Top Physics at the Tevatron

Tommaso Dorigo, INFN Padova
Contents

• The experimental landscape: Tevatron performance & the experiments
• Top physics in sqrt(s)=1.96 TeV proton-antiproton collisions: production and decay

• Top mass measurements highlights
• Top pair production cross sections highlights
• Single top production cross section measurements
• Top quark properties:
 – Top quark width
 – Top charge asymmetry
 – W helicity in top decays
• Searches with top quarks:
 – t→Zq search
 – limits on t’ quark mass

• Conclusions and outlook
Un-contents – what I will NOT show

• The top physics measurements performed in Run II by CDF and D0 are O(100) – in 25’ I can only show a very small, hopefully representative, selection of results
 – Personal choice, attempt to discuss hottest/most interesting topics (at least to me!)
 • No attempt to “balance” CDF/D0 material
 – What is left out:
 • top mass: three dozen results
 • top cross section: two dozen results
 • top lifetime with decay length, top BR $t \rightarrow Wb/Wq$, pair production mechanism, top spin correlations, top quark charge, top-antitop mass difference, $d\sigma/dM_{tt}$
 • searches in top samples: b', boosted top, $Z' \rightarrow tt$, $W' \rightarrow tb$, $t \rightarrow H^+b$
 • plus more
 – Please visit the public pages of the two experiments for a complete list and links to each measurement and paper
 • D0: http://www.d0.fnal.gov/Run2Physics/top_public_web_pages/top_public.html
The experimental landscape
The Tevatron continues to run at an excellent pace
- Recorded so far over 9/fb
- Record inst. luminosity: 4E32 cm$^{-2}$ s$^{-1}$
- Integrating O(55/pb/w), O(2/fb/y)
 - FY 2010 record: 2.47 /fb !!!

No technical problem is apparent in sustaining this rate for a few more years
- Recently suggested to keep running until 2013 (PAC recommendation)
 - this would impact the long-term plans of the lab
The CDF detector

A magnetic (B=1.4T) all-purpose detector, composed of:

- L00+SVX+ISL: 7 silicon layers
- COT, central tracker to $|\eta|<1.1$
- EM calorimeters for electrons ($|\eta|<2$) and photons; HAD calorimeters
- An extended system of muon chambers covering $|\eta|<1.5$

Original structure designed to discover the top quark 25 years ago
It has achieved a LOT more!
The D0 Detector

CDF’s younger brother is also a complete and redundant system, endowed with

- silicon detector covering up to $|\eta| < 3$ rapidity
- compact scintillating fiber tracker
- 2.0 Tesla axial B field
- hermetic U/liquid Ar calorimeter
- Extended muon coverage

The tracker allows high performance b-jet tagging out to $|\eta| < 2.0$
A Brief History of the Top Quark

1971 Three quark generations first hypothesized by Kobayashi and Maskawa
1977 Isospin partner needed for anomaly cancellations after b-quark discovery
1983 PETRA determines I_3^b with A_{fb} measurements
1984 UA1 “discovery” ($M_t=40\pm10$ GeV with 12 events, 3.5 expected), then retracted
1987 B mixing measurements imply a large top mass
1992 LEP determines $I_3^b=-1/2$
1988-93 increasing lower limits on top mass by CDF and D0
1994 First evidence by CDF, $M_t=174\pm12$ GeV!
1995 Observation of top pairs by CDF & D0
2008 Observation of single top by CDF and D0
Top production & decay

At the Tevatron top pair production proceeds from qq annihilation and gluon-fusion processes, in percentages inverse to LHC collisions (85/15)
- One in 10 billions (compare LHC 7 TeV two per billion)

The cross section for 1.96 TeV ppbar collisions is
\[\sigma_{tt} = 7.46^{+0.48}_{-0.67} \text{ pb} \quad \text{[S.Moch, P.Uwer, PRD78 (2008) 034003]} \]

Single top production is due to s-channel (1.12\(\pm\)0.04 pb) and t-channel (2.34\(\pm\)0.12 pb) processes [N. Kidonakis, Phys. Rev. D 74, 114012 (2006)]
- Not irrelevant, but much harder to extract!

