Top Cross Section Measurement at CDF

Gabriele Compostella
(INFN-CNAF and University of Padova)
on behalf of the CDF Collaboration
Top Quark Physics

- Top quark first observation at Tevatron in 1995
- Existence Required by the SM: Spin 1/2 fermion, charge +2/3, weak-isospin partner of the b quark

- **Mass**: top is ~40x heavier than the bottom quark: only SM fermion with mass at the EW scale
 Large contribution in virtual fermionic loops

- Top decays before hadronization: $\Gamma \sim 1.4$ GeV $>\Lambda_{QCD}$
 Provide an unique opportunity to study a "bare" quark

Is it the SM top?
Budget approval pending for FY11 running

12 fb\(^{-1}\) delivered ~doubles the current dataset and results in analyses with about 10 fb\(^{-1}\)
Top Quark Production at Tevatron

Top Quark Production

In Pairs

\[\sigma_{NLO} = 7.4^{+0.5}_{-0.7} \text{ pb} \]
JHEP 0809, 127 (2008)

Single

\[\sigma_{NLO} = 3.4 \pm 0.4 \text{ pb} \]
PRD 74, 114012 (2006)

\[m_{\text{top}} = 172.5 \text{ GeV} \]

Top Quark Decay

\[\text{BR}(t \rightarrow Wb) \sim 100\% \]

s-channel

~ 85% ~ 30% ~ 15% ~ 70%

t-channel

G.Compostella
Top Quark Production at Tevatron

Top quarks are rare!

Small cross section: only 1 top pair in 10 billion inelastic collisions → for an integrated luminosity of ~1 fb$^{-1}$ around 7000 top pairs and 3500 single tops are expected.

Other processes appear as background...

...makes Single top especially difficult.
\(\sigma_{t\bar{t}} \) is an inclusive quantity that allows:

- test the SM: compare the experimental measurement with the QCD NLO prediction
- measuring \(\sigma_{t\bar{t}} \) is first thing you have to do before studying other top properties
- study clean top samples

Is also a probe to new physics (Massive gluons, \(Z' \), ...):

- anomalous \(t\bar{t} \) production rate
- compare cross-sections in different top decay channels

Allows careful evaluation of background for Higgs and new phenomena searches
How?

$$\sigma_{ttbar} = \frac{N_{\text{observed}} - N_{\text{background}}}{\varepsilon_{ttbar}(m_{top}) \cdot L}$$

- Event counting or fit of discriminating variable shape
- Number of expected background events
 Using Monte Carlo or data
- Signal selection efficiency
 using $ttbar$ Monte Carlo samples
 Pythia or Alpgen
- Recorded luminosity
 Channel dependent
Top Pair Production Signatures

- **Dilepton** (e or μ) 5%
 - Low rate, low background (mainly Drell-Yan)
 - High purity

- **Lepton (e or μ) + jets** 30%
 - Higher rate, manageable background (mainly W+jets)
 - Golden Channel

- **All hadronic** 44%
 - Large rate, large background (mainly QCD)
 - Lowest purity

Hadronic Taus (tau+lepton, tau+jets) (14%):
- Small rate and large background (mainly Multijets, W+jets)
- Challenging purity

MET+jets (“hybrid channel”):
- Focus on MET from ν, catches what other channels miss (bkg mainly QCD, EWK+HF)
- Large acceptance to taus in the final state
Selection:

2 OS isolated leptons (e, μ) with ET ≥ 20 GeV
jets with |η| < 2.5 and ET ≥ 15 GeV,
at least one jet with ET ≥ 30 GeV
Drell Yan veto
MET ≥ 25 GeV

Background Modeling:

Drell Yan, diboson → use Monte Carlo
Fakes, QCD → use data with same charge leptons

\[
\sigma_{\text{tt}} = 6.56 \pm 0.65 \text{ (stat)} \pm 0.41 \text{ (syst)} \pm 0.38 \text{ (lumi)} \text{ pb}
\]

Very clean \(\text{ttbar} \) sample!

CDF dilepton (4.5 fb\(^{-1}\)):
\[
\sigma_{\text{tt}} = 6.56 \pm 0.65 \text{ (stat)} \pm 0.41 \text{ (syst)} \pm 0.38 \text{ (lumi)} \text{ pb}
\]
\[
\Delta \sigma / \sigma = 13\%
\]
For the other channels, ttbar signature is not as clean as in the dilepton, need additional tools to identify top pairs decay products → **b-tagging**

Secondary Vertex tagging:
search a displaced secondary vertex among high impact parameter tracks using an iterative fit.

