Looking for Large CP Violation in $B_s^0 \rightarrow J/\psi \phi$ Decays

Khaldoun Makhoul

SLAC Experimental Seminar
February 21st 2008
Overview

• *CP* Violation:
 – Standard model
 – $B^0_s \rightarrow J/\psi \phi$

• Measurement:
 – CDF Detector
 – Data Sample & Selection
 – Angular Analysis
 – Flavor Tagging
 – Likelihood

• Results
 – Untagged Analysis
 – Tagged Analysis
Quark weak flavor eigenstates related to mass eigenstates by CKM Matrix:

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix}
= \begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]

Wolfenstein parametrization expanded in $\lambda \approx 0.23$, up to λ^5, $V_{CKM} =$

\[
\begin{pmatrix}
 1 - \frac{1}{2} \lambda^2 - \frac{1}{8} \lambda^4 & \lambda & A\lambda^3 (\rho - i\eta) \\
 -\lambda + \frac{1}{2} A^2 \lambda^5 [1 - 2(\rho + i\eta)] & 1 - \frac{1}{2} \lambda^2 - \frac{1}{8} \lambda^4 (1 + 4A^2) & A\lambda^2 \\
 A\lambda^3 [1 - (1 - \frac{1}{2} \lambda^2)(1 - \rho - i\eta)] & -A\lambda^2 + \frac{1}{2} A\lambda^4 [1 - 2(\rho + i\eta)] & 1 - \frac{1}{2} A^2 \lambda^4
\end{pmatrix}
\]

CP violation enters into elements in red. Controlled by one parameter in SM, η
Unitarity Triangles

... or how to get from one SM parameter to a very rich phenomenology.

\[B_d^0 : \quad V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \]

\[B_s^0 : \quad V_{us} V_{ub}^* + V_{cs} V_{cb}^* + V_{ts} V_{tb}^* = 0 \]

- Sides & interior angles can be independently measured
- Goal: to “overconstrain” the triangles
- Hope: that no single choice of CKM parameters will fit all measurements
Selective Review of CP Violation Measurements

Discovery of CP violation:

• 1964: $K_L^0 \to 2\pi$ decay, asymmetry in $K^0 - \bar{K}^0$ mixing

Since then, the standard model description has been (too) successful:

<table>
<thead>
<tr>
<th>Year</th>
<th>Process</th>
<th>Description</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988, ’99</td>
<td>$K_{S/L}^0 \to 2\pi^0, \pi^+\pi^-$</td>
<td>Direct CPV in decay</td>
<td>NA31/48, KTeV</td>
</tr>
<tr>
<td>2001</td>
<td>$B_d^0 \to J/\psi K_S^0$</td>
<td>CPV in $B_d^0 - \bar{B}_d^0$ mixing</td>
<td>BaBar, Belle</td>
</tr>
<tr>
<td>2005, ’06</td>
<td>$B^+ \to K^+ \rho^0$</td>
<td>Direct CPV in decay</td>
<td>BaBar, Belle</td>
</tr>
<tr>
<td>2004, ’05, ’07</td>
<td>$B_d^0 \to K^+\pi^-$</td>
<td>Direct CPV in decay</td>
<td>BaBar, Belle, CDF</td>
</tr>
<tr>
<td>2007</td>
<td>$B^+ \to J/\psi K^+$</td>
<td>Direct CPV in decay</td>
<td>DZERO</td>
</tr>
</tbody>
</table>

• Success of CKM both from precise determination & agreement, or calculational limitations

“Last hope” for new physics in beauty system: B_s^0 decays

• CP violation predicted to be very small in Standard Model
• If measured to be otherwise: unambiguous signal for new physics
"Mixing" of B_s^0 meson refers to $B_s^0 - \overline{B_s^0}$ oscillation, e.g.:

\[i \frac{\partial}{\partial t} \begin{bmatrix} |B_s^0(t)\rangle \\ |\overline{B_s^0}(t)\rangle \end{bmatrix} = \left(M - \frac{i}{2} \Gamma \right) \times \begin{bmatrix} |B_s^0(t)\rangle \\ |\overline{B_s^0}(t)\rangle \end{bmatrix} \]

\[|B_{L,H}(t)\rangle = p|B_s^0\rangle \pm q|\overline{B_s^0}\rangle, \quad q/p = \frac{V_{tb}V_{ts}^*}{V_{tb}^*V_{ts}} \]

