Experimental Studies of W/Z + Jets and W/Z + Heavy Flavor Jets at the Tevatron

Christopher Neu

on behalf of the CDF and DØ Collaborations

HCP2008
19th Hadron Collider Physics Symposium 2008

27 May 2008
Galena, IL

Outline:
• Importance of W/Z + jets
• Recent Tevatron progress
• Summary and future
Importance of W/Z + Jet Physics

Why study W/Z + jet production?

- Important tests of Quantum Chromodynamics (QCD)
- Recent LO and NLO simulations need experimental verification
- Signature shared with top production, Higgs, other searches at Tevatron, LHC

<table>
<thead>
<tr>
<th>Result (1/fb)</th>
<th>DØ</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+jets</td>
<td>--</td>
<td>0.320</td>
</tr>
<tr>
<td>Z+jets</td>
<td>0.950</td>
<td>1.700</td>
</tr>
<tr>
<td>W+b-jets</td>
<td>0.382</td>
<td>1.900</td>
</tr>
<tr>
<td>Z+b-jets</td>
<td>0.152</td>
<td>2.000</td>
</tr>
<tr>
<td>W+c-jets</td>
<td>1.000</td>
<td>1.800</td>
</tr>
<tr>
<td>Z+c-jets</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

NB: New DØ results coming this summer!
The CDF and DØ Experiments

Common features:

- Charged particle tracking in magnetic field
- Electromagnetic and hadronic calorimetry
- Muon detection
- Luminosity monitoring
- Three level event trigger

\[\phi = \text{azimuthal angle} \]
\[\eta = -\ln(\tan \frac{\theta}{2}) \]
\[\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \]
$W + \geq 1$ jet

CDF Run II Preliminary

- Data 320 pb$^{-1}$
- Combined
- W+jets signal (tt, WZ, WW...)
- Fake W bkgd
- Real W bkgd

$S/B \sim 10/1$

$W + \geq 2$ jets

- Data 320 pb$^{-1}$
- Combined
- W+jets signal
- Fake W bkgd
- Real W bkgd

$S/B \sim 1.2/1$

$W + \geq 3$ jets

- Data 320 pb$^{-1}$
- Combined
- W+jets signal
- Fake W bkgd
- Real W bkgd

$W + \geq 4$ jets

- Data 320 pb$^{-1}$
- Combined
- W+jets signal
- Fake W bkgd
- Real W bkgd

$S/B \sim 1.2/1$

W selection: seek $W \rightarrow e \nu$

- e: $E_T > 20$ GeV, $|\eta| < 1.1$
- ν: missing transverse energy $\text{MET} > 30$ GeV
- $M_T(W) > 20$ GeV/c2

Jet definition: Cone algorithm, $R = 0.4$

- Corrected $E_T > 20$ GeV, $|\eta| < 2.0$
Total cross section for jet multiplicity, n:

$$\sigma_n = \sigma(W \rightarrow e\nu + \geq n\text{- jet}; E_T^n > 25)$$

NLO prediction more accurate than LO! ...and relative rates from bin-to-bin consistent with data.
W + Inclusive Jets

PRD 77, 011108(R)

Can examine differential cross sections for nth jet within each multiplicity bin....

Total cross section for jet multiplicity, n:

$$\sigma_n = \sigma(W \rightarrow e\nu + \geq n - \text{jet}; E_T^n > 25)$$

NLO prediction more accurate than LO!

...and relative rates from bin-to-bin consistent with data.
W + Inclusive Jets

![Graph showing data points and uncertainties for W+jets events](chart.png)

“MCFM”:
MCFM (NLO) + no shower

“MLM”:
ALPGEN (LO) + Herwig (shower) + MLM matching

“SMPR”:
MadGraph (LO) + Pythia (shower) + CKKW matching

- **LO calculation procedure:** Generate $p\bar{p}\rightarrow W+N$ partons at tree level, ignore loop corrections, employ parton shower.

- **Ambiguities arise:**
 - Possibility for double counting if $N_{parton} \neq N_{jet}$
 - SMPR and MLM refer to algorithms for avoiding/removing overlaps

At LO, MadGraph+Pythia+CKKW provides better performance.
W + Inclusive Jets

“MCFM”:

MCFM (NLO) + no shower

“MLM”:

ALPGEN (LO) + Herwig (shower) + MLM matching

“SMPR”:

MadGraph (LO) + Pythia (shower) + CKKW matching

- LO calculation procedure: Generate $\bar{p}p \rightarrow W + N$ partons at tree level, loop corrections, employ parton shower.
- Ambiguities arise:
 - Possibility for double counting if N_{partons} at tree level, ignore loop corrections, employ parton shower.
 - SMPR and MLM refer to algorithms for avoiding/removing overlaps.

