New β_s measurement at CDF

- Introduction
 - Context
 - SM description

- The measurement
 - Fit strategy
 - Signals
 - Flavor tagging

- Results
The Context

- Great SM success in B_d/B_u sector
 - Thanks B-factories!
 - ...but no evidence for new physics there

- Bs sector can still provide surprises
 - Natural physics for Tevatron experiments
 - In 2006 Δm_s measurement from Bs mixing
 - Right on the SM expectations!
 - Next step is measurement of CP violating phases eg. β_s
 - ...some excitement there so far

$A/\sigma_A = 6.05$
Previous CDF+D0 combined results intriguing
Related measurements

- Semileptonic asymmetry
 - Related to $\Delta \Gamma$, Δm and βs
 - SM expectation $\sim 10^{-5}$

- Old results from CDF and D0:

![CDF and D0 results graph]

- Intriguing new D0 result
\(\beta_s \) in SM

- \(\beta_s \) is the phase of \(-V_{ts}\)
 - \(\neq 0 \) in O(\(\lambda^4\)) CKM expansion

\[
V_{\text{CKM}} = 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} - \lambda - A^2 \lambda^5 (\rho + i\eta - \frac{1}{2}) + O(\lambda^6)
\]

- Quite well constrained assuming SM and very small

\[
\beta_s^{\text{SM}} = \text{arg} \left[-V_{ts} V_{tb}^*/(V_{cs} V_{cb}^*) \right] = 0.01812 \pm 0.0008
\]

CKM fitter. Sept. 2009

All real

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa
Basic Theory

2 state effective theory:

- Describes mixing and CP violation
- \(M, \Gamma \) hermitian
 - CPT invariance: \(M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22} \)
- After diagonalization:
 - Eigenvalues:
 \[
 \lambda_{\pm} = (m \pm \Delta m) - \frac{i}{2}(\gamma \pm \Delta \gamma)
 \]
 \[
 = m - \frac{i}{2} \gamma \pm \sqrt{(m_{12} - \frac{i}{2} \gamma_{12})(m_{12}^* - \frac{i}{2} \gamma_{12}^*)}
 \]
 - Eigenstates:
 \[
 |B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \quad |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle
 \]
Origin of off-diagonal terms

- m_{12} from box diagram
 - Top quark dominant
 - $M_{12} \propto V_{ts}^2 \propto e^{-2i\beta_s}$

- New physics possible in loops!
 \[
 M_{12} = |M_{12}| \cos \theta_N \phi_P
 \]

- Γ_{12} from common final states
 - For B_s dominated by $D_s^+ D_s^-$
 - $\Delta \Gamma/\Gamma \sim 0.10$
 - Γ_{12} mostly real: $\phi_s \sim -2\beta_s$
 - Tree level dominated
 - Hard to see new physics here

\[
\Gamma_{12} = \sum_f <B|f> \rho_f <f|\bar{B}>
\]

\[
\Delta \Gamma = 2 \text{Re}\{\Gamma_{12}/m_{12}\} m_{12} |m_{12}| = 2 |\Gamma_{12}| \cos \phi
\]
Measured quantities

- **Mixing frequency (theory limited):**
 \[\Delta M = 2 |M_{12}| \]

- **Width difference (statistics limited):**
 \[\Delta \Gamma = 2|\Gamma_{12}| \cos \phi \]

- **Semileptonic asymmetry (stat.+syst. limited):**
 \[A_{SL} = -\frac{|\Gamma_{12}|}{\Gamma_{T2}} \sin \bar{\Delta} = \frac{\phi}{M} \tan \bar{\Delta} \]

- **Bs – Bs bar interference in decay to common final state such as J/ψ φ (statistics limited):**
 \[-\text{Im}(p/q) \sim \sin(2\beta_s) \sim -\sin \phi \]

