Search for a low mass SM Higgs Boson at the Tevatron

Bodhitha Jayatilaka
Duke University
on behalf of the CDF and DØ collaborations

Aspen Particle Physics 2010
January 19, 2010
What do we know?

- Something is accountable for EWSB
- SM allows for Higgs mechanism
- Manifests a heavy spin-0 boson
- SM predicts most properties and decay channels of Higgs
 - but not its mass
- Experimental evidence so far:
 - Direct searches at LEP exclude \(m_H < 114 \text{ GeV}/c^2 \)
 - Direct searches at Tevatron beginning to exclude around \(m_H = 160 \text{ GeV}/c^2 \)
 - Indirect constraints from precision measurements (\(m_W \) and \(m_t \)) prefer low mass Higgs: \(m_H < 157 \text{ GeV}/c^2 \) (186 GeV when including LEP limit)
What do we look for?

Separate according to decays:

- **Low mass** \(m_H < 135\text{ GeV}\):
 - Decays dominated by \(H \rightarrow b\bar{b}\)
 - \(gg \rightarrow H \rightarrow b\bar{b}\) difficult to see experimentally
 - Rely on primarily on associated production with \(W\) or \(Z\)
 - **This talk**

- **High mass** \(m_H > 135\text{ GeV}\):
 - Decays dominated by \(H \rightarrow W^+W^-\)
 - Easiest to look for leptonic decays of \(W\)s
 - Considerable contribution from VBF and associated production
 - **Marc’s talk** (next)
Experimental setup: Tevatron

- 1.96 TeV ppbar collider
 - Highest energy collider in the world
- Excellent accelerator performance
 - Quick startup after summer shutdown
 - Inst. lum. exceeding $3 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - Over 7 fb$^{-1}$ delivered to each experiment
 - Results shown today use $\lesssim 5.4$ fb$^{-1}$
- Every bit of data helps
- Many thanks to the Fermilab accelerator division!
Experimental setup: CDF and DØ

Wall Calorimeter (Had)
Plug Calorimeter (EM+Had)
Forward Muon Detectors
Forward Calorimeter (EM)
Silicon Vertex Detector (L00+SVX+ISL)
Drift Chamber (COT)
Central Muon Detectors
Central Calorimeter (EM+Had)

Muon Scintillators
Muon Chambers
Toroid
Calorimeter

–5
0
5

η = 0
η = 1
η = 2
η = 3

Shielding

–5
0
5
10

1.4 T Solenoid

Aspen 2010, 01/19/10
Low mass Higgs search strategy

- Identified leptons
 - \(WH \rightarrow lvb\bar{b}, ZH \rightarrow llb\bar{b} \)
- Invisible leptons
 - \(WH \rightarrow (l)vb\bar{b}, ZH \rightarrow vvb\bar{b} \)

1. Identify \(W/Z \): leptons (e,\(\mu \))
- Maximize lepton coverage
 - e.g. leptons not in fiducial region of calorimeter

2. Identify Higgs decay: jets
- Develop NN and other advanced tagging algorithms
- Develop multivariate jet corrections

3. Reduce backgrounds
- Multijet backgrounds particularly difficult
 - Model using data
 - Use NN to separate
Signal extraction

- Expected signals too small for counting experiments
- Don’t want to rely on single kinematic distribution
- Exploit all possible information in an event: multivariate discriminants
 - Output single variable that looks at all event kinematics
 - Artificial Neural Networks (NN)
 - Boosted Decision Trees (BDT)
 - Matrix Element (ME) probabilities

- Can we discover rare processes using these techniques? Yes
 - Single top
 - Hadronic decays of dibosons: very similar final states to low mass Higgs
ZH → llbb

- Fully reconstructible final state
- Backgrounds primarily Z+jets, diboson and ttbar (little QCD)
- Very small signal rate

Expand lepton selection to maximize acceptance
Select events with 2 leptons, 2 jets, at least one of which is b-tagged
Can use NN to improve dijet mass resolution
ZH→llb¯b results

