
Width Difference $\Delta \Gamma$ in $B_s \rightarrow J/\Psi \Phi$ (1.7 fb$^{-1}$) \cite{Phys.Rev.Lett. 100, 121803 (2008)}

- Can also measure decay width $\Delta \Gamma$

- The decay of B_s (spin 0) to J/Ψ(spin 1) Φ(spin 1) leads to three different angular momentum final states:
 - $L = 0$ (s-wave), 2 (d-wave) → CP even
 - $L = 1$ (p-wave) → CP odd

- At good approximation mass eigenstates $|B_s^L\rangle$ and $|B_s^H\rangle$ are CP eigenstates
 - use angular information to separate heavy and light states
 - determine decay width difference
 $\Delta \Gamma = \Gamma_L - \Gamma_H = 0.08 +/- 0.06 \text{ (stat) +/- 0.01 \text{ (syst) ps}^{-1}}$

 → some sensitivity to CP violation phase β_s

- Determine B_s flavor at production (flavor tagging)
 → improve sensitivity to CP violation phase β_s

→ $\Delta \Gamma \neq 0$
CP Violation Phase β_s in Tagged $B_s \to J/\Psi\Phi$ Decays (1.4 fb$^{-1}$)

- First tagged analysis of $B_s \to J/\Psi\Phi$ (1.4 fb$^{-1}$)
- Signal B_s yield \sim2000 events with S/B \sim 1
- Irregular likelihood does not allow quoting point estimate
- Quote Feldman-Cousins confidence regions with frequentist inclusion of systematic uncertainties

- 1D Feldman-Cousins procedure without external constraints:
 $2\beta_s$ in $[0.32, 2.82]$ at the 68% C.L.

- with external constraints (on strong phases, lifetime and $\Delta\Gamma$)
 $2\beta_s$ in $[0.40, 1.20]$ at 68% C.L.

Figure:
- SM prediction
- 68% C.L.
- 95% C.L.

Standard Model probability 15% $\sim 1.5\sigma$

Reference:
Comparison with DØ arXiv:0802.2255

- DØ quotes the results in terms of $\phi_s = -2\beta_s$
 See talk by E. Fisk for DØ analysis

- DØ quotes a point-estimate with strong phases constrained from $B^0 \rightarrow J/\psi K^{*0}$
 $\phi_s = -0.57^{+0.24}_{-0.30} \text{(stat)} +0.07 \text{(syst)}$

- Can be compared to CDF constrained result
 $2\beta_s \in [0.40,1.20] \text{ @ 68\% CL}$

- HFAG combined CDF + DØ result to appear very soon!
B_s Lifetime in Flavor Specific Decay B_s → D_s π X

- Decay modes:
 - fully reconstructed $B_s → D_s(\Phi\pi) \pi$ (≈1100 events)
 - partially reconstructed (2200 events)

- Partially reconstructed modes ← use simulation to model mass distribution shapes and missing momentum:

$$ct = \frac{L_{xy} \cdot m_B^{rec}}{p_T} \cdot \mathcal{K}$$

![Graph showing decay modes and mass distribution](image-url)
B₅ Lifetime in Bₛ → DₛπX (cont)

- Data collected using displaced track trigger
 - two displaced tracks with 120 μm < d₀ < 1mm
 → lifetime bias corrected using simulation

- Procedure tested and on control samples

 \[B^0 \rightarrow D^- (K^+ \pi^- \pi^+) \pi^+ \]
 \[B^0 \rightarrow D^0 (K^+ \pi^- \pi^-) \pi^+ \]
 \[B^+ \rightarrow D^0 (K^+ \pi^-) \pi^+ \]

- Found good agreement with world average
B_s → D_s \pi Lifetime Result

- **Best flavor specific B_s lifetime:**
 \[\tau(B_s) = 1.518 \pm 0.041 \pm 0.025 \text{ ps} \]