Top quarks decay >99% of the time as \(t \rightarrow W^+b \), then \(W^+ \rightarrow qq' \) (2/3) or \(lV \) (3x1/9)

For top pairs, the final states divide according to the W decays
- dilepton: \(l^+l^-\nu\nu\bar{b} \rightarrow \) “dilepton plus 2 jets plus missing \(E_T \)”
- single lepton: \(l\nu qq'\bar{b} \rightarrow \) “lepton plus 4 jets plus missing \(E_T \)”
- all-hadronic: \(qq'qq'\bar{b} \rightarrow \) “multijet”

 NB: “leptons” mostly mean e,\(\mu \); recently also the “missing \(E_T \) plus jets” category was used with success by CDF

For single top production, final states depend on the production process
Top Mass, Again?

- Top is the quark whose mass is best known: O(0.67%, see below), and decreasing “by the conference”. But a question arises: Do we really need to pursue a better precision? If the SM is all there is, answer is: not for constraining the Higgs mass!

- However, precision on other parameters still significantly driven by δM_t

- In general, as far as EW parameters are concerned, both in the SM and in the MSSM a sub-GeV M_t knowledge makes a big difference!

In SUSY (and almost any other BSM model) M_H is free, and tightly connected to M_t via loops:

$$\delta M_t = 1 \text{ GeV} \leftrightarrow \delta M_H = 1 \text{ GeV}$$

[S.Heinemeyer et al., hep-ph/0306181]

Precision Higgs physics requires precision top physics!
The most precise CDF and D0 Run II results using up to 5.6 fb have been combined with the Run I ones in July 2010, using BLUE

- Careful tracking of correlations
- Account for 6 different ways by which Jet Energy Scale uncertainty affects combined results
- Include lower-precision results which have no JES systematics

The CDF Run II lepton+jets result carries alone 60% of the weight

The combined result has a 0.61% uncertainty!

\[M_t = 173.32 \pm 0.56(\text{stat}) \pm 0.89(\text{syst}) \text{ GeV} \]
A look at the single most precise result – CDF SL w/Matrix Element

- CDF obtains its most precise single-analysis result in a 5.6/fb lepton plus jets sample by using a matrix-element technique
- Simple cuts on lepton, jets, and missing energy, plus secondary vertex b-tagging allow to obtain 1016 single b-tagged and 247 double b-tagged events, with S/N of 3:1 and 10:1
- A ME calculation integrates over parton→jet transfer functions and extracts the likelihood of each event, assumed to be due to ttbar production with parameters M_t and JES
- Each event is classified by a neural network employing kinematical quantities
- An “event signal fraction” is extracted from the NN, and the background likelihood is subtracted using its calculated fraction.
- Top mass extracted using likelihood profiling in JES

The result is $M_t = 173.0 \pm 0.7\text{(stat)} \pm 0.6\text{(JES)} \pm 0.9\text{(oth. syst)} = 173.0 \pm 1.2 \text{ GeV}$
Future precision on the top mass

CDF forecast the future precision of their top mass measurement assuming

1) conservatively that no improvement in the systematics will be provided by the additional data (full curve), or alternatively

2) that total systematics scale with $L^{1/2}$ (dashed curve)

The conservativity of the full blue line can be checked below, by comparing the latest results with earlier extrapolations

CDF alone will reach well below 1 GeV precision
With D0 combination, likely get to 600 MeV precision
→ a true legacy, hard to surpass until a LC is built
The top pair cross section is by now a “less hot” measurement than it used to be.

Still a very precise check of perturbative QCD NLO calculations; other typical motivations:
- high xs → new production mechanisms;
- low xs → new decay channels

Interest nowadays driven by top quarks being a background to other searches (e.g. SUSY, 4th gen, Higgs, ...)

The top pair production cross section is now known to 6.4%, a precision exceeding that of theoretical estimates (NLO+s.g.NNLO)

Results in great agreement with QCD predictions
(7.46^{+0.66}_{-0.80} pb for M_t = 172.5 GeV using CTEQ6.6, Langenfeld et al., arXiv:0906.5273)
Cross Section – Most precise result

- The most precise result from the Tevatron comes from CDF when they normalize the cross section to the yield of Z bosons in the same dataset – this gets rid of most of the 5.6% luminosity uncertainty

- Data selection is loose, no b-tagging!
- Kinematics used to disentangle signal: H_t, $M(jj)_{\min}$, A, $\Sigma P_Z/\Sigma P_t$, $|\eta|_{\max}$, $E_{t}^{345}, \Delta R_{jj}^{\min}$

- QCD and W+jets backgrounds are derived by a fit to the missing E_t distribution (right)

- Final result from fit of NN output

- Result systematics dominated – largest no longer luminosity but jet energy scale and top generation modeling (2.5-3%), 2% from Z theory, 1% from Q^2 scale in W+jets production