This measurement
Analysis strategy

Study time evolution of $B_s \rightarrow J/\psi \phi$ decay

- No SM weak phases in A_f such that $A_{\perp} = 1$
 - Sign depends on CP of final state
- ... but $J/\psi \phi$ is vector-vector \rightarrow mixture of CP-even and CP-odd
 - Need to perform full angular analysis to separate the components
 - L=0 and L=2 are CP-even, L=1 is CP-odd
 - Prefer to use "transversity basis": A_0, $A_{\|}$: CP-even, A_{\perp}: CP-odd
- Need to introduce more hadronic decay amplitudes and their phases:
 - A_0, $A_{\|}$, A_{\perp} such that $|A_0|^2 + |A_{\|}|^2 + |A_{\perp}|^2 = 1$, $\delta_{\|}$, δ_{\perp} (phases relative to A_0)

\[< f J\mathcal{B}(t) > = \epsilon_i e^{imt} \epsilon_i e^{i2A_f \cos(\phi mt)} \epsilon^{+\phi \sin(\phi mt)} \]
Full Bs decay rate formula

\[
\frac{d^4 P(t, \vec{\rho})}{dt d\vec{\rho}} \sim |A_0|^2 T_+ f_1(\vec{\rho}) + |A_\parallel|^2 T_+ f_2(\vec{\rho}) + |A_\perp|^2 T_- f_3(\vec{\rho}) + A_\parallel A_\perp U_+ f_4(\vec{\rho}) + |A_0| |A_\parallel| \cos(\delta_\parallel) T_+ f_5(\vec{\rho}) + |A_0| |A_\perp| \nu_+ f_6(\vec{\rho}),
\]

- Identification of \(B \) flavor at production (flavor tagging) \(\rightarrow \) better sensitivity to \(\beta_s \)

\[
T_\pm = e^{-\Gamma t} \times \left[\cosh(\Delta \Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta \Gamma t/2) \mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \right],
\]

\[
U_\pm = \pm e^{-\Gamma t} \times \left[\sin(\delta_\perp - \delta_\parallel) \cos(\Delta m_s t) - \cos(\delta_\perp - \delta_\parallel) \cos(2\beta_s) \sin(\Delta m_s t) \pm \cos(\delta_\perp - \delta_\parallel) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right]
\]

\[
\nu_\pm = \pm e^{-\Gamma t} \times \left[\sin(\delta_\parallel) \cos(\Delta m_s t) - \cos(\delta_\parallel) \cos(2\beta_s) \sin(\Delta m_s t) \pm \cos(\delta_\parallel) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right].
\]

- \(\delta_\parallel \equiv \text{Arg}(A_\parallel(0)A_0^*(0)) \)
- \(\delta_\perp \equiv \text{Arg}(A_\perp(0)A_0^*(0)) \)
Improvements over past

- Luminosity: 2.9 → 5.2 fb⁻¹
- Signal optimization with NN
- ~ 6500 Bs → J/ψφ, S/N ~ 1
- Improved flavor tagging completely recalibrated (see later)
- Inclusion of f₀ scalar component (Bs → J/ψf₀) (see later)

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa
Flavor tagging

- Opposite side (OST)
 - Jet / lepton charge
 - Combined with NN
 - Calibrate with 52,000 \(J/\psi K^+ \)
 - \(\varepsilon = 94.2 \pm 0.4\% \), \(D = 11.5 \pm 0.2\% \)
 \(\varepsilon D^2 = 1.2\% \)

- Same side Kaon (SSKT)
 - Sign of soft kaon near Bs
 - Dilution from simulation
 - Calibrate with \(\sim 13,000 \) Bs \(\rightarrow Ds(3)\pi \)
 - From mixing amplitude scan
 - \(\varepsilon D^2 = 3.2 \pm 1.4\% \)

\(\Delta m_s = 17.79 \)

Old CDF result

CDF Run 2 Preliminary, \(L = 5.2 \text{ fb}^{-1} \)

\.Errorf[Amplitude A]

\(\Delta m_s = 17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ ps}^{-1} \)

Mixing Frequency in ps\(^{-1}\)
Results: Bs lifetime & $\Delta \Gamma$

- **Point measurement assuming SM**
 - Set $\beta_s = 0$
 - Most precise measurement of B_s lifetime and $\Delta \Gamma$

\[
\tau_s = 1.53 \pm 0.025 \text{ (stat.)} \pm 0.012 \text{ (syst.)} \text{ ps}
\]
\[
\Delta \Gamma = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.01 \text{ (syst.)} \text{ ps}^{-1}
\]

PDG 2009 averages:
\[
\tau_s = 1.472^{+0.024}_{-0.026} \text{ ps}
\]
\[
\Delta \Gamma = 0.062^{+0.034}_{-0.037} \text{ ps}^{-1}
\]

