Search for large extra dimensions at the Tevatron

V. Krutelyov (UCSB) for CDF and D0 Collaborations

DIS-2008 Conference, London
April 7-11, 2008

• Large extra dimensions
• Direct graviton production
 ➲ $\gamma + \text{MissingEnergy} \leftrightarrow \text{jet} + \text{MissingEnergy}$
 ➲ combination
• Virtual graviton exchange
• Outlook
Large Extra Dimensions (LED)

- Extra dimensions (ED) are predicted by string theories
- Can stabilize the Higgs mass
- Provide a dark matter candidate

- **ED should not be visible to us**
 - Compactification is a solution
 - Only gravity propagates in 4+d

- ➔ ADD paradigm

Each point would have additional dimension attached to it
Large Extra Dimensions (LED)

• ADD paradigm

• Large ED \rightarrow compactified on a sub-millimeter scale R
 - Plank mass in (3+1)D related to the fundamental mass M_D in 4+d
 - $M_{pl}^2 = 8\pi M_D^{2+2d}(M_D*R)^d$
 - \rightarrow Fundamental scale $>\sim$ TeV
 - \rightarrow $R \sim 0.1$mm (1 fm) for $d=2$ (6)

• KK graviton mode mass $\sim n/R$
 - Practically continuous spectrum
 - $\Delta M_{n,n+1} \sim 1/R$: mEv (MeV) $d=2$ (6)
 - $N>>1$ in HEP
 - in RS or UED $\Delta M \sim$ TeV \rightarrow resonance
LED: collider signatures

- **Direct production**
 - Signatures:
 - jet+nothing (MET - missing E_T)
 - γ + nothing (MET)
 - Cleaner, but suppressed by α_{QED}/ α_{QCD}
 - Single mode: σ(n) ∝ 1/M_{pl}^2 → small
 - M_{pl} cancels out after sum over modes (n< n_{max} ~ [M_D*R]*[E_{max}/M_D]):
 - σ ∝ σ(n)*Sum ∝ 1/M_D^2*[s/M_D^2]^{d/2}

- **Virtual exchange**
 - Signatures:
 - Practically any pp(bar) → G → 2
 - No resonance, shape enhancement only
 - Angular shape analysis to improve sensitivity
 - Similarly, single mode * Sum
 - → σ ∝ s/Λ^4 : Λ - cutoff scale of order M_D
Existing constraints

- **Limits on** M_D **from colliders (LEP/ Tevatron) are in 1TeV range**
 - $R < 0.2$ mm for $d=2$ to $R < 30$ fm for $d=6$

- **Constraints from limits on modification of Newton law**
 - Stronger than collider limits for $d=2$: $R < 37$ µm [PDG 2007], equivalent of $M_D > 3.6$ TeV

- **Stronger constraints for** $d<4$ **from astrophysics** [PDG 2007]
 - Up to $R < 10^{-10}$ m (700 TeV) for $d=2$ from neutron stars
 - Many assumptions about star internals, sensitive only to low n/R
 - → This limit can be relaxed while collider limits are the same

CDF Run II (368 pb⁻¹)

<table>
<thead>
<tr>
<th>n</th>
<th>M_D (TeV)</th>
<th>R (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>>1.18</td>
<td><0.35</td>
</tr>
<tr>
<td>3</td>
<td>>0.99</td>
<td>$<3.6 \times 10^{-6}$</td>
</tr>
<tr>
<td>4</td>
<td>>0.91</td>
<td>$<1.1 \times 10^{-8}$</td>
</tr>
<tr>
<td>5</td>
<td>>0.86</td>
<td>$<3.5 \times 10^{-10}$</td>
</tr>
<tr>
<td>6</td>
<td>>0.83</td>
<td>$<3.4 \times 10^{-11}$</td>
</tr>
</tbody>
</table>
LED in jet + MET

• **Data sample of 1.1 fb⁻¹**
 - collected with a jet trigger with $E_T > 100$ GeV

• **Data-driven estimates of the major backgrounds.**
 - Electroweak ($\text{jet} + Z \rightarrow \nu \nu$ and $W \rightarrow l \nu$: l not identified)
 - QCD (mismeasured jets) is smaller -- ~6% of total background

• **Selections:**
 - Leading jet $E_T > 150$ GeV
 - 2nd leading jet $E_T(2) < 60$ GeV to increase acceptance (ISR/FSR)
 - $\text{MET} > 120$ GeV, away (in ϕ) from any jet
 - No isolated tracks ($P_T > 10$ GeV) to remove $W(\rightarrow \ell \nu)+\text{jets}$
LED in jet+MET: example event in data