$\Rightarrow \sigma_{tt} = 7.82 \pm 0.38 \pm 0.37 \pm 0.15$ (Z th.) pb
Cross Section – D0 single lepton

- The most precise D0 result for the top pair production cross section comes from the analysis of 4.3 fb of single-lepton candidates, using kinematics (no b-tagging)
- Events selected with standard cuts; backgrounds mainly from W+jets, QCD, diboson, single top
- Kinematics used in BDT (A,S,H_t,...) for six classes of events (e,μ, 2,3,>4 jets) to discriminate tt from W+jets
- Normalization of W+jets derived from data, QCD from a matrix method, others from MC (ALPGEN, PYTHIA, COMPHEP)
- Likelihood fit extracts signal fraction from BDT outputs (Random Forests) in all classes
- Result: \(\sigma_{tt} = 7.70^{+0.79}_{-0.70} \text{ pb} \) (D0 note 6037)
Single Top Cross Section

- Single top quark production has been observed by CDF and D0 in 2008
- Combined result from all analyses extracted with a Bayesian calculation
 - truncated Gaussians for nuisance pars, truncated 1/σ prior for signal cross section
- The resulting cross section is \(\sigma_{s+t} = 2.76^{+0.58}_{-0.47} \text{ pb} \), in good agreement with SM predictions
- From the same data, information on \(|V_{tb}| \) has been extracted, assuming zero the off-diagonal CKM elements but no unitarity constraint:
 \[|V_{tb}| = 0.88 \pm 0.07 \text{ (>0.77 @95\% CL)} \] using the theoretical cross section of 3.46 pb from Harris et al. – see arXiv:0908.2171 [hep-ex]
- Independent s- and t-channel measurements also extracted by both experiments
 - good agreement in D0
 - 2-sigma discrepancy in CDF
Single Top: D0 Measurement Details

- D0 selects events with single-lepton topology and applies a NN b-tagging
- Signal fraction 1:20 before further analysis
- Three independent analyses are performed on 2.3/fb of data:
 - Boosted decision trees
 - Bayesian Neural Network
 - Matrix element technique
- $t/s=2.1 \times s$ ratio assumed from theory
- W+jets and MJ backgrounds are normalized using data; others with MC
- MC used: COMPHEP+PYTHIA (signal), ALPGEN+PYTHIA (tt, W/Z+jets), PYTHIA (diboson)
- The three cross section results are combined with both BLUE and a BNN technique

<table>
<thead>
<tr>
<th>Cross Section Results</th>
<th>Value</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Trees</td>
<td>3.74</td>
<td>0.95 ± 0.79 pb</td>
</tr>
<tr>
<td>Bayesian NNs</td>
<td>4.70</td>
<td>1.18 ± 0.93 pb</td>
</tr>
<tr>
<td>Matrix Elements</td>
<td>4.30</td>
<td>0.99 ± 1.20 pb</td>
</tr>
<tr>
<td>BLUE Combination</td>
<td>4.16</td>
<td>0.84 ± pb</td>
</tr>
<tr>
<td>BNN Combination</td>
<td>3.94</td>
<td>0.88 ± pb</td>
</tr>
</tbody>
</table>

$\sigma(p\bar{p} \rightarrow tbX, t\bar{q}bX) = 2.3 \text{ pb}^{-1}$

$\sigma_{\text{measured}} = 3.94 \pm 0.88 \text{ pb}$

$\sigma_{\text{expected}} = 3.50 \pm 0.99 \text{ pb}$
Single top: CDF measurement details

CDF combines five l+jets measurements in 3.2/fb together using a multivariate technique, and then includes the 2.1/fb missing E_t plus jets result which adds 30% signal acceptance.

- Use s/t cross section ratio from theory,
- Assume $|V_{tb}|=1$

They obtain a combined result of $\sigma_{s+t} = 2.3^{+0.6}_{-0.5}$ pb for s- and t-channels together.

A separate analysis requires double b-tagging to extract the s-channel cross section $\sigma_s = 1.5^{+0.9}_{-0.8}$ pb.

Events with high value of NN discriminant are used to verify kinematical prediction.

Super-discriminant is used together with MET+jets discriminant for combination.
Top Quark Width

The total width Γ_t of the top quark is dominated by the $t\to Wb$ branching, and is predicted in the SM to be 1.26 GeV for a top mass of 170 GeV (other inputs: $M_W=80.399$ GeV, $\alpha_s(M_Z)=0.118$, $G_F=1.16637 \times 10^{-5}$ GeV$^{-2}$).