CP-even (B_s^{light}) and CP-odd (B_s^{heavy}) components have different lifetimes
\[
\rightarrow \Delta \Gamma \neq 0
\]
Results: polarization amplitudes

- **$\beta s = 0$ fit**
 - Most precise measurement

\[
|A_\parallel(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst.)}
\]
\[
|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst.)}
\]
\[
\phi_\perp = 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst.)}
\]
Full fit results

- Low statistics & dilutions
 - Some parameters very non-Gaussian, including β_s
- Contours corrected for
 - Non-gaussian effects
 - Systematics
- Note fit symmetry
 - $2\beta_s \rightarrow \pi - 2\beta_s$
 - $\delta_\parallel \rightarrow 2\pi - \delta_\parallel$
 - $\Delta \Gamma \rightarrow -\Delta \Gamma$
 - $\delta_\perp \rightarrow \pi - \delta_\perp$

β_s projection

- $[0.02, 0.52] \cup [1.08, 1.55]$ at 68% C.L.
Effect of s-wave resonance

- Effect of Bs → J/ψ f_0
 - Fit prefers ~ 2%
 - Consistent with m(KK) fit
 - < 6.7% @ 95% CL

![Graph showing CDF Run II Preliminary results with 95% and 68% CL regions, indicating not adjusted for non-Gaussian errors.](image)
Conclusions & prospects

- Best measurement of Bs lifetime, $\Delta \Gamma$ and polarization amplitudes
- Tighter constraints on β_s
 - Improved agreement with SM ($\sim 1\sigma$)
- Future improvements
 - Statistics doubled (10 fb^{-1}) by end of 2011 Tevatron run
 - More data ~ 25-30% from track based triggers
 - Additional decay modes:
 - $\psi(2S)\phi$
 - $J/\psi f_0, f_0 \rightarrow \pi \pi$ (CP-eigenstate)
Getting hot

CDF+DØ

LHCb

Tevatron 2011: discover or exclude NP in wide range of phases.

LHCb competitive (if everything turns out as expected)
Opposite Side Tagging Calibration and Performance

- OST combines in a NN opposite side lepton and jet charge information
- Initially calibrated using a sample of inclusive semileptonic B decays
 - predicts tagging probability on event-by-event basis
- Re-calibrated using $\approx 52,000 \, B^{+/−} \rightarrow J/\Psi \, K^{+/−}$ decays

- OST efficiency = $94.2 \pm 0.4\%$, OST dilution = $11.5 \pm 0.2 \%$
- Total tagging power = 1.2%

June 22 - BEACH 2010, Perugia

F. Bedeschi, INFN-Pisa
Same Side Tagging Calibration

- Event-by-event predicted dilution based on simulation
- Calibrated with 5.2 fb⁻¹ of data
- Simultaneously measuring the B_s mixing frequency Δm_s and the dilution scale factor A

$$P_{Sig}(ct|\sigma_{ct}, \xi = \xi_D \cdot \xi_P, D) = \frac{1}{N} \cdot \left[\frac{1}{\tau} e^{-t/\tau} \cdot (1 + \xi AD \cdot \cos(\Delta m_s \tilde{t})) \right] \otimes G(ct|\sigma_{ct}) \cdot \epsilon(ct|\sigma_{ct})$$

- D – event by event predicted dilution
- ξ – tagging decision = +1, -1, 0 for B_s, B_s and un-tagged events

- Fully reconstructed B_s decays selected by displaced track trigger

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \to D_s^- \pi^+$, $D_s^- \to \phi\pi^-$</td>
<td>5613 ± 75</td>
</tr>
<tr>
<td>$B_s^0 \to D_s^- \pi^+$, $D_s^- \to K^* K^-$</td>
<td>2761 ± 53</td>
</tr>
<tr>
<td>$B_s^0 \to D_s^- \pi^+$, $D_s^- \to (3\pi)^-$</td>
<td>2652 ± 52</td>
</tr>
<tr>
<td>$B_s^0 \to D_s^- (3\pi)^+$, $D_s^- \to \phi\pi^-$</td>
<td>1852 ± 43</td>
</tr>
</tbody>
</table>

Sum 12877 ± 113
- CP even and CP odd final states have different angular distributions
 \rightarrow use angles $r = (\theta, \phi, \psi)$ to statistically separate CP even and CP odd components

- Detector acceptance distorts the angular distributions
 \rightarrow determine 3D angular efficiency function from simulation and account for this effect in the fit

CDF Simulation of Detector Angular Sculpting
As noted in arxiv:0812.2832v3, the final state in $B_s \rightarrow J/\Psi KK$ decays can be in an s-wave state with a ~6% contribution in a +/-10 MeV window around the Φ peak.