Efficiency is tuned on data:
- is around 50% for ttbar central b-jets
- mistag rate kept under 2% for tight SecVtx
Selection:
1 isolated lepton (e, μ) with ET>20 GeV
≥3 jets with |η|<2.0, ET>20 GeV
MET>25 GeV
≥1 SecVtx b-tagged jet
H_T > 250 GeV (Sum of the transverse energy of jets, lepton, and MET)

CDF lepton+jets b-tag (4.3 fb⁻¹):
σ_{ttbar} = 7.22 ± 0.35 (stat) ± 0.56 (syst)
± 0.44 (lumi)
Δσ/σ = 10.3%
Lepton + jets channel with b-tag

Selection:
1 isolated lepton (e, μ) with ET > 20 GeV
≥3 jets with |η| < 2.0, ET > 20 GeV
MET > 25 GeV
≥1 SecVtx b-tagged jet
H_{T} > 250 GeV

Largest Systematics:

- 6% luminosity uncertainty
- 5% uncertainty in correction to b-tagging modeling in MC
- 4% uncertainty in correction to W+HF MC

CDF lepton+jets b-tag (4.3 fb^{-1}):
σ_{ttbar} = 7.22 ± 0.35 (stat) ± 0.56 (syst)
± 0.44 (lumi)
Try a different, topological, approach using Neural Networks: Rely on identifying top events through kinematics as opposed to b-jet identification → no b-tag, same selection with no H_T cut

Kinematic Variables:
- Total Sum Transverse Energy
- Aplanarity
- Sum $P_z / Sum Et$ of Jets
- Sum Jet Et Excluding Two Highest
- Minimum Di-Jet Mass
- Minimum Angle Between Two Jets
- Maximum Angle of a Jet

train NN to distinguish signal from background and fit templates to data

CDF lepton+jets NN (4.6 fb⁻¹):
$$\sigma_{tt\overline{t}} = 7.71 \pm 0.37 \text{ (stat)} \pm 0.36 \text{ (syst)} \pm 0.45 \text{ (lumi)} \text{ pb}$$

Largest systematics:
- 6% Luminosity
- 3% Jet Energy Scale

$\Delta \sigma / \sigma = 8.8\%$
Optimizing the analysis: reducing the largest systematics

- σ_Z well known theoretically
- Z well modeled in MC
- Z small background
- Luminosity uncertainty can be **cancelled out** in ratio if we use the same triggers and data periods

measure:

$$R = \frac{\sigma_{ttbar}}{\sigma_{Z->ll}}$$

Get $\sigma_{ttbar} = R \sigma_{Z->ll} (th)$

lepton+jets with b-tag and Z ratio (4.3 fb⁻¹):

$\sigma_{ttbar} = 7.32 \pm 0.36 \text{ (stat)} \pm 0.59 \text{ (syst)} \pm 0.14 \text{ (Z theory)}$

$\Delta \sigma/\sigma = 9.6\%$

lepton+jets with NN and Z ratio (4.6 fb⁻¹):

$\sigma_{ttbar} = 7.82 \pm 0.38 \text{ (stat)} \pm 0.37 \text{ (syst)} \pm 0.15 \text{ (Z theory)}$

$\Delta \sigma/\sigma = 7.0\%$
Selection:
- Veto leptons and require low MET
- Require $6 \leq N_{jets} \leq 8$ in the signal region
- Use a NN (jet invariant masses, sphericity, aplanarity, …) to separate S/N
- Jet shapes variables allow to separate quark jets from gluon jets, big impact in the NN
- ≥ 1 SecVtx b-tagged jets

Technique:
- Parameterize background b-tags from 4 Jet data, QCD dominated, using b-tag rates
- Use a kinematic fitter to reconstruct M_{top} for each event
- From MC get M_{top}^{reco} distribution for different values of the input top mass (templates)
- By fitting data to templates of Signal+Background get the number of ttbar events and measure cross section