But why? Is it the matrix element? Shower? Matching? Work is ongoing.
Z/γ* + Inclusive Jets

- Validity of NLO predictions borne out in Z/γ*+jets?

- Z/γ* selection: seek Z/γ*→e⁺e⁻
 - Two E_T > 25 GeV electrons
 - 66 < M_{ee} < 116 GeV/c²

- Jet definition:
 - Corrected p_T > 30, |y| < 2.1
 - Cone algorithm, R=0.7

\[
y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)
\]

- Major backgrounds: S/B ~ 7/1
 - QCD multijets
 - W + jets
 - ttbar, diboson
 - Z+γ, Z→ττ

Can’t see the NLO prediction points - close overlap with data!

NLO prediction once again more accurate than LO!
Z/γ* + Inclusive Jets

- Differential cross section:
 - NLO was good in W+jets, true here too?

 NLO prediction reliable – as in W+jets

- Analysis would benefit from increased statistics to further populate the Z+≥2-jets sample

- NLO for Z+≥3-jets would be valuable as well.

- CDF Data L = 1.7 fb⁻¹
- Systematic uncertainties
- NLO MCFM CTEQ6.1M
 - Corrected to hadron level
 - $\mu_0^2 = M_Z^2 + p_T^2(Z)$, $R_{sep}=1.3$
 - $\mu = 2\mu_0$; $\mu = \mu_0/2$
- PDF uncertainties

Z/γ*(→ee⁺) + ≥1 jet inclusive

- Data / Theory

Z/γ*(→ee⁺) + ≥2 jets inclusive

- Data / Theory
DØ Z/γ* (→ee)+jets analysis: 950/ pb

- **Purpose here:** compare **Pythia** ($p\bar{p} \rightarrow W + 1\text{p}^+$ internal PS) and **Sherpa** ($p\bar{p} \rightarrow W + N\text{p} + \text{internal PS + CKKW matching}$) event generators
 - Test of different prediction techniques
 - Some confidence in CKKW from CDF W+jets LO studies…true here as well?
Sherpa + CKKW represents data better than Pythia

- p_T of jet 1,2,3
- Z p_T Jet multiplicity
- $\Delta \eta$(jet, jet), $\Delta \phi$(jet, jet)

Not unexpected given the nature of Pythia’s calculation.
Summary so far...

- **W/Z+1,2 jet NLO predictions** from MCFM look reliable
- NLO predictions **not yet in hand** for $W/Z+\geq3$ jet
- Technique of calculating/generating $pp\rightarrow W+N+$ parton shower + matching scheme (ala ALPGEN, MadGraph, Sherpa) **superior** to Pythia+PS alone
- Differences among available tools still need to be understood

- **W/Z + heavy flavor (b,c) jets also important**
 - background to top, Higgs, others
 - $W+c$ production has unique features
W + Single c Production

- **Importance of W^\pm +single c:**
 - Insight on PDF for s at rather large Q^2
 - Insight on $|V_{cs}|$
 - Part of $W+$jets bkgd to top, Higgs searches

- **Event selection similar to $W+$jets:**
 - Here use $W \rightarrow e/\mu\nu$ for W selection

- **Exploit W^\pm +single c feature:**
 - charm hadron semileptonic daughter and W have opposite charge

\[
\sigma_{Wc} \times \text{BR}(W \rightarrow \ell \nu) = \frac{N_{\text{OS-SS}}^{\text{Tot}} - N_{\text{OS-SS}}^{\text{Bkg}}}{A \cdot \mathcal{L}}
\]

- **Major opposite-sign (OS) backgrounds:**
 - Drell Yan $\mu^+\mu^-$
 - Fake W
 - Wq
 - Insensitive to $W+$bb, $W+$cc, (OS/SS random)
W + Single c Production

- **Result:** for $p_T^c > 20$, $|\eta^c| < 1.5$

 $\sigma_{xBR} = 9.8 \pm 2.8$ (stat) $^{+1.4}_{-1.6}$ (syst) ± 0.6 (lum) pb

- **Prediction:** NLO from MCFM

 $\sigma_{xBR} = 11.0 \ ^{+1.4}_{-3.0}$ pb

Good agreement!

W + Single c Production

- Similar analysis completed at DØ: 1/fb
- Measures the ratio
 \[
 \frac{\sigma(W + \text{single}-c)}{\sigma(W + \text{jets})}
 \]
 which allows for cancellation of many systematic errors
- Result:
 \[
 \frac{\sigma(W + \text{single}-c)}{\sigma(W + \text{jets})} = 0.071 \pm 0.017
 \]
 which can be compared to the LO prediction: 0.040 \pm 0.003 (PDF)

LO prediction reasonably good.