$\Delta m_s \approx 2 |M_{12}|$

$\Delta \Gamma_s \approx 2 |\Gamma_{12}| \cos(\phi_s)$

$\phi_s^{SM} = \arg(-M_{12}/\Gamma_{12}) \approx 4 \times 10^{-3}$
\(CP \) Violation in \(B_S^0 \rightarrow J/\psi\phi \)

- From above diagrams, phase \(\beta_{SM} = \arg(-V^*_{ts}V_{tb}/V^*_{cs}V_{cb}) \approx 0.02 \)
- \(CP \) violation occurs in the interference of mixing and decay
- This is in analogy to the well-studied case of \(B_d^0 \rightarrow J/\psi K_S^0 \)

\[
\begin{align*}
B^0 & \rightarrow J/\Psi K_S^0 \\
\overline{B}^0 & \rightarrow J/\Psi K_S^0 \\
B_S^0 & \rightarrow J/\Psi \phi \\
\overline{B}_S^0 & \rightarrow J/\Psi \phi
\end{align*}
\]

\(\Rightarrow \sin(2\beta) \)

\(\Rightarrow \sin(2\beta_S) \)
\[B_s^0 \rightarrow J/\psi\phi \text{ Vs. } B_d^0 \rightarrow J/\psi K_S^0 \]

- Oscillation frequency \(\Delta m_s \approx 35 \times \Delta m_d \rightarrow \text{need vertex resolution} \)
- \(J/\psi\phi \) admixture of \(CP \)-even and odd \(\rightarrow \text{need angular analysis} \)
- \(\sin(2\beta_s) \approx 0.05 \times \sin(2\beta) \) from SM \(\rightarrow \text{much smaller effect} \)

Unitarity triangles to common scale:

- a: \(V_{id} V_{is}^* \)
- b: \(V_{is} V_{ib}^* \)
- c: \(V_{id} V_{ib}^* \)
\[\beta_s, \phi_s \text{ Notation} \]

- \[\beta_s^{SM} = \arg(-V_{ts}^* V_{tb}/V_{cs}^* V_{cb}) \approx 0.02 \]
 - phase of the \(b \rightarrow c\bar{c}s \) transition that accounts for mixing & mixing + decay

- \[\phi_s^{SM} = \arg(-M_{12}/\Gamma_{12}) \approx 0.004 \]
 - \(\arg(M_{12}) = \arg[(V_{tb} V_{ts}^*)^2] \): connecting \(B_s^0 \) to \(\bar{B}_s^0 \) through oscillation
 - \(\arg(\Gamma_{12}) = \arg[(V_{cb} V_{cs}^*)^2 + V_{cb} V_{cs}^* V_{ub} V_{us}^* + (V_{ub} V_{us}^*)^2] \): width of matter and antimatter into common final states

Both SM values too small for current experimental sensitivity (assumed zero). If new physics occurs in mixing:

- \[\phi_s = \phi_s^{SM} + \phi_s^{NP} \]
- \[2\beta_s = 2\beta_s^{SM} - \phi_s^{NP} \]

Standard shorthand \(\rightarrow \phi_s = -2\beta_s \)
Measurement

• \(CP \) Violation:
 – Standard model
 – \(B^0_S \rightarrow J/\psi \phi \)

• Measurement:
 – CDF Detector
 – Data Sample & Selection
 – Angular Analysis
 – Flavor Tagging
 – Likelihood

• Results
 – Untagged Analysis
 – Tagged Analysis
CDF Detector, B Physics Focus

- **Silicon SVXII + Layer00:**
 - B physics triggers
 - Vertex Resol $\approx 25 \mu m$

- **COT drift chamber:**
 - Momentum resolution $\sigma_p/p^2 < 0.1\%$
 - dE/dx for particle ID (selection, tagging)

- **Time-Of-Flight:**
 - Particle ID (selection, tagging)

- **Muon det., EM cal:**
 - Lepton triggers
 - Lepton ID: tagging
Data Sample and Selection