CDF all hadronic (2.9 fb^{-1}):

$$\sigma_{ttbar} = 7.21 \pm 0.50 \text{ (stat)} \pm 1.10 \text{ (syst)}$$

$$\pm 0.42 \text{ (lumi)} \text{ pb}$$

$\Delta \sigma/\sigma = 17.7\%$
Analysis focuses on MET from neutrino rather than on lepton identification, requires large Jet multiplicity, at least one btagged jet

Selection
- Require significant MET, $\text{MET}_{\text{Sigf}} > 3 \text{ GeV}^{1/2}$
- Veto well reconstructed leptons
- Require 4 or more jets
- Use a NN to discriminate S/N
- Parameterize background b-tags from 3 Jet data, QCD dominated
- Perform counting experiment on b-tags for events with $\text{NNout}>0.8$

Large acceptance to tau+jets events!
Orthogonal and complementary results with respect to other channels

CDF MET+jets (2.2 fb$^{-1}$):

$\sigma_{t\bar{t}b} = 7.99 \pm 0.55 \text{ (stat)} \pm 0.76 \text{ (syst)}$

$\pm 0.46 \text{ (lumi)} \text{ pb}$

$\Delta \sigma / \sigma = 13\%$
Overview and combination

Good agreement:
• among different channels
• with theoretical prediction

\[\Delta \sigma / \sigma = 6.5\% \]

*(not yet updated with the latest results)
One more thing: ttbar+jet cross section

- Important test of perturbative QCD, NLO effects
- at the LHC ttbar will be produced with additional jets → background for many new physics signals
- use b-tagged events in the lepton+jets channel
- data-driven background
- 2D likelihood to simultaneously measure ttbar+jet and ttbar without jet cross sections

CDF result (4.1 fb^{-1}):
$$\sigma_{\text{ttbar+jet}} = 1.6 \pm 0.2 \text{ (stat)} \pm 0.5 \text{ (syst)} \text{ pb}$$

Theory:
$$\sigma_{\text{ttbar+jet}} = 1.79^{+0.16}_{-0.31} \text{ pb}$$
Conclusions

• Reviewed CDF measurements of the top pair production cross section in different channels

• Experimental uncertainties in the various channels are comparable to the theoretical
• Uncertainty of the CDF combination is even better than the theoretical

• Cross sections are consistent with SM, but still plenty of room for new physics!
Selection:
2 OS isolated leptons (e, μ) with ET ≥ 20 GeV
jets with |η| < 2.5 and ET ≥ 15 GeV, at least one jet with ET ≥ 30 GeV

Can apply b-tagging to the dilepton channel

In addition to standard dilepton selection, require at least one SecVtX tag in the event and perform a counting experiment to get the cross section

CDF dilepton with b-tag (4.5 fb⁻¹):
σ_{ttbar} = 7.27 ± 0.71 (stat) ± 0.46 (syst) ± 0.42 (lumi) pb

Δσ/σ = 13%
Lepton+Jets NN variables
Jet Shapes in the all hadronic analysis

\[M_\eta = \sqrt{\left[\sum_{\text{tow}} \frac{E_{T_{\text{tow}}}}{E_T} \eta_{\text{tow}}^2 \right]} - \eta^2 \]

\[M_\phi = \sqrt{\left[\sum_{\text{tow}} \frac{E_{T_{\text{tow}}}}{E_T} \phi_{\text{tow}}^2 \right]} - \phi^2 \]

FIG. 1: Geometric average of the \(\eta \) scaled moments (\(\langle M_\eta^8 \rangle \), upper plot) and of the \(\phi \) scaled moments (\(\langle M_\phi^8 \rangle \), lower plot) for QCD multijet (solid histogram) and simulated \(t\bar{t} \) (dashed histogram) events with \(6 \leq N_{\text{jets}} \leq 8 \).
- Silicon tracking
- Large radius drift chamber ($r=1.4m$)
- 1.4 T solenoid
- Projective calorimetry ($|\eta| < 3.5$)
- Muon chambers ($|\eta| < 1.0$)
- Silicon Vertex Trigger
The Tevatron Collider

- Circumference 6.8 km
- ppbar collisions at 1.96 TeV
- Run I (1987-1995)
- Run II (since 2001)
- Surpassed design luminosity

Peak Luminosity

\[\sim 4 \times 10^{32} \text{ cm}^{-2}\text{sec}^{-1} \]