Systematic effects from neglecting such contribution were first investigated by Clarke et al in arxiv:0908.3627v1 where it is shown that:

- 10% un-accounted s-wave contamination in the Φ region leads to
 - 10% bias in the measured $2b_s$, towards the SM prediction
 - 15% increase in statistical errors

S-wave contribution can be either non-resonant or from the $f^0(980)$ resonance.

To account for potential s-wave contribution, enhance the likelihood function to account for the s-wave amplitude A_s and interference between s-wave and p-wave.

Time dependence of the s-wave amplitude A_s is CP-odd, same as A_{\perp}.

Mass and phase of s-wave component are assumed flat (good approximation in a narrow +/- 10 MeV around the Φ mass).
S-Wave Cross Check Using KK Mass Spectrum

- Cross check the result from angular fit by fitting the KK invariant mass spectrum

- From a fit to the B_s mass distribution with wide KK mass range selection (0.980, 1.080 GeV), determine contributions of combinatorial background, mis-reconstructed B^0, and B_s events

- Good fit of the KK mass spectrum with 2% f^0 contributions

Barely visible S-wave component
Non-Gaussian Regime

- Pseudo-experiments show that we are still not in perfect Gaussian regime
 → quote confidence regions instead of point estimates

- In ideal case (high statistics, Gaussian likelihood), to get the 2D 68% (95%) C.L. regions, take a slice through profiled likelihood at 2.3 (6.0) units up from minimum

- In this analysis integrated likelihood ratio distribution (black histogram) deviates from the ideal c^2 distribution (green continuous curve)

- Using pseudo-experiments establish a “map” between Confidence Level and 2Dlog(L)

- All nuisance parameters are randomly varied within +/- 5σ from their best fit values and maps of CL vs 2Dlog(L) re-derived

- To establish final confidence regions use most conservative case

June 22 - BEACH 2010, Perugia
Systematic Uncertainties

| Systematic | $\Delta \Gamma$ | $c\tau_s$ | $|A_{||}(0)|^2$ | $|A_0(0)|^2$ | ϕ_\perp |
|--|-----------------|-----------|----------------|--------------|-------------|
| **Signal efficiency:** | | | | | |
| Parameterisation | 0.0024 | 0.96 | 0.0076 | 0.008 | 0.016 |
| MC reweighting | 0.0008 | 0.94 | 0.0129 | 0.0129 | 0.022 |
| **Signal mass model** | | | | | |
| | 0.0013 | 0.26 | 0.0009 | 0.0011 | 0.009 |
| **Background mass model** | | | | | |
| | 0.0009 | 1.4 | 0.0004 | 0.0005 | 0.004 |
| **Resolution model** | | | | | |
| | 0.0004 | 0.69 | 0.0002 | 0.0003 | 0.022 |
| **Background lifetime model** | | | | | |
| | 0.0036 | 2.0 | 0.0007 | 0.0011 | 0.058 |
| **Background angular distribution:** | | | | | |
| Parameterisation | 0.0002 | 0.02 | 0.0001 | 0.0001 | 0.001 |
| $\sigma(c\tau)$ correlation | 0.0002 | 0.14 | 0.0007 | 0.0007 | 0.006 |
| Non-factorisation | 0.0001 | 0.06 | 0.0004 | 0.0004 | 0.003 |
| $B^0 \rightarrow J_\psi K^*$ crossfeed | 0.0014 | 0.24 | 0.0007 | 0.0010 | 0.006 |
| SVX alignment | 0.0006 | 2.0 | 0.0001 | 0.0002 | 0.002 |
| Mass error | 0.0001 | 0.58 | 0.0004 | 0.0004 | 0.002 |
| $c\tau$ error | 0.0012 | 0.17 | 0.0005 | 0.0007 | 0.013 |
| Pull bias | 0.0028 | | 0.0013 | 0.0021 | |

Totals | 0.01 | 3.6 | 0.015 | 0.015 | 0.07 |