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 The top quark mass is interesting 70 Tevatron'LEP 2 [l
because ... LEP1/SLD: darker region

« Applications at the LHC:

— Calibrating energies of highly
boosted jets

o It Can teaCh US about the Higgs . " Heinemeyer, Hollik, Stockinger, Weber, Weiglein ‘06
160 165 70 475 180 185

- The top quark and the Higgs both Miop (GeV)
couple to the W boson

1-Sigma Constraint on
- Top mass and W mass determine Higgs mass (2006)

SM Higgs mass H

t

 Measure to constrain Higgs
mass wW* wE+ Wt W+

 Test of standard model Higgs and top quarl?

couplings to W boson



Identifying tt @

e TopsdecaytoW'sab's

 Three very different types of mass
analyses depending on W decay modes
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Identifying tt

Tops decay to W'sa b's

Three very different types of mass
analyses depending on W decay modes

- Both W's decay leptonically: “dilepton
channel”.

« Tiny backgrounds, low stats

- Both W's decay hadronically: “all
hadronic channel”.

 Huge backgrounds, high stats

e - One of each: “lepton+jets channel”.
o maw L1thr ~— S s « Low backgrounds, high stats
Vertex %d S Vertex * ldentify b's (reduces background)
b X ' - Use long b-lifetime: may travel many
VA . mm before decay
Can identify b's from displaced - Use tracking to locate displaced
secondary vertex vertex



 Event reconstruction challenges:

- Which partons came from which top

and which W?

« Jet reconstruction challenges:

- Have to measure energies of decay

quarks to get top mass

e But can't measure quarks
directly, see spray of particles

e Leads to many “Jet Energy
Scale” (JES) uncertainties

- Black: full uncertaintyon

quark energy
- 3-4 GeV uncertainty on top mass

Uncertainties on JES

Which jets belong to
which invariant mass?

0.1
— Quadratic sum of all contributions
D DB ======== Abpolute 8t energy acale
it COut-of-Cone + Splash-out
0.06 K Ralative - 0.2=l<0.6

Undarhying Event

50 100 150 200 250 300 350 400 450 500

Calibrated JES P (GeV/o
Uncertainties 8



Controlling the JES Uncertainty

R . §0_12 L tt m;™ templates, 1 tag events (Mtop = 175.0)
* Option 1: Use hadronic W decays e | - s a0
°‘1:_ I UES-=-1.0
L JES =+1.0
0'08,_

- Assume all jets in event have same JES

JES = +3.0
— P(m;ec | Mtop,JES)

Fraction of Events/|

« Constrain JES to reconstruct proper
W mass oou]

* Invariant top mass in simulation ooz}
increases with JES

100 150 200 250 300
m* (GeV)

- Obviously impossible in dilepton channel  gxpected top mass depends on JES



Controlling the JES Uncertainty

. . §0_12-— tt m;™ templates, 1 tag events (Mtop = 175.0)
* Option 1: Use hadronic W decays e | o s a0
s o1 JES =-1.0
- Assume all jets in event have same JES % cel- JES =210
. .‘g E — P(m;ec_l M1.op,JES)
» Constrain JES to reconstruct proper Soosf-
W mass ol
* Invariant top mass in simulation onef-
increases with JES . "
100 150 200 250 300

m* (GeV)

- Obviously impossible in dilepton channel  gxpected top mass depends on JES

= Alog(L) =05

3.IEE (G:'.}
=4
!

== Alog{L)=2.0

e Fit for JES and top mass simultaneously

- JES uncertainty becomes statistical!

- Caveat: left with residual systematics
due to assuming same JES for all jets

1_ ______________________________ ~

* Most top analysis do this, but JES | cor runit Preiinaey e, . | ]
still largest uncertainty on world e Mmoo am T P evie

average top mass top mass vs JES simultaneous fit |



Option 2: don't use jet energy!

- Decay length of b-tagged jets

- Transverse momentum of leptons

Evaluate top mass from mean decay
length and mean lepton momentum

- Plenty of stats at LHC: systematics
are what are important

- Decay length systematics limited by
calibration of simulation to data

- Lepton systematics limited by
background modeling, simulation
calibration, QCD radiation

 Actively working on them

Controlling the JES Uncertainty *

Results with 1.9 fb™
in Lepton+Jets Channel:

Decay Length

my = 176.7730%° (stat) & 3.4(syst)GeV/c?
Lepton Transverse Momentum

my = 173.575 % (stat) £ 4.2(syst)GeV/c?
Combined decay length and
lepton transverse momentum

ms = 175.3 £ 6.2(stat) £ 3.0(syst)GeV/c?