- In good agreement with CDF and DØ results in B_s → J/ΨΦ

- Higher value will bring average closer to HQET prediction \(\tau_s/\tau_d = 1.0 \pm 0.02 \)

- HFAG 2007: \(\tau_s/\tau_d = 0.94 \pm 0.02 \)
- Many other recent results not covered in this talk:

- b baryons: Λ_b, Σ_b, Ξ_b
- Best limits of rare decays:
 - $B_s \rightarrow \mu\mu$, $B_s \rightarrow \mu\mu\Phi$, $B_s \rightarrow e\mu$, $B_s \rightarrow ee$, $D^0 \rightarrow \mu\mu$
- CP asymmetry in semileptonic B decays
- CP violation in charmless B and Λ_b two-body decays
- CP asymmetry in $B^+ \rightarrow D^0 K^+$
- Charm mixing
- Simulation free lifetime measurement
- $\Psi(2S)$ production, $Y(1S)$, $Y(2S)$ polarization
- $B^0 \rightarrow J/\psi K^{*0}$ angular analysis
- orbitally excited B mesons
- b-b correlation

http://www-cdf.fnal.gov/physics/new/bottom/bottom.html
Conclusions

- Very rich B physics program at CDF

- Complementary and competitive with *Belle* and *BaBar*

- Great Tevatron performance
 → accumulate data fast
 → expect 6-8 fb\(^{-1}\) by the end of Run 2

- Expect updates of many analyses

- Exciting time for flavor physics at Tevatron!
Backup Slides
CDF B Physics Triggers

- Triggers designed to select events with topologies consistent with B decays:

 - 4 GeV lepton + displaced track (semileptonic B decays)

 ![Diagram of lepton + displaced track](image)

 - di-muon (B → J/Ψ X, B → μμ)

 ![Diagram of di-muon](image)

 - two displaced tracks (hadronic decays)

 ![Diagram of two displaced tracks](image)
Simulation Free Lifetime Method in $B^+ \rightarrow D^0 \pi^+$ (1 fb$^{-1}$)

- CDF has large sample of fully reconstructed decays of b hadrons collected by trigger which requires two displaced tracks with $120 \text{ mm} < d_0 < 1\text{ mm}$
 \rightarrow in general, use simulation to correct for trigger induced lifetime biases

- Already good measurements of B_s (Λ_b lifetime measurement expected soon)
- Use alternative lifetime measurement techniques not based on simulation for better control of systematic uncertainties

- First lifetime measurement without use of simulation in trigger biased sample $B^+ \rightarrow D^0 \pi^+$ shows proof of principle
 - use event by event acceptance function:
Simulation Free B^+ Lifetime Results

- 24200 +/- 200 signal events with S/B ~4.8

$$\tau(B^+) = 1.662 \pm 0.023 \text{ (stat.)} \pm 0.013 \text{ (syst.)} \text{ ps}$$

- In good agreement with PDG average: 1.638 \pm 0.011 \text{ ps}

- Method to be used in the future for better measurements of B_s and Λ_b lifetimes in trigger biased samples
 - with large data samples will also need better control of systematic uncertainties

- Important proof of principle for LHC experiments
Σ_b Mass Measurement (1.1 fb⁻¹)

- Σ_b properties predicted by HQET, now tested by exp
- First observation of Σ_b and Σ_b* by CDF in 2007
- Reconstructed decay mode:

 \[\Sigma_b^{(*)\pm} \rightarrow \Lambda_b^0 \pi^\pm \]

\[\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \]

\[\Lambda_c^+ \rightarrow pK^- \pi^+ \]

\[m_{\Sigma_b^+} = 5807.8^{+2.0}_{-2.2} \text{ (stat.)} \pm 1.7 \text{ (syst.) \ MeV/c^2} \]

\[m_{\Sigma_b^-} = 5815.2 \pm 1.0 \text{ (stat.)} \pm 1.7 \text{ (syst.) \ MeV/c^2} \]

\[m_{\Sigma_b^{*+}} = 5829.0^{+1.6}_{-1.8} \text{ (stat.)}^{+1.7}_{-1.8} \text{ (syst.) \ MeV/c^2} \]

\[m_{\Sigma_b^{*-}} = 5836.4 \pm 2.0 \text{ (stat.)}^{+1.8}_{-1.7} \text{ (syst.) \ MeV/c^2} \]
\(\Xi_b \) Mass Measurement (1.9 fb\(^{-1}\))