Statistics limited measurement
Systematics dominated by JES.
Vertex Tagging: b’s and Non-b’s

Tagging of real b jet:
- Long lifetime + large boost = secondary vertex
- $L_{2d} > 0$

Spurious tagging of light flavor jet:
- "mistag"
- $L_{2d} < 0$

Tag efficiency for b jets

<table>
<thead>
<tr>
<th>Jet E_T (GeV)</th>
<th>Fractional ε</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loose SecVtx</td>
</tr>
<tr>
<td></td>
<td>Tight SecVtx</td>
</tr>
<tr>
<td></td>
<td>Ultra-light SecVtx</td>
</tr>
</tbody>
</table>

Tag efficiency for $u/d/s$ jets

<table>
<thead>
<tr>
<th>Jet E_T (GeV)</th>
<th>Fractional ε</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loose SecVtx</td>
</tr>
<tr>
<td></td>
<td>Tight SecVtx</td>
</tr>
<tr>
<td></td>
<td>Ultra-light SecVtx</td>
</tr>
</tbody>
</table>
Goals:
- Measure $W+b$-jet production cross section
- Use measurement to improve background estimate for Higgs search

- W and jets selection here similar to $W+$ inclusive jets analysis
 - key difference: 1 or 2 jets only

- Here we need to identify jets that are likely b’s (via high purity tagging) and determine how many are really b’s via vertex mass:
 - invariant mass of charged particle tracks in secondary vertex

Vertex Mass Shapes

From simulation

- b
- c
- $\text{LF} = u/d/s/g$

Generally,

$$M_{B\text{-hadrons}} \geq M_{C\text{-hadrons}} \geq M_{\text{LF-hadrons}}$$

so

$$M_{b\text{ vert}} \geq M_{c\text{ vert}} \geq M_{\text{LF vert}}$$
W + b-Jets

- **Largest backgrounds:** S/B ~ 3/1
 - ttbar (40% of total bkgd)
 - single top (30%)
 - Fake W (15%)
 - WZ (5%)
 - Total contribution: ~180 tagged b jets

- **Result:** measure $\sigma_{b\text{-jets}}(W+b\text{-jets}) \times BR(W\rightarrow l\nu)$

|$\sigma \times BR = 2.74 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst) pb}$

- **Prediction:**

|$\sigma \times BR = 0.78 \text{ pb}$

(default ALPGEN)

New result - x3.5 mismatch

NB: This cross section is for b jets from W+b-jet production in events with a high p_T central lepton, high p_T neutrino and 1 or 2 total jets.

Publication in preparation.

- ~1000 tagged jets among which ~700 are consistent with coming from a b quark

Vertex Mass Fit

CDF Run II Preliminary - 1.9/fb

- Data
- bottom contribution
- charm contribution
- LF contribution
- Summed contribution

$b = 71.3 \pm 4.7\text{(stat)} \pm 6.4\text{(syst)} \%$

$c = 15.9 \pm 5.5\text{(stat)} \%$

$LF = 12.6 \pm 3.5\text{(stat)} \%$

KS Prob = 84.8 %

High purity b-tagging at work!
W + b-Jets

- **Largest backgrounds: S/B ~ 3/1**
 - ttbar (40% of total bkgd)
 - single top (30%)
 - Fake W (15%)
 - WZ (5%)
 - Total contribution: ~180 tagged b jets

- **Result:** measure $\sigma_{b\text{-jets}}(W+b\text{-jets}) \times BR(W\rightarrow l\nu)$
 \[
 \sigma \times BR = 2.74 \pm 0.27 \text{ (stat)} \pm 0.42 \text{ (syst)} \text{ pb}
 \]

- **Prediction:**
 \[
 \sigma \times BR = 0.78 \text{ pb}
 \]
 (default ALPGEN)

Other predictions? Work is ongoing.

~1000 tagged jets among which ~700 are consistent with coming from a b quark

NB: This cross section is for b jets from $W+b$-jet production in events with a high p_T central lepton, high p_T neutrino and 1 or 2 total jets.

Publication in preparation.
Z + b-Jets

- Similar CDF analysis for Z+b-jets: 2/fb
- Utilize $Z \rightarrow ee$ and $\mu\mu$
- Similar jet definition
 - Corrected $E_T > 20$ GeV, $|\eta| < 1.5$
 - Cone algorithm with $R=0.7$
 - Secondary vertex tags

- Differential cross sections with comparisons to LO, NLO predictions
- Dividing by $\sigma(Z)$ puts LO, NLO on equal footing
- Pythia does a good job at low jet E_T
• ALPGEN (LO) and MCFM (NLO) undershoot data in several bins

• Pythia on target in some regimes – despite LO predictions being low in other analyses (eg, Z+jets).