Jet $E_T = 419$ GeV, $\text{MET} = 417$ GeV
LED in jet+MET: results

<table>
<thead>
<tr>
<th>Background</th>
<th>Expected Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \to \nu\nu$</td>
<td>390 ± 30</td>
</tr>
<tr>
<td>$W \to \tau\nu$</td>
<td>187 ± 14</td>
</tr>
<tr>
<td>$W \to \mu\nu$</td>
<td>117 ± 9</td>
</tr>
<tr>
<td>$W \to e\nu$</td>
<td>58 ± 4</td>
</tr>
<tr>
<td>$Z \to ll$</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>QCD</td>
<td>23 ± 20</td>
</tr>
<tr>
<td>γ Jet</td>
<td>17 ± 5</td>
</tr>
<tr>
<td>Non-Collision</td>
<td>10 ± 10</td>
</tr>
<tr>
<td>Total Predicted</td>
<td>808 ± 62</td>
</tr>
<tr>
<td>Data Observed</td>
<td>809</td>
</tr>
</tbody>
</table>

4/09/2008 V.Krutelyov

<table>
<thead>
<tr>
<th>n</th>
<th>M_D (TeV)</th>
<th>R (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>> 1.31</td>
<td>< 0.279</td>
</tr>
<tr>
<td>3</td>
<td>> 1.08</td>
<td>$< 3.15 \times 10^{-6}$</td>
</tr>
<tr>
<td>4</td>
<td>> 0.98</td>
<td>$< 1.01 \times 10^{-8}$</td>
</tr>
<tr>
<td>5</td>
<td>> 0.91</td>
<td>$< 3.20 \times 10^{-10}$</td>
</tr>
<tr>
<td>6</td>
<td>> 0.88</td>
<td>$< 3.16 \times 10^{-11}$</td>
</tr>
</tbody>
</table>
LED in γ+MET: Photon selection

- Events with high-E_T photon + nothing
- Important to suppress non-collisions/fake photons

D0

- Photon pointing
 - Fine segmentation of EM calorimeter to separate real photons from cosmic and jet backgrounds

CDF

- Photon Timing
 - $\sim x20$ suppression of cosmics
 - $\sim 6\text{ns}/132\text{ns}$
 - (signal Δt)/(calorimeter input Δt)
 - Efficiency $\sim 100\%$ for photons from collisions

- Topological cuts:
 - Beam halo is negligible
 - Cosmics suppressed $\sim x30$ more
- After $\sim x600$ suppression cosmics are still 20% of the total background
LED in $\gamma + \text{MET}$: data

- Similar selections
 - photon $E_T > 90$ GeV
 - $|\eta| < 1$
 - Jet/high-p_T track veto

<table>
<thead>
<tr>
<th>Channel</th>
<th>CDF</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>2.0 fb$^{-1}$</td>
<td>1.0 fb$^{-1}$</td>
</tr>
<tr>
<td>MET cut</td>
<td>50 GeV</td>
<td>70 GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Categories</th>
<th>CDF Events</th>
<th>D0 Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmics + Halo</td>
<td>9.8 ± 1.3</td>
<td>2.8 ± 1.4</td>
</tr>
<tr>
<td>Fake photons</td>
<td>-</td>
<td>2.2 ± 1.5</td>
</tr>
<tr>
<td>$W \rightarrow l \rightarrow \gamma$</td>
<td>3.6 ± 0.4</td>
<td>3.8 ± 0.3</td>
</tr>
<tr>
<td>$W\gamma \rightarrow \text{lost lepton} + \gamma$</td>
<td>5.0 ± 1.4</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>$\gamma\gamma \rightarrow \gamma$</td>
<td>2.3 ± 0.6</td>
<td>-</td>
</tr>
<tr>
<td>$Z\gamma \rightarrow \nu\nu\gamma$</td>
<td>25.2 ± 2.8</td>
<td>12.1 ± 1.3</td>
</tr>
<tr>
<td>Total</td>
<td>46.7 ± 3.0</td>
<td>22.4 ± 2.5</td>
</tr>
<tr>
<td>Data</td>
<td>40</td>
<td>29</td>
</tr>
</tbody>
</table>
LED: constraints from γ+MET