- \(\Xi_b \) (quark content: \(bds \)) → third observed b baryon after \(\Lambda_b \) and CDF’s recent discovery of \(\Sigma_b \)

- Study b baryons → great way to test QCD which predicts \(M(\Lambda_b) < M(\Xi_b) < M(\Sigma_b) \)

- Decay mode

\[
\Xi_b^- \rightarrow J/\psi \Xi^-, \quad \text{with} \quad J/\psi \rightarrow \mu^+ \mu^- \\
\text{and} \quad \Xi^- \rightarrow \Lambda \pi^- \rightarrow p\pi^- \pi^-
\]

- \(\Xi \) tracked in silicon vertex detector for the first time at hadron collider

- Most precise measurement at 7.8\(\sigma \) significance

\[
M(\Xi_b^-) = (5,792.9 \pm 2.4(\text{stat.}) \pm 1.7(\text{syst.})) \text{ MeV}/c^2
\]

- \(\Xi_b \) can be measured in hadronic decays at CDF

- With more data will study other properties of \(\Xi_b \)
Branching Fractions and CP Asymmetry in $B^+ \rightarrow D^0 K^+$ (1 fb$^{-1}$)

- Measures quantities relevant for determination of the CKM angle

$$\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$$

$$A_{CP^+} = \frac{BR(B^- \rightarrow D_{CP^+}^0 K^-) - BR(B^+ \rightarrow D_{CP^+}^0 K^+)}{BR(B^- \rightarrow D_{CP^+}^0 K^-) + BR(B^+ \rightarrow D_{CP^+}^0 K^+) + BR(B^- \rightarrow D_{CP^+}^0 \pi^-) + BR(B^+ \rightarrow D_{CP^+}^0 \pi^+)}$$

$$R_{CP^+} = \frac{R_+}{R}$$

where:

$$R = \frac{BR(B^- \rightarrow D^0 K^-) + BR(B^+ \rightarrow D^0 K^+)}{BR(B^- \rightarrow D^0 \pi^-) + BR(B^+ \rightarrow D^0 \pi^+)}$$

$$R_+ = \frac{BR(B^- \rightarrow D_{CP^+}^0 K^-) + BR(B^+ \rightarrow D_{CP^+}^0 \pi^+)}{BR(B^- \rightarrow D_{CP^+}^0 \pi^-) + BR(B^+ \rightarrow D_{CP^+}^0 \pi^+)}$$

CP even eigenstate:

$D_{CP^+}^0 \rightarrow K^+K^-$

$D_{CP^+}^0 \rightarrow \pi^+\pi^-$

Flavor eigenstate:

$D^0 \rightarrow K^-\pi^+$

<table>
<thead>
<tr>
<th>CDF Run II Preliminary</th>
<th>$L_{int} = 1$ fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$^−$ → D0π$^−$</td>
<td></td>
</tr>
<tr>
<td>D0 → K$^−$π$^+$</td>
<td></td>
</tr>
<tr>
<td>signal yield ~8000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDF Run II Preliminary</th>
<th>$L_{int} = 1$ fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$^−$ → D$^{0, CP^+}$π$^−$</td>
<td></td>
</tr>
<tr>
<td>D^{0, CP^+} → K$^+$K$^−$</td>
<td></td>
</tr>
<tr>
<td>yield ~1100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDF Run II Preliminary</th>
<th>$L_{int} = 1$ fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$^−$ → D$^{0, CP^+}$π$^−$</td>
<td></td>
</tr>
<tr>
<td>D^{0, CP^+} → π$^+$π$^−$</td>
<td></td>
</tr>
<tr>
<td>yield ~250</td>
<td></td>
</tr>
</tbody>
</table>
Branching Fractions and CP Asymmetry in $B^+ \to D^0 K^+$ (1 fb$^{-1}$)