CDF Run Il Preliminary (1.9 fb'1)

[ ttbar.c = 8.2 pb

[ Gther
50 - I Single Top
B Vet
40 B CCD
—e— data
30 | KS Prob 0.986
20 L
10 |

0 50 100 ] 15 | 25.0 300
LepPt [GeV /]
Lepton Transverse Momentum
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Template Based m

e One of two “standard” methods for measuring the top mass

- Make probability distribution functions (templates) for signal and
backgrounds

 Fit data, integrating over all allowed jet and lepton
combinations

- Straightforward and reliable

Example: Signal chi’ for CDF Lepton+Jets Template Fit

Measurement Constraints Unclustered Energy
S Constraints
i, fit i,measy? rfit  rrmeas\2 A
2 (FT — Pr ) (L’ j U j )
X" = Xi=t4jets = + Yy — -
v j
(ﬂfjrjj - ﬂfjrw)z (fvfgy - ﬂfw))’ n (ﬂfjrhjj - T”%“ECO)‘). n (ﬂf{hfu - T”%‘E{:O)Q

2 T2 r2 2
N\ N

: m_ Constraints
m,, Constraints t 12



L+J Template Method Results

 Number of background events extracted

from direct fit

- W+jet, QCD backgrounds largest 11129 2d Signal probabiity (M, = 170 GeVic')

— Constrained within uncertainties
determined by cross section
measurements

=1
-
o

w. (GeV/c)
o
Qo

w0
o

* Assign non b-tagged jets to W decay

- In manner which best reproduces the ”

W mass 60

 Dominant systematics:

miece (GeV/c?)

- R?SIduaI et ener_gy Scale.’ behay|or of Example of a template for tt signal
b-jet (fragmentation, semileptonic (in 2D to Constrain JES)

fractions, etc)

CDF L+J Results (1.9 fb™)

my = 171.8 = 1.9(stat + JES) & 1.0(syst)GeV/c*
13



Dilepton Template Method Results

* Dileptons channel differences

— Much lower statistics and even
smaller backgrounds

- Underconstrained: two neutrinos
you can't measure!

 Integrate over all possible
neutrino directions weighted
by probability of consistency
with observed objects

Dilepton Results (1.9 fb™)
m¢ = 171.6755 (stat) £ 3.8(syst)GeV/c*
Combined Dilepton & L+J Results (1.9 fb™)
my = 171.9 £ 1.7(stat + JES) &+ 1.0(syst)GeV/c?

14



Template Systematics

« Dileptons channel differences Systematic | LJ | DIL|Combination
o ~ bJES o6} 05[ 06
- Much lower statistics and larger <~ Residual JES (0.5 3.5 0.5
backgrounds ISR {0.3(04| 04
. _ FSR 0.2| 0.5 0.2
- Underconstrained: two neutrinos PDFs 0.3 0.5 0.3
you can't measure! Generator 0.2] 0.8 0.2
_ LJ bkgd shape [0.2] 0.0 0.2
* Integrate over all possible DIL bkgd shape |0.0] 0.4 0.1
neutrino directions weighted MC statistics  |0.1] 0.2 0.1
by probability of consistency lepton energy scale|0.1| 0.4 0.1
with observed objects pileup 0.1 0.1 0.1
gg fraction 0.0 0.2 0.0
Combined 1.0] 3.8 1.0
 Examples of systematics shown Systematics for these analyses

- Note large difference in jet energy | .
scale sensitivity Dilepton Results (1.9 fb™)

m¢ = 171.6755 (stat) £ 3.8(syst)GeV/c*
Combined Dilepton & L+J Results (1.9 fb™)
my = 171.9 £ 1.7(stat + JES) &+ 1.0(syst)GeV/c?
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Matrix Element m, *

 Extract more information from each event

- Find mass likelihood event by event based on theoretical Matrix
Element calculation for signal/background

Signal Probability Proportional to:

L(ﬂ'lmt,AJES) — |M(mt,5:')|2
Top mass and JES “Matrix Element”

Likelihood (Probability Amplitude)

16



b e

Matrix Element m

 Extract more information from each event

- Find mass likelihood event by event based on theoretical Matrix
Element calculation for signal/background

— Based upon measured kinematics, x (and hypothesized, y)

Signal Probability Proportional to:

Probability of measured
momenta, y, given x and JES

.