<table>
<thead>
<tr>
<th>d, LED</th>
<th>Observed (expected) 95% CL lower limit on M_D in GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDF preliminary 2 fb$^{-1}$</td>
</tr>
<tr>
<td>2</td>
<td>1080 (1000)</td>
</tr>
<tr>
<td>3</td>
<td>1000 (940)</td>
</tr>
<tr>
<td>4</td>
<td>970 (910)</td>
</tr>
<tr>
<td>5</td>
<td>930 (880)</td>
</tr>
<tr>
<td>6</td>
<td>900 (860)</td>
</tr>
<tr>
<td>7</td>
<td>797 (801)</td>
</tr>
<tr>
<td>8</td>
<td>778 (786)</td>
</tr>
</tbody>
</table>

• Updates with more data γMET@D0 expected soon
LED in γ+MET and jet+MET combined

- Limits from jet+MET and γ+MET combined give better sensitivity
- Similar sensitivity in jet+MET and γ+MET for $d>3$
- Tevatron combination is en course
- NB: from Newton law tests $M_D > 3.6$ TeV for $d=2$
Virtual G exchange: $\rightarrow \gamma\gamma/ee/\mu\mu$

- High mass $\gamma\gamma/ee/\mu\mu$ final state
 - Look for smooth excess at high mass
- Set limits based on $(M, |\cos\theta^*|)$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma/ee$ 200 pb$^{-1}$</td>
<td>d=2, d=3, d=4, d=5, d=6, d=7</td>
<td>$\lambda=1$</td>
<td></td>
</tr>
<tr>
<td>$\mu\mu$ 246 pb$^{-1}$</td>
<td>1.43, 1.67, 1.43, 1.29, 1.20, 1.14</td>
<td>1.28</td>
<td></td>
</tr>
</tbody>
</table>

4/09/2008 V. Krutelyov

Searches for LED at the Tevatron
Virtual G exchange: $\to ZZ$

- $ZZ\to 4\ell$ from D0 (1 fb$^{-1}$)
 - $\to \sigma(pp\to ZZ) < 4$ pb
 - At 95% C.L.
 - arXiv:0712.0599

- $ZZ\to 4\ell/2\ell2\nu$ from CDF (2 fb$^{-1}$)
 - $\to \sigma(pp\to ZZ) = 1.4 \pm 0.7$ pb
 - $>4\sigma$ evidence
 - arXiv:0801.4806v1

- Can expect limit on Λ in 1.5-2.5 TeV range
Outlook

- No evidence for large extra dimensions has been seen
 - Same for other kinds of ED

- Both direct production and virtual exchange of LED graviton are explored
 - Sensitivity to the fundamental mass scale is
 - $M_D \gtrsim 1 \text{ TeV}$ in direct production
 - $\Lambda \gtrsim 1.5 \text{ TeV}$ in virtual exchange

- Looking forward to more data
BACKUP SLIDES
LED

ADD Paradigm:
- Pro: "Eliminates" the hierarchy problem by stating that physics ends at a TeV scale
- Only gravity lives in the "bulk" space
- Size of ED's (n=2-7) between ~100 µm and ~1 fm
- Black holes at the LHC and in the UHE cosmic rays
- Con: Doesn't explain why ED are so large

TeV^{-1} Scenario:
- Pro: Lowers GUT scale by changing the running of couplings
- Only gauge bosons (g/γ/W/Z) "live" in ED's
- Size of ED's ~1 TeV^{-1} or ~10^{-19} m – i.e., natural EWSB size
- Con: Gravity is not in the picture

RS Model:
- Pro: A rigorous solution to the hierarchy problem via localization of gravity
- Gravitons (and possibly other particles) propagate in a single ED, with special metric
- Black holes at the LHC and in UHE cosmic rays
- Con: Somewhat disfavored by precision EW fits

Greg Landsberg, Searches for New Physics with Early LHC Data
Large extra dimensions

- **Gravitational Potential in 4 Dimensions (Newton)**
 \[V(r) = G_N \frac{m_1 m_2}{r} = \frac{1}{(M_{Pl})^2} \frac{m_1 m_2}{r} \]

- **n extra dimensions, compactified at radius R**
 \[r \ll R \quad V(r) \sim \frac{1}{(M_D)^{n+2}} \frac{m_1 m_2}{r^{n+1}} \quad \Rightarrow \quad \quad V(r) \sim \frac{1}{(M_D)^{n+2}} \frac{m_1 m_2}{R^n} \frac{1}{r} \quad r \gg R \]

At large distances, must return to original potential

\[(M_{PL})^2 \sim R^n (M_D)^{2+n} \]