D0 measures the top width indirectly: they extract a measurement of the partial width from their signal of t-channel single top production:

$$\Gamma(t \to Wb) = \sigma(t\text{-channel}) \frac{\Gamma(t \to Wb)_{\text{SM}}}{\sigma(t\text{-channel})_{\text{SM}}}$$

To extract the total top quark width they include a separate measurement of the branching fraction $t\to Wb$ obtained from top pair production cross section measurements with different number of b-tags:

$$B(t \to Wb) = 0.962^{+0.068}_{-0.066} \text{(stat)} \pm 0.064_{-0.052} \text{(syst)}$$

This translates in a width of $\Gamma_t = 2.05^{+0.57}_{-0.52}$ GeV or a lifetime of $\tau_t = 3.2^{+1.1}_{-0.7} \times 10^{-25}$ s.

CDF performs a direct measurement of the width in well-reconstructed single-lepton top pairs.

Single- and double-b-tagged events fit separately, constraining in situ the jet-energy scale.

FC construction allows to get $\Gamma_t < 7.6$ GeV (95%CL), $0.3 < \Gamma_t < 4.4$ GeV (68%CL interval).
Forward-Backward Asymmetry in Top Pair Production

- A recent hot topic: do t^+ quarks get produced preferentially in the proton direction?
- At LO in QCD the answer is no. At NLO few-percent-level asymmetries are predicted in the SM. Larger asymmetries may be due to $Z' \rightarrow t\bar{t}$ decays; smaller ones also possible signatures of NP.
- Asymmetry, defined in the tt frame as
 \[A_{fb} = \frac{N_{\Delta y>0} - N_{\Delta y<0}}{N_{\Delta y>0} + N_{\Delta y<0}} \]
 can be computed in single-lepton decays by determining top rapidities with kinematic fits.
- Both D0 and CDF measure a non-zero asymmetry. No easy combination (CDF unsmears data, D0 smears MC&NLO theory).
 - CDF: $A_{\text{lab}} = 0.150 \pm 0.050 \pm 0.024$ (NLO QCD predicts $A_{\text{lab}} = 0.038 \pm 0.006$)
 - D0 (4.3/fb): simultaneously fit sample composition and A_{fb}; measure $A_{fb} = 8 \pm 4 \pm 1\%$ (MC@NLO predicts $A_{fb} = 1 \pm 2\%$ for SM top pairs)
- It appears that this spot requires further watch!
W helicity in top decays

- SM predicts helicity of W bosons emitted in top decay: V-A dictates that f_0 is very nearly 70%, $f_+ = 0\%$. These numbers can be precisely tested in well-reconstructed top pair decays, to check for a V+A component not predicted by the SM.

- Measurement can proceed by reconstructing top decay system, deriving distribution of $x = \cos(\theta^*)$ (angle between top and down-type fermion) which is
 \[F(x) = 2(1-x^2)f_0 + (1-x)^2f_+ + (1+c)^2 f_+ \]

- D0 performs the measurement on dilepton and single lepton candidates from up to 2.9/fb of data.

- CDF reports several measurements; the most precise uses a matrix element technique in 2.7/fb:
 \[
 f_0 = 0.490 \pm 0.106 \text{ (stat.)} \pm 0.085 \text{ (syst.)}

 f_+ = 0.110 \pm 0.059 \text{ (stat.)} \pm 0.052 \text{ (syst.)}
 \]

- Fixing $f_+ = 0$ CDF also obtains
 \[
 f_0 = 0.88 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (syst)}
 \]
 \[
 f_+ = -0.15 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst)}
 \]

or fixing $f_0 = 0.7$ extracts
 \[
 f_+ = -0.01 \pm 0.02 \text{ (stat)} \pm 0.05 \text{ (syst)}
 \]
 in excellent agreement with SM predictions.
Rare top decays

- FCNC top decays are exceptionally rare in the SM: $t \rightarrow Zc(u)$, $t \rightarrow gc(u)$ both have $B < 10^{-10}$. Clearly this is a field where LHC will take over very soon.

- Before the latest CDF analysis the best limit on $t \rightarrow Zu$ was 13.7% at 95%CL, by L3 who did not observe any $e^+e^- \rightarrow tq$ events. CDF now has $B(Zc) < 3.7\%$ @95%CL (exp. lim. 5.0%), with the analysis of 1.9/fb of data.