- Discriminating variables used to disentangle decay modes:
 - (D^0, track) invariant mass
 - momentum imbalance: $p_{tr} < p_{D^0} \quad \alpha = 1 - p_{tr}/p_{D^0} > 0$
 - total momentum $p_{tr} \geq p_{D^0} \quad \alpha = -(1 - p_{D^0}/p_{tr}) \leq 0$
 - ‘kaonness’ contains dE/dx information

of direct B track $p_{tot} = p_t + p_{D^0}$
Branching Fractions and CP Asymmetry in $B^+ \to D^0 K^+ (1 \, \text{fb}^{-1})$

- **Results:**
 - ratio of branching fractions:
 \[
 R = \frac{BR(B^- \to D^0 K^-) + BR(B^+ \to \bar{D}^0 K^+)}{BR(B^- \to D^0 \pi^-) + BR(B^+ \to \bar{D}^0 \pi^+)} = 0.0745 \pm 0.0043(\text{stat.}) \pm 0.0045(\text{syst.})
 \]
 \[
 R_{CP^+} = \frac{BR(B^- \to D_{CP+}^0 K^-) + BR(B^+ \to D_{CP+}^0 K^+)}{[BR(B^- \to D^0 K^-) + BR(B^+ \to \bar{D}^0 K^+)]/2} = 1.57 \pm 0.24(\text{stat.}) \pm 0.12(\text{syst.})
 \]
 - direct CP asymmetry:
 \[
 A_{CP^+} = \frac{BR(B^- \to D_{CP+}^0 K^-) - BR(B^+ \to D_{CP+}^0 K^+)}{BR(B^- \to D_{CP+}^0 K^-) + BR(B^+ \to D_{CP+}^0 K^+)} = 0.37 \pm 0.14(\text{stat.}) \pm 0.04(\text{syst.})
 \]
 - Quantities measured for the first time at hadron colliders
 - Results in agreement and competitive with B factories

- **Graphs:**
 - BABAR (arXiv:0708.1534)
 - Belle (PRD 73, 051106(2006))
 - CDF II
 - Old AVG (Babar+Belle)
 - New AVG (Babar+Belle+CDF)

- **Values:**
 - BABAR: $A_{CP^+} = 0.35 \pm 0.09 \pm 0.05$
 - Belle: $A_{CP^+} = 0.06 \pm 0.14 \pm 0.05$
 - CDF II: $A_{CP^+} = 0.37 \pm 0.14 \pm 0.04$
 - Old AVG (Babar+Belle): $A_{CP^+} = 0.26 \pm 0.08$
 - New AVG (Babar+Belle+CDF): $A_{CP^+} = 0.28 \pm 0.07$
 - BABAR: $R_{CP^+} = 1.07 \pm 0.10 \pm 0.04$
 - Belle (PRD 73, 051106(2006)): $R_{CP^+} = 1.13 \pm 0.16 \pm 0.08$
 - CDF II: $R_{CP^+} = 1.57 \pm 0.24 \pm 0.12$
 - Old AVG (Babar+Belle): $R_{CP^+} = 1.09 \pm 0.09$
 - New AVG (Babar+Belle+CDF): $R_{CP^+} = 1.14 \pm 0.09$
Branching Fractions and CP Asymmetry in $\Lambda_b \rightarrow p \pi(K)$ (1 fb$^{-1}$)

- Direct CP violation
- First study of CP asymmetry in b baryon decays (SM prediction ~10%)
- Use large sample collected by two displaced track trigger

- Different states that contribute to $\pi^+\pi^-$ invariant mass are not separated in mass
- Use additional kinematic and dE/dx information to achieve better statistical separation