- Data with 1.35 fb$^{-1}$ (1.7)
- Di-muon trigger
- Soft precuts followed by neural network selection
- NN Trained on:
 - Simulated events for signal
 - B_s^0 mass sidebands for bkg
- Selection maximizes $S/\sqrt{S+B}$ in signal peak
- $S \approx 2000$ $B_s^0 \rightarrow J/\psi \phi$ signal evts
 $S/B \approx 2$ in signal peak
General Analysis Strategy

Reconstruct decays from stable products:

- \(B^{0}_{S} \rightarrow J/\psi [\mu^{+}\mu^{-}]\phi[K^{+}K^{-}] \)
- \(B^{0}_{d} \rightarrow J/\psi [\mu^{+}\mu^{-}]K^{*}[K^{+}\pi^{-}] \)
- \(B^{0}_{d} \rightarrow J/\psi K^{*} \): control sample

Identify \(B^{0}_{S}/\bar{B}^{0}_{S} \)

- Flavor tagging

Event variables:

- Mass
- Lifetime \(ct = m_{B}L_{xy}/p_{T} \)
- \(\vec{\rho} \equiv \theta_{T}, \phi_{T}, \psi_{T} \)
- Tag decision \(\xi \)

Perform maximum likelihood fit:

- Likelihood in \(m, ct, \vec{\rho}, \xi \)
\(B_s^0 \rightarrow J/\psi \phi \) Angular Analysis

Angular momentum:
- \(P \rightarrow VV \) decay:
 - \(L = 0 \)
 - \(L = 1 \)
 - \(L = 2 \)

Transversity Basis:
- 3 Angles:
 - \(\theta_T \) (\(J/\psi \) frame)
 - \(\phi_T \) (\(J/\psi \) frame)
 - \(\psi_T \) (\(\phi \) frame)

- Since \(J/\psi \phi \) is C-odd, parity determines CP
- In Transversity basis, polarization of \(VV \):
 - longitudinal (0), transverse and parallel (\(\parallel \)) \(\rightarrow \) \(CP \)-even
 - transverse and perpendicular (\(\perp \)) \(\rightarrow \) \(CP \)-odd
$B_d^0 \rightarrow J/\psi K^*$ Angular Analysis

Similar Angular Decay:

- $P \rightarrow VV$
- Similar phase space available

Control:

- Detector efficiency in $\vec{\rho}$
- Measure $|A_0|$, $|A_\parallel|$, $|A_\perp|$
Flavor Tagging

- 2 independent methods of tagging: same and opposite side
- Opposite Side Tagger is calibrated using data (high stat B^+, B^0_d)
- Same Side Tagger is calibrated on Monte Carlo
- Efficiency $\varepsilon = P(\text{tag decision})$
- Dilution $D = 1 - 2q$, q is mistag probability
Opposite Side Flavor Tagging

Exclusive algorithms:

Soft Lepton Tagger
- look for semileptonic B decay on OS
- lepton charge indicates b-flavor
- μ, e tagger

Jet Charge Tagger
- look for jet or secondary vertex on OS
- jet charge indicates b-flavor

Performance
- Efficiency: $\varepsilon = 0.96 \pm 0.01$
- Avg Dilution: $D = 0.11 \pm 0.02$
Same Side Flavor Tagging

Most Powerful Tagger:

Fragmentation Track
- Look for Kaon assoc. w/ B^0_s production
- Use TOF & COT for $\pi - K$ separation

Calib using Monte Carlo
- B^0_s, B^0_d, B^+ different
- Use PYTHIA simulation

Performance
- Efficiency: $\varepsilon = 0.50 \pm 0.01$
- Avg Dilution: $\mathcal{D} = 0.27 \pm 0.04$

\rightarrow SST + OST Total $\varepsilon\mathcal{D}^2 \approx 4\%$
Likelihood for Decay to $J/\psi\phi$: Overview

$B^0_s/\bar{B}^0_s \rightarrow J/\psi\phi$ differential decay rates depend on 4 event variables:

- ct: Proper decay length
- $\vec{\rho}$: vector formed by the 3 angles that characterize the decay
- ξ: tag decision ($+1 \rightarrow B^0_s$, $-1 \rightarrow \bar{B}^0_s$, $0 \rightarrow$ no tag)

... and quite a few parameters describing the physics

- $|A_\alpha|, \alpha = 0, ||, \perp$: amplitudes for decay to longitudinal, parallel (both CP-even), or perpendicular (CP-odd) polarizations of $J/\psi, \phi$