- Limit is extracted by studying a top mass chisquare variable constructed on $Z+4$ jets events:

 $$\chi^2 = \left(\frac{m_{W,rec} - m_{W,PDG}}{\sigma_W} \right)^2 + \left(\frac{m_{t \rightarrow Wb,rec} - m_t}{\sigma_{t \rightarrow Wb}} \right)^2 + \left(\frac{m_{t \rightarrow Zq,rec} - m_t}{\sigma_{t \rightarrow Zq}} \right)^2$$

- Signal hypothesis is $t \rightarrow Zq Wb$, with the W decaying hadronically. The leptonic Z boson decay cleans the sample enough that the higher $W \rightarrow jj$ BR is exploitable.

Template morphing used to reduce JES systematic on discretized χ^2 templates.
A Reasonable Deviation: a 4th generation t'

- Arguably, this is still top physics – the search is for a heavier brother of top quarks, with same production and decay mechanism.
- Both CDF (in 4.6/fb) and D0 (in 4.3/fb) search for pair-production of a t' quark, decaying 100% of the times into W^+b final state.
- A simultaneous fit to reconstructed t' mass and H_t of W+ 4 jet events is used to extract a limit on the yield.
- Both experiments set limits (D0: M_{t'} > 296 GeV; CDF: M_{t'} > 335 GeV).
- Both limits are significantly weaker than expected, but distributions do not scream of a t'.
Conclusions and Outlook

- The Fermilab top physics program is a success beyond expectations
 - the top mass uncertainty is consistently below forecasts
 - Providing <1% normalization point for jet energy scale to next generation of experiments
 - single top production duly observed
 - peculiarity of top quarks exploited by several highly interesting measurements and searches
 - top width measured, other characteristics also studied in detail
 - constraining rare decays at the percent level
 - need to keep watching A_{fb}
 - fourth-generation t' ruled out below 335 GeV
 - Further theoretical input needed in some areas
 - perturbative calculations of top cross sections beyond NLO

- and it is not over yet
 - further x2 decrease in M_{top} uncertainty possible
 - still large amount of extractable information on SM and BSM

- The LHC already produces twice more top quarks per second than the Tevatron, but...
 - the precise measurement of the top mass will remain firmly a Fermilab business for at least a few years
 - A_{fb} deviations not as easy to measure in pp collisions
 - but any new physics hidden there would be likely to show up directly
Backup Slides
BKP - Upgrades at Tevatron

The single most important factor in the luminosity increase during Run II is electron cooling → a big success!
Electron Cooling

- Electron beam: 4.34 MeV - 0.5 Amps
 DC - 200μrad angular spread
- Max beam current 730 mA
 Circulated in cooling section
- In U-Bend mode currents of 1500 mA has been obtained.
D0 Top Mass Combination

- The latest D0 combination of top mass measurements has been performed in March 2009.
- Only selected results up to 3.6/fb have been included in this average.
- D0 alone reaches a 1% uncertainty: $M_t = 174.2^{+0.9}_{-1.5}$ GeV
- A more recent result not yet combined is the updated dilepton measurement with 5.3/fb (superset of former meas.), yielding $M_t = 173.3^{+2.4}_{-2.1}$ GeV.
Taking correlated uncertainties properly into account the resulting preliminary CDF average mass of the top quark is

\[\text{M}_{\text{top}} = 173.13 \pm 0.67 \text{ (stat)} \pm 0.95 \text{ (syst)} \text{ GeV/c}^2 \]

which corresponds to a total uncertainty of 1.16 GeV/c², or equivalently to a 0.67% precision.

Notably, the all-hadronic result is now the second most precise measurement – something few would have believed ten years ago.
The CDF All-Hadronic Top Mass Measurement

A result based on a 2.9/fb luminosity has been obtained in the all-hadronic channel by combining a neural network data selection, a kinematic fitter, and a likelihood with mass and jet energy scale as parameters.

\[\chi^2 = \frac{(m_{jj}^{(1)} - M_W)^2}{\Gamma_W^2} + \frac{(m_{jj}^{(2)} - M_W)^2}{\Gamma_W^2} + \frac{(m_{jjb}^{(1)} - m_{ec}^{reco})^2}{\Gamma_{jjb}^2} + \frac{(m_{jjb}^{(2)} - m_{ec}^{reco})^2}{\Gamma_{jjb}^2} + \sum_{i=1}^{6} \frac{(p_{T,i}^{fit} - p_{T,i}^{meas})^2}{\sigma_i^2} \]

The NN is tested extensively in the kinematics of signal-poor control samples.

