Quarkonium Spectroscopy Results at CDF

Kai Yi
University of Iowa
(for CDF Collaboration)

QWG 2010, Fermilab, May 18, 2010
Challenges from charmonium-like states

Quark model works pretty well so far

however, it is challenged by newly discovered charmonium-like states

theses states are called $X/Y/Z$

Outline

CDF experimental aspects

CDF contributions to $X/Y/Z$ before $Y(4140)$

CDF new contribution to $X/Y/Z$: $Y(4140) \rightarrow J/\Psi\Phi$
Strong Points for CDF

Heavy hadrons at Tevatron are:

• copiously produced

• boosted
 --vertex separation
 --boost low p_T daughters

CDF has:

• excellent mass resolution
• excellent vertex resolution
• reasonable hadron PID
CDF detector

- **Muon**: μ ID
- **ToF**: TOF
- **COT**: track p
 - dEdx
- **Silicon**: track p
 - vertex
CDF hadron PID

K-π separation

CDF Time-of-flight—TOF mass

Summarizing dEdx and ToF into a log-likelihood ratio

Typical B decay daughter momentum ~GeV,
Main background: prompt pions
CDF recent contributions to Quarkonium Physics

First confirmation of $X(3872)$, first J^{PC} determination

Most precise mass measurement of $X(3872)$:
$PRL, 103, 152001 (2009)$

$m(X(3872)) = 3871.61 \pm 0.16 \text{ (stat)} \pm 0.19 \text{ (syst)} \text{ MeV/c}^2$

What is new from CDF?
More unexplained states (cc+light quark pair) after $X(3872)$ have been observed, no (cc+heavy quark pair) reported before CDF's $Y(4140) \rightarrow J/\psi \phi$

$PRL 102, 242002 (2009)$
Why search for $J/\Psi\Phi$?

- Possibilities of four-quark states, hybrid etc have been proposed

$J/\psi\phi$
- extends to heavy quark
- reaches for four-quark states
- reaches for hybrid
- reaches for other possibilities such as nuclear-bound states etc.

Search through exclusive B decays is experimentally more promising
$B \rightarrow J/\Psi\Phi K$ decays have been observed
No structure has been reported so far
Analysis strategy

• I) Reconstruct B^+ as:

\[B^+ \rightarrow J/\psi \phi K^+ \]
\[J/\psi \rightarrow \mu^+ \mu^- \]
\[\phi \rightarrow K^+ K^- \]

• II) Search for structure in $J/\psi \phi$ mass spectrum inside B^+ mass window
I) Reconstruct $B^+ \rightarrow J/\psi \phi K^+$
The key to reconstruct B signal

Before $L_{xy}>500$ um, kaon PID>0.2

![Graph showing candidates distribution before cuts](image1)

After $L_{xy}>500$ um, kaon PID>0.2

![Graph showing candidates distribution after cuts](image2)

Hard to see B signal without L_{xy} and kaon PID

Reduce background by a factor of 20 000 by using L_{xy} and kaon PID cuts while keeping about 20% of signal as estimated by control channels.
Applying L_{xy} and kaon PID

Kaon PID reduce background by a factor of ~ 100

clear $B^+ \rightarrow J/\psi \phi K^+$ signal

Gaussian function
mean fixed to PDG
rms fixed to resolution (5.9 MeV)

define $\pm 3\sigma$ as B^+ signal region
(17.7 MeV obtained from MC)

Purity $\sim 80\%$ in B^+ region

Is ϕ pure?
Verify $B^+ \rightarrow J/\psi \phi K^+$

- Investigate components of B^+ peak
 -- relax K^+K^- mass window to:
 $[1.0,1.04]$ MeV
 -- do B^+ sideband subtraction for K^+K^-
 -- fit to sideband subtracted K^+K^- mass

- A P-wave relativistic BW only fit to data with χ^2 probability 28%, no evidence for $f_0 \rightarrow K^+K^-$ or K^+K^- phase space components with our ϕ mass window

Conclusion

pure $B^+ \rightarrow J/\psi \phi K^+$ for B^+ peak
negligible $B^+ \rightarrow J/\psi f_0 K^+, J/\psi K^+K^- K^+$ components
II) Search for structures in $J/\psi \phi$ spectrum from B
Investigate $J/\psi \phi$ mass spectrum in MC

- MC simulated phase space, full detector simulation

- MC events smoothly distributed in Dalitz plot

- No artifacts in the $J/\psi \phi$ mass spectrum
Investigate $J/\psi \phi$ mass spectrum in MC

- We simulate generic B hadron decays with a J/ψ in the final state and we identified a contamination channel: $B_s \rightarrow \psi(2S)\phi, \psi(2S) \rightarrow J/\psi \pi^+\pi^-$

$PRL.~96,~231801~(2006)$

B_s contamination at $\Delta M > 1.56$ GeV, cut it off for simplification

20 times Luminosity of data
Search for structures in \(J/\psi \phi \) mass--Data

Three-body Phase Space Background shape is different from data
An near threshold enhancement is observed
Robustness test

- Extensive cross checks by varying L_{xy}, kaon PID, B^+ mass window, vertex probability, # of silicon hits, ...