- δ_α: Phases associated with those amplitudes
- $\Gamma, \Delta \Gamma$: Average lifetime and lifetime difference

$$P(ct, \vec{\rho}|\xi) = \frac{1 + \xi \mathcal{D}}{1 + |\xi|} \cdot P_B(ct, \vec{\rho}) + \frac{1 - \xi \mathcal{D}}{1 + |\xi|} \cdot P_{\bar{B}}(ct, \vec{\rho})$$
Likelihood for Decay to $J/\psi \phi$: Time Dependence

\[
\frac{d^4 P(t, \bar{\rho})}{dt d\bar{\rho}} \propto |A_0|^2 T_+ f_1(\bar{\rho}) + |A_\parallel|^2 T_+ f_2(\bar{\rho})
\]

B^0_s term

\[
+ |A_\perp|^2 T_- f_3(\bar{\rho}) + |A_\parallel||A_\perp| U_+ f_4(\bar{\rho})
\]

\[
+ |A_0||A_\parallel| \cos(\delta_\parallel) T_+ f_5(\bar{\rho})
\]

\[
+ |A_0||A_\perp| V_+ f_6(\bar{\rho}),
\]

\[
\frac{d^4 \bar{P}(t, \bar{\rho})}{dt d\bar{\rho}} \propto |A_0|^2 T_+ f_1(\bar{\rho}) + |A_\parallel|^2 T_+ f_2(\bar{\rho})
\]

anti-B^0_s

\[
+ |A_\perp|^2 T_- f_3(\bar{\rho}) + |A_\parallel||A_\perp| U_- f_4(\bar{\rho})
\]

\[
+ |A_0||A_\parallel| \cos(\delta_\parallel) T_+ f_5(\bar{\rho})
\]

\[
+ |A_0||A_\perp| V_- f_6(\bar{\rho}),
\]

A_0, A_\parallel, A_\perp: transition amplitudes in a given polarization state

$f(\bar{\rho})$: angular distribution for a given polarization state
CP-Violating Terms

\[T_\pm = e^{-\Gamma t} \times \left[\cosh(\Delta \Gamma t/2) \pm \cos(2\beta_s) \sinh(\Delta \Gamma t/2) \right. \]

\[\left. \mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \right], \]

\[U_\pm = \pm e^{-\Gamma t} \times \left[\sin(\delta_\perp - \delta_\parallel) \cos(\Delta m_s t) \right. \]

\[\left. - \cos(\delta_\perp - \delta_\parallel) \cos(2\beta_s) \sin(\Delta m_s t) \right. \]

\[\left. \pm \cos(\delta_\perp - \delta_\parallel) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right] , \]

\[V_\pm = \pm e^{-\Gamma t} \times \left[\sin(\delta_\perp) \cos(\Delta m_s t) \right. \]

\[\left. - \cos(\delta_\perp) \cos(2\beta_s) \sin(\Delta m_s t) \right. \]

\[\left. \pm \cos(\delta_\perp) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right] . \]

\[\delta_\perp = \arg[A_\perp^* A_0] , \delta_\parallel = \arg[A_\parallel^* A_0] \]
Some sensitivity to β_s, but better suited to measure $\Delta \Gamma$, $c\tau$
• Monte Carlo study with $\Delta \Gamma - \beta_s$ generated at SM values
• Plotting results of 300 fits in 2D plane
Source of Problems in Straightforward Fit

Difficulties arise

- Likelihood exhibits symmetry to following transformation:
 - $2\beta_s \rightarrow \pi - 2\beta_s$
 - $\Delta \Gamma \rightarrow -\Delta \Gamma$
 - $\delta_\parallel \rightarrow 2\pi - \delta_\parallel$
 - $\delta_\perp \rightarrow \pi - \delta_\perp$

- Small $\beta_s \rightarrow$ effective loss of degrees of freedom
 - Biases in straightforward likelihood fit (parameter-dependent)
 - Irregular (non-elliptical) likelihood shape & uncertainties
 - \rightarrow Undercoverage by likelihood profile

- These problems go away with very large statistics, but not for our sensitivity
Separate time evolution of mesons produced as B_s^0 or $\overline{B_s}$. Utility:

Three ways to think of utility of flavor-tagging:

- In short: $B_s^0/\overline{B_s}$ differential decay rates $\frac{dP}{dt\vec{\rho}}(t, \vec{\rho})$ dependent on β_s differently

- Likelihood: with tagging, gain sensitivity to both $|\cos(2\beta_s)|$ and $\sin(2\beta_s)$, rather than only $|\cos(2\beta_s)|$ and $|\sin(2\beta_s)|$ (note absolute value)

- Visually: MC study comparing 68%, 95% likelihood contours for tagged (thick line) / untagged (thin line) in $\Delta \Gamma - \beta_s$ plane
2D confidence Region Method

- Problems arise from limited sensitivity: biases observed in pseudo-experiments depending on input value of β_s

- We use a likelihood ordering suggested by Feldman and Cousins to estimate a confidence interval

- Calculate a p-value for each point on the $\Delta \Gamma - \beta_s$ plane

- Verify that we have proper coverage in the confidence region for alternative true values of the parameters

- Construct a confidence region rather than quote a point estimate
Systematic Effects

→ Important for measurement of $\Delta \Gamma$, $c\tau$:

 • $B_d^0 \rightarrow J/\psi K^*$ decays misreconstructed as B_s^0: $O(3\%)$ contamination
 • Signal mass model
 • Lifetime resolution model
 • Detector angular acceptance
 • Silicon detector alignement

Tagged β_s result:

• Dilution scale factor
• Background angular distributions
• Lifetime resolution model/ bkg model

→ Contributed to 2% confidence region adjustment for $\Delta \Gamma - \beta_s$ result
Results

• *CP* Violation:
 – Standard model
 – $B_s^0 \rightarrow J/\psi \phi$

• Measurement:
 – CDF Detector
 – Data Sample & Selection
 – Angular Analysis
 – Flavor Tagging
 – Likelihood

• Results
 – Untagged Analysis
 – Tagged Analysis
B^0_d Results: c\tau, Angular Parameters

CDF Run II Preliminary \[L = 1.3 \text{ fb}^{-1} \]

- **Param = Val ± Stat ± Syst**
 - \(c\tau = 456 \pm 6 \pm 6 \text{ \mu m} \)
 - \(|A_0|^2 = 0.569 \pm 0.009 \pm 0.009 \)
 - \(|A_\parallel|^2 = 0.211 \pm 0.012 \pm 0.006 \)
 - \(\delta_\parallel = -2.97 \pm 0.08 \pm 0.03 \)
 - \(\delta_\perp = +2.97 \pm 0.06 \pm 0.01 \)

BaBar 2007 (hep-ex 0704.0522)

- \(|A_0|^2 = 0.556 \pm 0.009 \pm 0.010 \)
- \(|A_\parallel|^2 = 0.211 \pm 0.010 \pm 0.006 \)
- \(\delta_\parallel = -2.93 \pm 0.08 \pm 0.04 \)
- \(\delta_\perp = +2.91 \pm 0.05 \pm 0.03 \)
B^0_s UnTagged Results: $\Delta \Gamma$, $c\tau$

CDF II Preliminary $L=1.7$ fb$^{-1}$

- Data
- Fit
- Signal
- Background
- CP-even
- CP-odd

Fixing β_s to 0:

Param = Val ± Stat ± Syst

- $c\tau = 456 \pm 13 \pm 7 \mu$m
- $\Delta \Gamma = 0.076^{+0.059}_{-0.063} \pm 0.006$ ps$^{-1}$

→ **Improved best measurement by 30 (50)%**
B^0_s Utagged Results: Angular Parameters

Fixing β_s to 0:

- $|A_0|^2 = 0.531 \pm 0.020 \pm 0.007$
- $|A_\parallel|^2 = 0.239 \pm 0.029 \pm 0.011$
- $|A_\perp|^2 = 0.230 \pm 0.026 \pm 0.009$
Untagged Results: $\Delta \Gamma - \beta_s$ Confidence Region

β_s Floating:

- Assuming the SM, the probability to observe a fluctuation as large or larger than the one observed in data: 22%
Tagged Results: $\Delta \Gamma - \beta_s$ F-C Confidence Region

- Main result w/ tagging

- Assuming the SM, the probability to observe a fluctuation as large as or larger than the one observed in data:

 15%, ($\approx 1.5\sigma$)

