Searches for New Physics in Top Events at the Tevatron

Nathan Goldschmidt
University of Florida
on behalf of the CDF and DØ Collaborations

Recontres de Moriond
March 18, 2010
Search for nMSSM $H^+ @ CDF$

Motivation

- Search for $t \rightarrow H^+ b$, where $H^+ \rightarrow W^+ A$
- If $m_A < 2m_b$, $A \rightarrow \tau^+ \tau^-$ will dominate
- No strong limits on A in this scenario
- c.f. arXiv:0807.2135

Selection

- Start with standard tt lepton+jets selection...
- ≥ 3 jets, 1 b–tag, $H_T > 250$GeV
- Search for isolated track with $3 \leq p_T \leq 20$ GeV
- Dominant background from Underlying Event

arXiv:0905.3381
Search for nMSSM H^+ @ CDF

Underlying Event Modeling

- Many samples have identical UE ρ_T spectra
- Jet–triggered data is used to model the UE ρ_T spectrum
- This model is tested by measuring the Z/γ^* cross–section
- Excellent agreement found with previous measurements
Search for nMSSM $H^+ @ CDF$

Results

- The data are consistent with the UE model
- But, no indication of signal
- Limits on $BR(t \to H^+ b)$ vs. m_{H^+} are set for several values of m_A
Search for MSSM H^+ @ DØ

Results

- For large $\tan(\beta)$, $BR(H^+ \rightarrow \tau^+ \nu_\tau) \sim 1$

- Neural Net analysis to separate $t\bar{t} \rightarrow W^+ bW^- \bar{b}$ from $W+$jets

N. Goldschmidt March 18, 2010

Searches for New Physics in Top Events at the Tevatron
Search for $H^+ @ \text{DØ}$

Results

- Limits on branching–ratio, m_{H^+} vs. $\tan(\beta)$

![Graph showing limits on branching–ratio, m_{H^+} vs. $\tan(\beta)$]
Search for $\tilde{t} \rightarrow c\tilde{\chi}^0$ in $E_T + \text{jets} @ \text{CDF}$

A search for light \tilde{t}

- We consider $m_{\tilde{t}} \sim 150$ GeV
- $\tilde{t} \rightarrow c\tilde{\chi}^0$ dominant
- Signature: two charm jets + E_T
- The Tevatron is a great place to test such a scenario

$p\bar{p} \rightarrow \tilde{t}_1 \bar{\tilde{t}}_1$ at $\sqrt{s}=1.96$ GeV

$\mu_R = \mu_F = M(\tilde{t}_1)$

Cross Section [pb]

- PROSPINO NLO (CTEQ8M)
- PROSPINO LO (CTEQ6L1)
Search for $\tilde{t} \rightarrow c\tilde{\chi}_0^0$ in $E_T^{\text{miss}} + \text{jets} @ \text{CDF}$

- To isolate this signal, a flavor separator was developed
- A Neural Network is trained to distinguish charm from light jets and bottom

- Backgrounds are controlled and are reduced using cuts and a NN trained to reject QCD
Search for $\tilde{t} \rightarrow c\tilde{\chi}^0_1$ in $E_T + \text{jets}$

- No signal observed
Search for $t\bar{t}H$ @ DØ

- Simultaneous estimation of $t\bar{t}$ and $t\bar{t}H$ cross-sections

- $\sigma_{t\bar{t}} = 8.36^{+1.08}_{-0.98} (\text{stat} + \text{syst}) \pm 0.51 (\text{lumi}) \text{ pb}$

- Limits also set in context of heavy color-octet production of $t'\bar{t}'$

DØ Run II Preliminary (1fb$^{-1}$)

- Expected limit 95% CL
- Observed limit 95% CL
- $m_t = M_{G'}/2=400 \text{ GeV}$
- $m_t = M_{G'}/2=450 \text{ GeV}$
- $m_t = M_{G'}/2=500 \text{ GeV}$
- Standard Model

DØ Run II Preliminary (1fb$^{-1}$)

- $m_t = M_{G'}/2$
- $r = 0.4$, $s_L = 0.2$

Excluded region @ 95% CL

Expected limit @ 95% CL

Standard Model

N. Goldschmidt March 18, 2010 Searches for New Physics in Top Events at the Tevatron
Search for resonant $t\bar{t}$ production in the all–hadronic channel @ CDF

- Multijet background modeled using data.
- Event selection by Neural Net
Search for resonant $t\bar{t}$ production in lepton+jets @ DØ

- Reconstruction simplified, robust
- 95 CL limit on top-color-assisted technicolor Z':
 $$m_{Z'} > 820 \text{ GeV} \text{ for } \Gamma_{Z'} = 0.012M_{Z'}$$
Search for $t' @ CDF$

- Search for $t' \rightarrow Wq$ in lepton+jet events
- t' mass reconstructed using kinematic fit
- Fit to estimate signal cross-section in multidimensional space: H_T, M_{rec}, N_{jet}
Search for $t' \@ CDF$

- No statistically significant excess, it’s really less than 2 sigma
- Events with high M_{reco} appear to be clean lepton+jet events
Event Displays of high–M_{reco} events

CDF Run II Preliminary
Run: 194323 Ht: 856.7 GeV
Event: 9830702 Mreco: 449.7 GeV

CDF Run II Preliminary
Run: 192306 Ht: 635.2 GeV
Event: 405574 Mreco: 521.9 GeV
Thank You