L(ﬂ'lmt, AJES) — TF(ﬂIfAJES”M(mt, f)lz
A
Top mass and JES “Matrix Element”

Likelihood (Probability Amplitude)
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o Matrix Element m

 Extract more information from each event

B

- Find mass likelihood event by event based on theoretical Matrix
Element calculation for signal/background

— Based upon measured kinematics, x (and hypothesized, y)

Signal Probability Proportional to:

Probability of measured
momenta, y, given x and JES

.

Z A i =5
L(ﬂ'lmt,AJES) = f( 1}3‘;( Q)TF(mLEAJEs)lM(mt,ﬂT)lQ
P h
Top mass and JES Probabilities of “Matrix Element”

Likelihood incoming momenta (Probability Amplitude)
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Matrix Element m,

 Extract more information from each event

- Find mass likelihood event by event based on theoretical Matrix
Element calculation for signal/background

— Based upon measured kinematics, x (and hypothesized, y)

- Integrate over unknowns, sum over probability weighted parton
associations.

Signal Probability Proportional to:

Integrate over Probability of measured
kinematics momenta, y, given x and JES

1 Y i A
L(§|ms, Asgs) = > w }F 2 TF(ZEA s ps)|M (my, T)|2de
i=1 N
v ”
. Probabilities of “Matrix Element”

Top mass and JES ~ Sum over parton . . X |
Likelihood combinations Incoming momenta (Probability Amplitude)
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Matrix Element m, *

 Extract more information from each event

- Find mass likelihood event by event based on theoretical Matrix
Element calculation for signal/background

— Based upon measured kinematics, x (and hypothesized, y)

- Integrate over unknowns, sum over probability weighted parton
associations. And normalize.

Signal Probability Proportional to:

Normalizations Integrate over Probability of measured
R kmematlcs momenta, y, given x and JES
1 1 f(21)f(22) / 12
L A — TF A M d
(Ylme, Ayps) = N(my) A(me, AJES) Z/ (UZAsEs)| M (my, T)|“dx

- Probabilities of “Matrix Element”

Topmass and JES ~ Sum over parton . . X |
Likelihood combinations Incoming momenta (Probability Amplitude)

Leads to very precise results (2.7 fb™"):  m =172.24 1L0(stat.) £ 0.9(JES) & 1.0(syst)GeV/c’
Dominant Systematics: Residual jet energy scale, generator uncertainties
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All Hadronic

CDF Run Il Preliminary (1.9 fb'1]

» Special challenges in this channel

a5 =
u data
- 1/400 S/B from base event 30 |- [ o mose )
Selection o5 ;_ - slgnal,l'u'lmp=155 Gelic
- 6 factorial combinations of parton ~ *[ KS Prob = 099
assignments 1S E
10 |
5 F
e Solutions: oE
50 100 150 200 250 aoo 250
- Require two b-tags in event | - m(Gevie)
Final Mass Distribution

- Use neural network event shape Results (1.9 fb")
selection (S/B: close to 1/1)

my = 165.2 & 4.4(stat) £ 1.9(syst)GeV/c*

Residual jet energy scale, Pileup, Generator,

. F.|t mass with signal, mismatched  5-p radiation, Background Modeling systematics
signal, background shapes all play a modest role
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DO+CDF Combination

« Using Best Linear Unbiased Estimator technique

- Correlations estimated between 12 types of uncertainties

My = 172.4 4

= O.7(sta,t) =

- 1.0(syst)GeV/c?

» Electroweak fits: SM Higgs mass now < 154 GeV/c? at 95% confidence level!

- Counting LEP lower limit of M >114 GeV/c? upper limit rises to 185 GeV/c?

CDF Top Quark mass (*Preliminary)
@

All-hadronic

(Run 1) 186.0+10.0+ 5.7

@

Dilepton

(Run 1) 167.4+10.3+ 4.9

—_—

Lepton+jets

(Run ) 176.1+£ 5.1+ 5.3
. ——
Dilepton

(1.97) 171.2x 2.7+ 2.9

—

Lepton-;-;lets (Lxy+lepton p) 1753+ 6.2+ 3.0

(1.9 )
. &
Lepton+Jets

(2.77) 172.2+1.0+ 1.3
. —
All-hadronic

(2.1m) 176.9+ 3.3+ 2.6
. -
CDF July'08

- 172.4+1.0+ 1.3
@7®) (stat.) £ (syst.
*°/dof = 3.8/6 (71%)
| | | | | |

150 160 170 180 190 200
my,, (GeV/c)