Publication in preparation.
W/Z + b-Jets: Summary

<table>
<thead>
<tr>
<th></th>
<th>CDF Data</th>
<th>Pythia</th>
<th>ALPGEN</th>
<th>Herwig</th>
<th>NLO</th>
<th>NLO (corr’d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(Z+b \text{ jet})) (pb)</td>
<td>0.9 ± 0.1 ± 0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.51</td>
<td>0.53</td>
</tr>
<tr>
<td>(\sigma(Z+b \text{ jet})/\sigma(Z)) (%)</td>
<td>0.34 ± 0.05 ± 0.04</td>
<td>0.35</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>(\sigma(Z+b \text{ jet})/\sigma(Z+\text{jet})) (%)</td>
<td>2.11 ± 0.33 ± 0.34</td>
<td>2.18</td>
<td>1.45</td>
<td>1.24</td>
<td>1.88</td>
<td>1.77</td>
</tr>
<tr>
<td>(\sigma(W+b \text{ jet})) (pb)</td>
<td>2.7 ± 0.3 ± 0.4</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- More studies for \(W+b \)-jets are forthcoming

- Need to understand NLO predictions
 - In \(Z+b \)-jets it is strange that the NLO prediction undershoots data
 - Borne out in \(W+b \)-jets?
Conclusions

- *W/Z + jets* physics plays an **important role** in current collider physics programs

- Current NLO predictions for *W/Z +* look to be **accurate**, higher multiplicities desirable

- *W/Z+b-jets* studies have indicated deficiencies in both LO and NLO predictions; **more study and more data** is needed

- *W+single c* studies indicate **reasonable agreement** with NLO, LO predictions
$W + \text{Inclusive Jets}$

MCFM:
- MCFM (NLO)

MLM:
- ALPGEN (LO) + Herwig (shower) + MLM matching

SMPR:
- MadGraph (LO) + Pythia (shower) + CKKW matching
W + Inclusive Jets: Definition of Terms

- **MCFM**: Monte Carlo for Femtobarn Processes
 - NLO predictions for cross sections and kinematics
- **MLM**: Michelangelo Mangano, author of ALPGEN
- **ALPGEN, MadGraph**: matrix element generators
 - Generate fixed order processes (eg., W+0,1,2,3 partons for W+jets)
 - Shower the N-parton final state to get N-jets (eg. Pythia or Herwig)
 - Gather all the fixed order samples (eg., W+N-p for W+jets)
 - Remove double-counting via **matching algorithm**
- **MLM matching**:
 - Allow event iff $N_{\text{jets}} = N_{\text{partons}}$ (exclusive) or $N_{\text{jets}} \geq N_{\text{partons}}$ (inclusive)
- **CKKW matching**:
 - Assign each event weights from α_s nodes, legs
 - Veto event if event weight is below some cut
 - Use shower to add legs only up to some cutoff
- **SMPR**: variant of CKKW, named after S Mrenna and P Richardson

MCFM :
MCFM (NLO)

MLM :
ALPGEN (LO) + Herwig (shower) + MLM matching

SMPR :
MadGraph (LO) + Pythia (shower) + CKKW matching
Identifying b Jets

- **B hadron lifetime**: ~ 1.5 ps
 - Large boost ($v \sim 0.95c$) means the B lifetime is long in the lab frame
 - B travels macroscopic distance before decaying which we can detect

- **Exploit the long lifetime** -
 - Reconstruct charged particle tracks
 - See if they intersect at a common point
 - Require the common point be significantly displaced from the primary p-p collision point

<table>
<thead>
<tr>
<th></th>
<th>Meaning</th>
<th>Typical</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>Track impact parameter</td>
<td>150um</td>
<td>40um</td>
</tr>
<tr>
<td>L_{2d}</td>
<td>Vertex displacement</td>
<td>2-3mm</td>
<td>100um</td>
</tr>
</tbody>
</table>
$W + b$-Jets

Data - MC Comparison

CDF Run II Preliminary - 1.9/ft

- Data
- Summed contribution, uncertainty from M_{vert} fit
- bottom contribution
- charm contribution
- LF contribution

Jet E_T (GeV)

Jet η
$W + \text{ Single } c \text{ Production}$

Signed μ track impact parameter significance.

$\mu p_T \text{ relative to jet axis}$