Mtop = 174.8 ± 1.7(stat) ± 1.6(JES) +1.2 -1.0(syst.) GeV/c²
Selection details:
W+3 jets, Et>20 GeV (highest Et>35 GeV); missing Et>35 GeV

Table of systematics uncertainties

<table>
<thead>
<tr>
<th>Effect</th>
<th>neg shift</th>
<th>pos shift</th>
<th>symmetrised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical top</td>
<td>-4.82</td>
<td>+4.88</td>
<td>4.85</td>
</tr>
<tr>
<td>Statistical Z</td>
<td>-0.32</td>
<td>+0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Jet E_t Scale</td>
<td>-2.90</td>
<td>+2.93</td>
<td>2.91</td>
</tr>
<tr>
<td>W+jets Q^2 Scale</td>
<td>-1.33</td>
<td>+1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>Z+jets Q^2 Scale</td>
<td>-0.27</td>
<td>+0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>$t\bar{t}$ IFSR</td>
<td>-0.42</td>
<td>+0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>QCD shape</td>
<td>-0.48</td>
<td>+0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>QCD fraction</td>
<td>-0.81</td>
<td>+0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>$t\bar{t}$ generator</td>
<td>-2.50</td>
<td>+2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>$t\bar{t}$ gen. branching ratio</td>
<td>-0.21</td>
<td>+0.95</td>
<td>0.58</td>
</tr>
<tr>
<td>$t\bar{t}$ PDF</td>
<td>-0.79</td>
<td>+1.10</td>
<td>0.94</td>
</tr>
<tr>
<td>$t\bar{t}$ Colour Reconnection</td>
<td>-0.16</td>
<td>+0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Other EWK</td>
<td>-1.00</td>
<td>+1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>MC statistics</td>
<td>-0.14</td>
<td>+0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>CEM ID SF</td>
<td>-0.48</td>
<td>+0.46</td>
<td>0.47</td>
</tr>
<tr>
<td>CMUP ID SF</td>
<td>-0.03</td>
<td>+0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>CEM trigger efficiency</td>
<td>-0.25</td>
<td>+0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>CMUP trigger efficiency</td>
<td>-0.39</td>
<td>+0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Z_{Jet} SF</td>
<td>-0.00</td>
<td>+0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>nJet (NLO)</td>
<td>-0.02</td>
<td>+0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CEM energy Scale</td>
<td>-0.08</td>
<td>+0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>CMUP energy Scale</td>
<td>-0.02</td>
<td>+0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Z Background</td>
<td>-0.04</td>
<td>+0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Track ID</td>
<td>-0.61</td>
<td>+0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Luminosity</td>
<td>-0.39</td>
<td>+0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Total systematic</td>
<td>-4.51</td>
<td>+4.67</td>
<td>4.57</td>
</tr>
<tr>
<td>Total uncertainty ratio</td>
<td>-6.60</td>
<td>+6.75</td>
<td>6.66</td>
</tr>
<tr>
<td>Z theory</td>
<td>-1.99</td>
<td>+1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>-6.89</td>
<td>+7.04</td>
<td>6.95</td>
</tr>
</tbody>
</table>
Recent top cross section results

- Apart from those presented above, CDF produced new results from two other searches: a dilepton search (L=5.1/fb) and a Missing Et plus 2,3 jets (L=5.7/fb)

- DZERO also produced new results

→ quali?
CDF inputs to single top super-discriminant

CDF Run II Preliminary, $L = 3.2 \, \text{fb}^{-1}$
- Single Top
- W+HF
- $t\bar{t}$
- QCD+Mistag
- Other
- Data
Some t’ candidates

Selected high-mass events from CDF in t’ search are spectacular
Top BR, D0

- D0 measures $B(Wb)/B(Wq)$ in single lepton top events by looking at the number of b-tagged jets
- Find $R=0.960+0.093-0.084$
- This measurement is used in indirect Γ_t estimate
- PRL 100/192003 (2008)
Vtb measurement, D0

- Use a NN b-tagger to separate tt production in the SL channel into 12 classes ($3, \geq 4$ jets, $0, 1, 2$ tags, e, μ)
- Fit separately σ_{tt} and $R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$
- Extract $R = 0.97^{+0.07}_{-0.08}$, $|V_{tb}| =$
CDF results for W helicity