Branching Fractions and CP Asymmetry in $\Lambda_b \rightarrow p \pi (K)$

- Results:

\[
A_{CP}(\Lambda_b^0 \rightarrow p\pi^-) = \frac{B(\Lambda_b^0 \rightarrow p\pi^-) - B(\Lambda_b^0 \rightarrow \bar{p}\pi^+)}{B(\Lambda_b^0 \rightarrow p\pi^-) + B(\Lambda_b^0 \rightarrow \bar{p}\pi^+)} = 0.03 \pm 0.17 \text{ (stat.)} \pm 0.05 \text{ (syst.)}
\]

\[
A_{CP}(\Lambda_b^0 \rightarrow pK^-) = \frac{B(\Lambda_b^0 \rightarrow pK^-) - B(\Lambda_b^0 \rightarrow \bar{p}K^+)}{B(\Lambda_b^0 \rightarrow pK^-) + B(\Lambda_b^0 \rightarrow \bar{p}K^+)} = 0.37 \pm 0.17 \text{ (stat.)} \pm 0.03 \text{ (syst.)}
\]

- First CP asymmetry measurement in b baryon decays

- Additionally, first measurement of branching fraction relative to $B^0 \rightarrow K\pi$ decays:

\[
\frac{\sigma(p\bar{p} \rightarrow \Lambda_b^0 X, p_T > 6 \text{ GeV}/c)}{\sigma(p\bar{p} \rightarrow B^0 X, p_T > 6 \text{ GeV}/c)} \frac{B(\Lambda_b^0 \rightarrow p\pi^-)}{B(B^0 \rightarrow K^+\pi^-)} = 0.0415 \pm 0.0074 \text{ (stat.)} \pm 0.0058 \text{ (syst.)}
\]

\[
\frac{\sigma(p\bar{p} \rightarrow \Lambda_b^0 X, p_T > 6 \text{ GeV}/c)}{\sigma(p\bar{p} \rightarrow B^0 X, p_T > 6 \text{ GeV}/c)} \frac{B(\Lambda_b^0 \rightarrow pK^-)}{B(B^0 \rightarrow K^+\pi^-)} = 0.0663 \pm 0.0089 \text{ (stat.)} \pm 0.0084 \text{ (syst.)}
\]

B_s → J/ΨΦ Phenomenology

- B_s → J/ΨΦ decay rate as function of time, decay angles and initial B_s flavor:

\[
\frac{d^4P(t, \bar{\rho})}{dtd\bar{\rho}} \propto |A_0|^2 T_+ f_1(\bar{\rho}) + |A||^2 T_+ f_2(\bar{\rho}) + |A_\perp|^2 T_+ f_3(\bar{\rho}) + |A||A_\perp| U_+ f_4(\bar{\rho}) + |A_0||A_\perp| \cos(\delta_\parallel) T_+ f_5(\bar{\rho}) + |A_0||A_\perp| V_+ f_6(\bar{\rho}),
\]

\[T_\pm = e^{-\Gamma t} \times \left[\cosh(\Delta \Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta \Gamma t/2) \mp \sin(2\beta_s) \sin(\Delta m_s t) \right],\]

\[U_\pm = \pm e^{-\Gamma t} \times \left[\sin(\delta_\perp - \delta_\parallel) \cos(\Delta m_s t) - \cos(\delta_\perp - \delta_\parallel) \cos(2\beta_s) \sin(\Delta m_s t) \pm \cos(\delta_\perp - \delta_\parallel) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right],\]

\[V_\pm = \pm e^{-\Gamma t} \times \left[\sin(\delta_\parallel) \cos(\Delta m_s t) - \cos(\delta_\parallel) \cos(2\beta_s) \sin(\Delta m_s t) \pm \cos(\delta_\parallel) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right].\]

