W / Z + jet production at CDF
1. Introduction
2. Inclusive measurements
3. Heavy flavour measurements
4. Conclusions

CDF
Motivation
Measurements

CDF

p \bar{p} collisions at \sqrt{s} = 1.96 \text{ TeV}

Up to 2.5 fb\(^{-1}\) used in reported analyses
QCD tests:

- Test of perturbative QCD (W, Z ensures high Q^2)
- $W, Z + b$ jet production potentially sensitive to b content of proton

Background process:

- Standard Model (eg. top)
- New physics (Higgs, SUSY)
Inclusive measurements:
- $W + \text{jets}$
- $Z + \text{jets}$

Heavy flavour measurements:
- $Z^+ \text{ b jets}$
- $W^+ \text{ b jets}$

Not included:
- $W + \text{c jets}$
- Inclusive W, Z
Trigger on high E_T central electron

Identify W:
$E_T^e > 20$ GeV, $|\eta^e| < 1.1$
Missing $E_T > 30$ GeV
$m_T > 20$ GeV/c^2

Identify jets: Jetclu cone 0.4 jet with $E_T>20$ GeV, $|\eta|<2.0$
$\Delta R^{e-jet} > 0.52$

Measure σ at hadron level as function of E_T^{jet} cf. LO, NLO predictions

Backgrounds $\sim 10\text{-}40\% \rightarrow 90\%$ depending on E_T^{jet}

Systematics: $\sim 20\% \rightarrow 50\text{-}80\%$

• jet energy scale (background) at low (high) E_T^{jet}
NLO: MCFM (W + 1 and 2 jet available)

LO: ME+PS + nonpQCD correction:

Agreement with NLO good.

LO low.
Trigger on high E_T central electron

Identify Z:
- $E_T^e > 25$ GeV,
- $|\eta_1^e| < 1.0$, $|\eta_2^e| < 1.0$ OR $1.2 < |\eta_2^e| < 2.8$,
- $66 < M_{ee} < 116$ GeV/c^2

Identify jet; midpoint cone 0.7 jet, $R_{sep} 1.3$, with $p_T > 30$ GeV, $|y| < 2.1$

Measure σ at hadron level as function of p_T^{jet}, cf. NLO predictions.

Backgrounds low (~12% for ≥1 jet)

Good agreement with NLO (MCFM + CTEQ6M, corrected for UE, fragmentation)

Corrections largest at low E_T
1. Introduction
2. Inclusive measurements
3. Heavy flavour measurements
4. Conclusions

Systematics dominated by:
- scale dependance (th.)
- jet energy scale (exp.).
1. Introduction

2. Inclusive measurements

3. Heavy flavour measurements

4. Conclusions

NLO describes data well
LO low by factor 1.4
Dis 2009: Tara Shears

2 fb⁻¹

1. Introduction
2. Inclusive measurements
3. Heavy flavour measurements
4. Conclusions

Trigger on $Z \rightarrow e^+e^- (|\eta|<2.5)$, $\mu^+\mu^- (|\eta|<1.5)$

Identify b jet; Jetclu cone 0.7 jet with $E_T > 20$ GeV, $|\eta| < 1.5$, secondary vertex tag.

Estimate b fraction by secondary vertex tag, fit sec. vertex mass to MC templates to obtain b fraction.

Measure σ at hadron level, compare to LO, NLO

Table

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>Alpgen</th>
<th>Pythia</th>
<th>MCFM ($Q^2 = m_Z^2 + p_{Tj}^2$)</th>
<th>MCFM ($Q^2 = <p_{Tj}>^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(Z + b)$ / $\sigma(Z)$</td>
<td>$(3.32 \pm 0.53 \pm 0.42) \times 10^{-3}$</td>
<td>2.1×10^{-3}</td>
<td>3.5×10^{-3}</td>
<td>2.3×10^{-3}</td>
<td>2.8×10^{-3}</td>
</tr>
<tr>
<td>$\sigma(Z + b)$ / $\sigma(Z + j)$</td>
<td>$(2.08 \pm 0.33 \pm 0.34)$ %</td>
<td>1.5 %</td>
<td>2.2 %</td>
<td>1.8 %</td>
<td>2.2 %</td>
</tr>
</tbody>
</table>
NLO, LO at low scale describe data well.

NLO, LO at high scale are low.
1. Introduction
2. Inclusive measurements
3. Heavy flavour measurements
4. Conclusions

NLO, LO at low scale describe data well.
NLO, LO at high scale are low.
Trigger on high E_T central electron or muon

Identify W:
- e: $E_T > 20$ GeV, $|\eta| < 1.1$
- μ: $p_T > 20$ GeV/c, $|\eta| < 1.0$
- ν: Missing $E_T > 25$ GeV

Identify b jet: Jetclu cone 0.4 jet with $E_T > 20$ GeV, $|\eta| < 2.0$, sec. vertex.

Compare inclusive cross-section to LO: ALPGEN + CTEQ5L

Yield: ~ 496 signal events, ~180 background (70% $t\bar{t}$ or single t)
1. Introduction
2. Inclusive measurements
3. Heavy flavour measurements
4. Conclusions

Results:
in events with a $p_T > 20$ GeV/c, $|\eta| < 1.1$ electron or muon, a $p_T > 25$ GeV/c neutrino, and 1 or 2 $E_T > 20$ GeV, $|\eta| < 2.0$ jets regardless of species.

Data: $\sigma_{bjets}(W + b jets) \times BR(W \rightarrow l\nu) = 2.74 \pm 0.27 \pm 0.42 \text{ pb}$

LO: ALPGEN: $\sigma \cdot BR = 0.78 \text{ pb}$

LO factor 3 low (nb. high scale)
- awaiting NLO comparison.
W/Z + jet production measured at CDF on datasets up to 2.5 fb\(^{-1}\)

Inclusive measurements:

- LO estimates low
- NLO estimates show good agreement
- correction for U.E. and fragmentation needed at low \(E_{T}^{\text{jet}}\)

Heavy flavour measurements:

- NLO, LO estimates at high scales low.
- NLO, LO estimates at lower scales agree with data.
Backup
Systematic dominated by scale dependance (th.), jet energy scale (exp.).

DIS 2009: Tara Shears
Identifying b jets

Tagging algorithm:
Consider tracks in \(\eta-\phi\) 0.4 cone around jet axis
Find secondary vertex from displaced tracks
Large transverse displacement = b tagged.

Purity: fit invariant mass to template shapes (MC or data), 45-70%

Efficiency: 20-40% dependent on operating point.