Robust against variations

More signal but with more background
Search for structures in $J/\psi \phi$ mass--Data

- We model the Signal (S) and Background (B) as:

 S: S-wave relativistic Breit-Wigner
 B: Three-body decay Phase Space

 $\Delta M = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$
 $\sqrt{-2\log(L_{max}/L_0)} = 5.3$, need Toy MC to determine significance for low statistics
Significance study

• We determine significance from simulation (Toy MC):

--Generate Δm spectrum using Phase Space
--Find most significant fluctuation for each trial anywhere with floating width
--Count it if $-2\log \left(L_{\text{max}} / L_0 \right) (-2\Delta \ln) \geq -2\Delta \ln$ value in data

χ^2 PDF

$$f(z; n) = \frac{z^{n/2-1} e^{-z/2}}{2^{n/2} \Gamma(n/2)} ; \quad z \geq 0$$

P-value: 9.3×10^{-6}, corresponding to 4.3σ

P-value from χ^2 PDF: 6.5×10^{-6}, 4.3σ

Most conservative: Phase Space and flat for non-B background, 3.8σ
What is it?

Charmonium Spectrum

- Well **above** charm pair threshold
- Expect **tiny** BF to $J/\psi\phi$
- Does **not** fit into charmonium
- Close $J/\psi\phi$ threshold like $Y(3940)$

Many potential explanations

Increased B yield by 50-60% by adding more data (up to 5.1 fb$^{-1}$) and adding events from an additional trigger, cuts unchanged

large chance for $Y(4140)$ significance to pass 5σ
Opportunities

- Determine J^{PC} ($C=\pm$)? Need statistics
 -- increase efficiency, reduce background
 -- add more data, $\Rightarrow 5\sigma$
 -- investigate efficiencies against angles?
 ...

- More channels for this structure?
 -- open charm pair?

Note: Search for potential additional structures?

$B^+ \rightarrow \phi\phi K^+$, $B_s \rightarrow J/\psi\phi\phi$,...

$\Upsilon(nS)\phi$, ...
Summary

CDF has been active in Quarkonium studies
--The first confirmation of X(3872)
--The determination of JPC, most precise mass measurement

CDF observes a new structure in $J/\psi \phi$ spectrum

$\text{Mass} = 4143.0 \pm 2.9 \text{ (stat)} \pm 1.2 \text{ (syst)} \text{ MeV}/c^2$

$\text{Width} = 11.7^{+8.3}_{-5.0} \text{ (stat)} \pm 3.7 \text{ (syst)} \text{ MeV}$

$J^{PC} = ? ? ^+ \quad \text{tentatively name it as Y(4140)}$

$B^+ \rightarrow Y(4140)K^+, Y(4140) \rightarrow J/\psi \phi$ \text{ BF estimation: } \sim (9 \pm 3.4 \text{ (stat)} \pm 2.9 \text{ (BF)}) \times 10^{-6}$

About $10 fb^{-1}$ to be recorded by CDF by the end of 2011

Stay tuned!
$J/\psi \rightarrow ee$ is difficult but not impossible

Trigger is gone 😞

220 fb^{-1}

$m_{\mu\mu\pi\pi}$
Not close from the PDF comparison although they both have $C=+$

$X(4160) \rightarrow D^*D^*$
$\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$
Backup 4

CDF II

2.7 fb⁻¹

Candidates/10 MeV/c

m_{J/ψφ} (GeV/c²)

4.1 4.2 4.3 4.4 4.5 4.6
Tevatron

Luminosity projection curves for Run II

Integrated luminosity (fb⁻¹)

9.3 fb⁻¹
7.8 fb⁻¹

FY09 start
FY10 start

Results up to here

today

time since FY04
The challenge

• Start with typical requirements for B hadron at CDF:

 -- $p(\chi^2)$ for B^+ vertex fit $> 1\%$
 -- $p_T(\text{track}) > 0.4 \text{ GeV},$
 -- ≥ 4 $r \cdot \varphi$ silicon hits
 -- $p_T(B^+) > 4 \text{ GeV}$
 -- mass window:
 $J/\psi (\pm 50 \text{ MeV})$ and $\phi (\pm 7 \text{ MeV})$
 -- constrain $\mu^+\mu^-$ to J/ψ PDG mass value

• NOT applied yet: L_{xy} and kaon PID

Typical hadron collider environment
Applying L_{xy}

- Maximize $S/\sqrt{(S+B)}$ for $B^+ \to J/\psi \phi K^+$ signal, has nothing to do with $J/\psi \phi$

- Maximized cuts: $L_{xy} > 500 \, \mu m$, kaon LLR > 0.2

L_{xy} Reduce background by a factor of \(~200\)
Control channels

• We also reconstruct two control channels with similar cuts:

\[\sim 3 \,000 \, B_s \rightarrow J/\psi \phi, \sim 50 \,000 \, B^+ \rightarrow J/\psi K^+ \]

before \(L_{xy} \) and kaon LLR cuts

• Clean control signals after \(L_{xy} \) and kaon LLR cuts

cross check and efficiency evaluation

\[B_s \rightarrow J/\psi \phi \]
\[\sim 800 \text{ events} \]

\[B^+ \rightarrow J/\psi K^+ \]
\[\sim 21k \text{ events} \]