• CDF: 2D NN (ZH vs ttbar, ZH vs Z+jets), include leading order ME as input
 • 4.1 fb⁻¹ Observe (expect) $5.9 \times 6.8 \times \sigma_{SM}$ @95% CL for $m_H=115$ GeV
• DØ: boosted decision tree
 • 4.2 fb⁻¹ Observe (expect) $9.1 \times 8.0 \times \sigma_{SM}$ @95% CL for $m_H=115$ GeV
• Largest cross section of VH states with identified lepton
• Select events with high-p_T electron or muon, 2 or 3 jets at least one with a b-tag, and large missing E_T
• As with ZH, can use NN to improve dijet mass resolution
• Dominant backgrounds are $W+$jets, QCD multijet and top
• Split sample up according to number of jets and tags
WH→νb¯b results

- **CDF**: ME (2 and 3-jet events)
 - 4.3 fb⁻¹ Observe (expect) \(6.6 (4.1)\times\sigma_{SM}\) @95% CL for \(m_H=115\) GeV
- **CDF**: NN (2-jet events)
 - 4.3 fb⁻¹ Observe (expect) \(5.3 (4.0)\times\sigma_{SM}\) @95% CL for \(m_H=115\) GeV
- **DØ**: NN (2 and 3-jet events)
 - 5.0 fb⁻¹ Observe (expect) \(6.9 (5.1)\times\sigma_{SM}\) @95% CL for \(m_H=115\) GeV
$VH \rightarrow b \bar{b} + E_T$

- Includes contributions from
 - WH→(l)vb\bar{b}
 - ZH→v\bar{v}b\bar{b}
- Select events with large missing E_T and jets with at least 1 b-tag
- Exclude identified leptons
 - Ensures independent channel from other VH searches
- Backgrounds by source of missing E_T
 - Instrumental: QCD multijet
 - Real: W/Z+jets, top, diboson
- Large QCD background drives analysis design
 - Model using data
 - Use NN (CDF), BDT(DØ) to separate QCD background
• CDF: neural net
 • 3.6 fb\(^{-1}\) Observe (expect) \(6.1 \times \sigma_{\text{SM}}\) @95\% CL for \(m_H=115\) GeV
• DØ: boosted decision tree
 • 5.2 fb\(^{-1}\) Observe (expect) \(3.7 \times \sigma_{\text{SM}}\) @95\% CL for \(m_H=115\) GeV
qqbb final state

- Search for $VH\rightarrow qqbb$ as well as Vector Boson Fusion (VBF)
- Good
 - Has the largest signal yield of low mass searches
 - Fully reconstructable final state
- Ugly
 - Massive QCD multijet background
- Select events with ≥ 4 jets and 2 b-tags
- Use NN to separate QCD from Higgs
- 4 fb$^{-1}$ Observe (expect) $10.4 \ (19.9) \times \sigma_{SM}$ @95% CL for $m_H=120$ GeV
WH → τνbb and ττqq final state

- WH → τνbb complements WH → lνb̄b̄
 - Select events with 2 b-jets, missing E_T and hadronic τ
 - Use BDT as discriminant
 - 4.0 fb$^{-1}$ Observe (expect) $14.1 (22.4) \times \sigma_{SM}$ @95% CL for $m_H=115$ GeV

- Look for ττqq to catch remaining tau final states
 - Includes events from ZH → ττb̄b̄, HZ → ττqq, HW → ττqq, VBF, and $gg \rightarrow H \rightarrow ττ+\text{jets}$
 - Require one hadronic τ and one decaying to $μν_μν_τ$
 - Use BDT as discriminant
 - 4.9 fb$^{-1}$ Observe (expect) $27.0 (15.9) \times \sigma_{SM}$ @95% CL for $m_H=115$ GeV
Conclusion

- Comprehensive search for low mass SM Higgs at CDF and DØ
 - Cover all associated production channels
 - High mass $H \to W^+W^-$ search also contributes at low mass
- Combined CDF+DØ sensitivity at $m_H=115$ GeV is now $1.78 \times \sigma_{SM}$
 - Observed limit of $2.70 \times \sigma_{SM}$ at $m_H=115$ GeV
 - See Marc’s talk (next) for latest combination and future projections for Tevatron Higgs searches

![Tevatron Run II Preliminary, L=2.0-5.4 fb$^{-1}$](chart.png)

95% CL Limit/SM

- LEP Exclusion
- Expected
- Observed
- $\pm 1 \sigma$ Expected
- $\pm 2 \sigma$ Expected

m_H(GeV/c2)

LEP Exclusion

SM=1

November 6, 2009