- Tagging → better sensitivity to \(\beta_s \)
CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Likelihood expression predicts better sensitivity to β_s but still double minima due to symmetry:
 \[2\beta_s \rightarrow \pi - 2\beta_s \]
 \[\Delta \Gamma \rightarrow -\Delta \Gamma \]
 \[\delta_{||} \rightarrow 2\pi - \delta_{||} \]
 \[\delta_{\perp} \rightarrow \pi - \delta_{\perp} \]

- Study expected effect of tagging using pseudo-experiments

- Improvement of parameter resolution is small due to limited tagging power ($\epsilon D^2 \sim 4.5\%$ compared to B factories $\sim 30\%$)

- However, $\beta_s \rightarrow -\beta_s$ no longer a symmetry
 → 4-fold ambiguity reduced to 2-fold ambiguity
 → allowed region for β_s is reduced to half

\[
2\Delta \log(L) = 2.3 \approx 68\% \text{ CL} \quad 2\Delta \log(L) = 6.0 \approx 95\% \text{ CL}
\]
CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Likelihood expression predicts better sensitivity to β_s but still double minima due to symmetry:

 \[
 2\beta_s \rightarrow \pi - 2\beta_s \\
 \Delta \Gamma \rightarrow -\Delta \Gamma \\
 \delta_{||} \rightarrow 2\pi - \delta_{||} \\
 \delta_{\perp} \rightarrow \pi - \delta_{\perp}.
 \]

- Study expected effect of tagging using pseudo-experiments

- Improvement of parameter resolution is small due to limited tagging power ($\varepsilon D^2 \sim 4.5\%$ compared to B factories $\sim 30\%$)

- However, $\beta_s \rightarrow -\beta_s$ no longer a symmetry

 \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity

 \rightarrow allowed region for β_s is reduced to half

\[2\Delta \log(L) = 2.3 \approx 68\% \text{ CL}\]
\[2\Delta \log(L) = 6.0 \approx 95\% \text{ CL}\]
CDF Impact on Φ_s World Average

- Overlay CDF result on UT world average which includes DØ combined result

http://www.utfit.org/

- CDF measurement suppresses large fraction of CP violation parameter space!
CP Violation Phase β_s in Un-tagged $B_s \rightarrow J/\Psi\Phi$ Decays (1.7 fb$^{-1}$)

- Without identification of the initial B_s flavor still have sensitivity to β_s

- Due to irregular likelihood and biases in fit, CDF only quotes Feldman-Cousins confidence regions (Standard Model probability 22%)

- Symmetries in the likelihood \rightarrow 4 solutions are possible in $2\beta_s$-$\Delta\Gamma$ plane

![Graph showing $\Delta\Gamma$ vs. $2\beta_s$ with confidence regions and new physics models]
D₀ Mixing

- After recent observation of fastest neutral meson oscillations in Bₛ system by CDF and DØ → time to look at the slowest oscillation of D₀ mesons 😊

- D₀ mixing in SM occurs through either:

‘short range’ processes (negligible in SM)

<table>
<thead>
<tr>
<th>Process</th>
<th>AM/Γ</th>
<th>ΔΓ/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁰</td>
<td>0.474</td>
<td>0.997</td>
</tr>
<tr>
<td>B⁰</td>
<td>0.77</td>
<td><0.01</td>
</tr>
<tr>
<td>Bₛ</td>
<td>27</td>
<td>0.15</td>
</tr>
<tr>
<td>D₀ (< few%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘long range’ processes

Recent D₀ mixing evidence ← different D₀ decay time distributions in

- **Belle**
 \[D₀ \rightarrow ππ, KK \text{ (CP eigenstates)}\]
 compared to \[D₀ \rightarrow Kπ\]

- **BaBar**
 doubly Cabibbo suppressed (DCS) \[D₀ \rightarrow K^+π^−\]
 compared to Cabibbo favored (CF) \[D₀ \rightarrow K^−π^+\]

(Belle does not see evidence in this mode)
Evidence for D^0 Mixing at CDF (1.5 fb$^{-1}$)

- CDF sees evidence for D^0 mixing at 3.8σ significance by comparing DCS $D^0 \rightarrow K^+\pi^-$ decay time distribution to CF $D^0 \rightarrow K^-\pi^+$ (confirms BaBar).
- Ratio of decay time distributions:

$$R(t/\tau) = R_D + \sqrt{R_D} y'(t/\tau) + \frac{x'^2 + y'^2}{4} (t/\tau)^2$$

where $x' = x \cos \delta + y \sin \delta$ and $y' = -x \sin \delta + y \cos \delta$

δ is strong phase between DCS and CF amplitudes.