- $\cos(\delta_\perp) < 0$
 $\cos(\delta_\perp - \delta_\parallel) > 0$
 in upper region

- $\cos(\delta_\perp) > 0$
 $\cos(\delta_\perp - \delta_\parallel) < 0$
 in lower region
Tagged Results: Likelihood & F-C Confidence Region

Likelihood Profile:

- Similar shape with likelihood profile, but F-C region has proper coverage.
Tagged Results: β_s with Experimental Constraints

Strong Phases Contrained:

Phases & Lifetime (to $B^0_d c\tau$):

- Constrained to BaBar results in $B^0_d \rightarrow J/\psi K^*$
Results for β_s: 1-D Confidence Interval, Constraints

If we seek no info on $\Delta \Gamma$, bounding β_s in 1D:

- At 68% C.L. we find $2\beta_s \in [0.32, 2.82]$

Using a theoretical constraint on $|\Gamma_{12}|$:

- $2\beta_s \in [0.24, 1.36] \cup [1.78, 2.90]$ at 68% C.L.

Adding constraint on $\delta_\parallel, \delta_\perp$ from B factories:

- $2\beta_s \in [0.40, 1.20]$ at 68% C.L.

The latter range is the tightest constraint we can obtain on β_s incorporating all available information.
Main result is point estimate with strong phases constrained. Best to compare to CDF's 1D confidence interval with similar constraint: \(2\beta_s \in [0.40, 1.20] \) at 68% C.L.
Future Prospects

- Add +50% statistics from other triggers
- Improve tagging algorithms
- Better-behaved likelihood profile at high stat

This measurement will be a key component of the LHCb program. The Tevatron will have much more to say about it as well before “handing it over” to LHC.
Conclusion

Important result in B physics:

- First flavor-tagged measurement of CP violating phase in B_s^0 system: submitted to PRL arXiv:0712.2397 [hep-ex]
- Cut in half allowed space of parameters. Already 95% CL exclusion of a large portion of the NP-phase space as allowed by global fits. Large positive values of ϕ_s excluded
- World’s best determination of B_s^0 average lifetime and decay-width difference. Accepted by PRL arXiv:0712.2348 [hep-ex]
Additional Slides
Tagged Analysis: Sideband Subtracted Angular Distribution

\[\text{Events per 0.20} \]

- \text{data}
- \text{fit}

\[\cos(\psi_T) \]
Tagged Analysis: Sideband Subtracted Angular Distribution

![Graph showing data and fit for angular distribution](image)

- **Data**
- **Fit**

Events per 0.20

\[\cos(\theta_T) \]
Tagged Analysis: Sideband Subtracted Angular Distribution

![Graph showing data and fit for events per 0.63 rad vs. ϕ_T (rad).](image)
Predicted Dilution: OST

CDF Run II Preliminary

L = 1.35 fb\(^{-1}\)

- Signal
- Background
Predicted Dilution: SST

CDF Run II Preliminary \(L = 1.35 \text{ fb}^{-1} \)

- **Signal**
- **Background**

SST Predicted Dilution

K. Makhoul CDF/MIT – Feb 21, 2008
Measured vs. Predicted Dilution: B^-

CDF Run II Preliminary

$L = 1.35 \text{ fb}^{-1}$

B$^-$ only

Slope $= 1.09 \pm 0.13$
Measured vs. Predicted Dilution B^+

CDF Run II Preliminary

B^+ only

Slope $= 0.85 \pm 0.11$

$L = 1.35 \text{ fb}^{-1}$
Measured vs. Predicted Dilution $B^+ + B^-$

CDF Run II Preliminary $L = 1.35$ fb$^{-1}$

Combined B^+/B^-

Slope = 0.95 ± 0.09
Likelihood Profile w/ Additional Asymmetry

CDF Run II Preliminary

$L = 1.35 \text{ fb}^{-1}$

$\Delta \Gamma (\text{ps}^{-1})$ vs. $\beta_s (\text{rad})$

- SM prediction
- $+20\%$ dilution asymmetry:
 - $2\Delta \log(L) = 5.99$
 - $2\Delta \log(L) = 2.30$
- -20% dilution asymmetry:
 - $2\Delta \log(L) = 5.99$
 - $2\Delta \log(L) = 2.30$