CDF Mass Results in the Combination

July 2008
1

68% CL

______

Associated Higgs Fit Results

{1 —LEP2 and Tevatron (prel.)
8051~ LEP1 and SLD

L Ly

175 200
m, [GeV]
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Summary and Outlook

« CDF Top group has performed many high precision top mass measurements

- Not enough time to talk about all of them

- Some others in backup slides. For full details, see:
http://www-cdf.fnal.gov/physics/new/top/public_mass.html

« Dominant jet energy scale systematic is coming under control

— Using hadronic W mass calibration

- Using alternate variables the LHC can ~completely eliminate it

* Work to be done

- Must be especially careful with systematics in a high precision era
- More sophisticated combination procedures

- Limitations of Leading Order simulation must be properly considered

23


http://www-cdf.fnal.gov/physics/new/top/public_mass.html

Backups
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CDF

Collider Run Il Integrated Luminosity

e Tevatron collides pp at world's

highest energies . I\l"'
%M L] ..||||||” o000
“ i ..
» Beam luminosity has been .
steadily improving N T 111
_ Total of ~5 fb has been "_,.mlllﬂulmmmmmuumH\HH\HHMMMHH\\HH\HH\HHWMHHHII\H ..
delivered to each detector S e )
« About 80% data Muon = -
acquisition efficiency ~ Systems ——
Calorimetry

* Recent analyses use | . _—
about 3 fb™ Tracking - - B

[ e

=
Integrated Luminosity (pb™)



Lepton + Jets Matrix Element

Light quark angular transfer function,n=0, m=5

 Makes very few assumptions about

. _ 32501
Kinematics S ]
||t200—;

- Integrates over 19 parameters 150-
representing probabilistic 100
Kinematic spreads 50

* Top and W masses, boost of 0_93
system, directions and 0.05
masses of each jet

- Specialized integration

techniques to make this possible Example integration variables: discrepancies

* Neural network trained to In measured jet direction

distinguish signal and background Results (2.7 fb™)
mg = 172.2 + 1.0(stat.) £ 0.9(JES) £ 1.0(syst)GeV/c?

- Background count determined
from this output

Dominant Systematics: Residual jet energy scale,
generator uncertainties
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Dilepton Matrix Element

CDF Runll Preliminary (2.0/fb) CDF Runll Preliminary (2.0/ft) CDF Runll Preliminary (2.0/fa)

% SRl R ] Ll A A O T R % AR RAAR) RARRE RAARI RARE Vi AN _c'Ei ERRL O SR RS R " *AAN
. . . ) e #++ Brg. Uncert. 0 +++ Bkg. Uncert @10’ +++ Bkg. Uncert
* Mass likelihood evaluated for signal and ¢, 5 o o
- 71t Z— 11
Wiakes .fa._kes

bkg hypotheses simultaneously

[W0ibosan
Bt

[WDiboson

- Based on tagging information, priors
(small p's), kinematic information
(x), for signal and backgrounds, k i

012345678239
Nurnber of jets

0 50 100 150 200 250 300 380 0 20 4 60 80 100 120 140
Dilepton Mass [GeVic Missing E, [GeVic'

oF LR RARRY RALRE N V" " RAR

"4 Bhg. Uncert§

L(#tag, &, mi) = Psig(T, my)psig(#tag) + Z Pbk;(f)pfg(#tag) o ieltd o R COF Fun Prfmary Q1
k .

« Key feature: finds best neural network

— Optimize NN for mass resolution,
not signal purity. 20% improvement
in statistical uncertainty.

45 0 05 1 15 :Iumlzalesrul:-mgss.s 100 200 %Ivécmlorﬁsg\ﬂcﬁﬁw
« First dilepton analysis to be NN Performance Validation
limited by systematics instead of Results (1.9 fb™)
statistics!

my = 171.2 & 2.7(stat) &+ 2.9(syst)GeV/c?

Dominant Systematic: Jet energy scale .-



Mass results are now more
systematically limited

- But even without systematic
improvements will have better than
1% precision at CDF

- Work on improving systematics still
ongoing
« Already far ahead of where we

projected we would be at this
luminosity!

A M(total) GeVi/c®

-k
T

Future Improvements

-k
o
T

CDF Top Mass Uncertainty

(all channels combined)

1fb! 2fb! 4fb" 8fb™
N R T

*

v CDF Results AM/M < 19%

* Run lla LJ goal (TDR 1996)

Scale A(stat) / NL, Fix A(syst)
(assumes no improvements)

_ Scale A(total) /\NL
(improvements required)

4

10° 10° L 10
Integrated Luminosity (pb )

Past Expectations and Future M_
Projections at CDF
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