Mixing parameters $x = \Delta M/\Gamma$ and $y = \Delta\Gamma/2\Gamma$ are 0 in absence of mixing.

<table>
<thead>
<tr>
<th>Fit type</th>
<th>$R_D (10^{-3})$</th>
<th>$y' (10^{-3})$</th>
<th>$x'^2 (10^{-3})$</th>
<th>χ^2 / d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td>3.04 ± 0.55</td>
<td>8.5 ± 7.6</td>
<td>-0.12 ± 0.35</td>
<td>19.2 / 17</td>
</tr>
<tr>
<td>Physically allowed</td>
<td>3.22 ± 0.23</td>
<td>6.0 ± 1.4</td>
<td>0</td>
<td>19.3 / 18</td>
</tr>
<tr>
<td>No mixing</td>
<td>4.15 ± 0.10</td>
<td>0</td>
<td>0</td>
<td>36.8 / 19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$R_D (10^{-3})$</th>
<th>$y' (10^{-3})$</th>
<th>$x'^2 (10^{-3})$</th>
<th>Mixing Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>3.04 ± 0.55</td>
<td>8.5 ± 7.6</td>
<td>-0.12 ± 0.35</td>
<td>3.8</td>
</tr>
<tr>
<td>BABAR</td>
<td>3.03 ± 0.19</td>
<td>9.7 ± 5.4</td>
<td>-0.22 ± 0.37</td>
<td>3.9</td>
</tr>
<tr>
<td>Belle</td>
<td>3.64 ± 0.17</td>
<td>0.6 $^{+4.0}_{-3.9}$</td>
<td>0.18 $^{+0.21}_{-0.23}$</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Rare Decays

- In SM FCNC processes are forbidden at tree level → only occur at higher order
- In many new physics models, decay rates of FCNC decays of b- or c-mesons are enhanced w.r.t. SM expectations
- Best limits are set by CDF in various channels:

- 2.0 fb⁻¹

\[\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 1.8 \times 10^{-8} \ (1.5 \times 10^{-8}) \quad \text{at 95(90)\%CL} \]
\[\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 5.8 \times 10^{-8} \ (4.7 \times 10^{-8}) \quad \text{at 95(90)\%CL} \]

- 0.9 fb⁻¹

\[\mathcal{B}(B^+ \rightarrow \mu^+\mu^-K^+) = (0.60 \pm 0.15 \pm 0.04) \times 10^{-6} \quad \text{consistent with world average and} \]
\[\mathcal{B}(B^0 \rightarrow \mu^+\mu^-K^0) = (0.82 \pm 0.31 \pm 0.10) \times 10^{-6} \quad \text{competitive with best measurements} \]

\[\mathcal{B}(B_s \rightarrow \mu^+\mu^-\phi)/\mathcal{B}(B_s \rightarrow J/\psi\phi) < 2.61(2.30) \times 10^{-3} \quad \text{at 95(90)\%CL} \]

- 0.36 fb⁻¹

\[\text{Br}(D^0 \rightarrow \mu\mu) < 5.3 \times 10^{-7} \ (95\%) \]

- Search for lepton flavor violation with 2fb⁻¹ leads to best limits in \(B_{s/d} \rightarrow e\mu \) channel:

\[\text{Br} \ (B_s \rightarrow e\mu) < 2.0(2.6) \times 10^{-7} \]
\[\text{Br} \ (B_d \rightarrow e\mu) < 6.4(7.9) \times 10^{-8} \]