New measurement of the B^0_s mixing phase and observation of suppressed B^0_s decays at CDF

Louise Oakes, for the CDF collaboration
Technische Universität München

DISCRETE2010
Rome, 10th December 2010
Recent CDF B_s^0 analyses:

- Updated measurement of $\sin(2\beta_s)$
 - Using 5.2 fb$^{-1}$ integrated luminosity
 - Improved Particle ID and flavour tagging

- Calibration of Same Side Kaon Tagger through B_s^0 mixing measurement
 - Important flavour tagger for β_s analysis

- Observation of 2 suppressed B_s^0 decay channels
 - $B_s \rightarrow J/\psi K^*$
 - $B_s \rightarrow J/\psi K_s$
CDF at the Tevatron

- p-pbar collisions at 1.96TeV
- Constantly improving luminosity performance
 - peak instantaneous luminosity $>3 \times 10^{32}$ cm$^{-2}$s$^{-1}$
 - ~ 8 fb$^{-1}$ delivered to the experiments

B physics at CDF:
- Particle ID: dE/dx and TOF
- Excellent vertex resolution
 - $\sim 23\mu$m and p_T resolution: $\sigma (p_T)/p_T^2 \sim 0.1\%$
- Di-muon trigger important for $B \rightarrow J/\psi X$ analyses
Latest CDF $\sin(2\beta_s)$ results with 5.2 fb$^{-1}$
New particles could enter weak mixing box diagrams and enhance CP violation.

Time evolution of flavour tagged $B_s \rightarrow J/\psi \phi$ decays is very sensitive to New Physics.

- Decay width difference, $\Delta \Gamma$ and mixing phase would be effected by additional NP phase.
Previous measurements

CDF: 1.3 fb⁻¹ result
P-value for SM point = 15% -> significance 1.5σ

CDF: 2.8 fb⁻¹ result
P-value for SM point = 7% -> significance 1.8σ

Tevatron combination: probability of observed deviation from SM = 3.4% (2.12σ)

PRL 100, 161802 (2008)

Behaviour of likelihood fit prevents giving β_s measurement as a point value - instead produce likelihood contours

CDF Public Note 9787

CDF Public Note 9458
Analysis overview

Reconstruct $B_s \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) \phi (\rightarrow K^+ K^-)$

Di-muon trigger

NN selection

Simultaneous mass, angular, time dependent, flavour tagged fit

B_s mass fit to separate signal from bkg

Angular separation of CP eigenstates

Time dependence of decay

Flavour tagging to separate B_s and \overline{B}_s decays

10th December 2010
Data sample and selection for update

Statistically limited analysis - high quality selection is essential:

- Key role of particle ID
 - recalibrated for this result
- Neural network selection
 - optimised on pseudo experiments to minimise statistical errors on β_s

- Integrated luminosity: 5.2 fb$^{-1}$
- Signal events: ~6500 (c.f. 2.8 fb$^{-1}$ with ~3150 signal events)

10th December 2010
B flavour tagging and the likelihood fit

Opposite side tag (OST):
- Jet charge and lepton charge taggers
- Tag flavour of opposite side b quark
- $\varepsilon D^2 \approx 1.2\%$

Same side tag (SST):
- Kaon tags flavour of s quark in B_s
- $\varepsilon D^2 \approx 3.2\%$

Fit without flavour tagging, has four fold ambiguity:
- β_s and $\Delta \Gamma$ symmetric
- strong phases symmetric about pi

\[
\begin{align*}
\beta_s & \rightarrow \frac{\pi}{2} - \beta_s \\
\Delta \Gamma & \rightarrow - \Delta \Gamma \\
\phi_{||} & \rightarrow 2\pi - \phi_{||} \\
\phi_{\perp} & \rightarrow \pi - \phi_{\perp}
\end{align*}
\]

Addition of flavour tagging allows us to follow time dependence of B_s and B_s separately

\rightarrow Removes half of the ambiguity

CDF pseudo experiments

<table>
<thead>
<tr>
<th>2β_s (rad)</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>-0.2</td>
</tr>
<tr>
<td>2</td>
<td>-0.4</td>
</tr>
<tr>
<td>2</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

- 95% CL tagged fit
- 68% CL tagged fit
- 95% CL untagged fit
- 68% CL untagged fit
B flavour tagging: SSKT calibration

- SSKT updated for this analysis
- calibrated on B_s mixing measurement
- B_s mixing measured with 5.2fb^{-1}
- First CDF calibration of a SSKT on data
- Uses several decay modes:

\[
B_s^0 \to D_s^- \pi^+, \ D_s^- \to \phi^0\pi^-, \ \phi^0 \to K^+K^- \\
B_s^0 \to D_s^- \pi^+, \ D_s^- \to K^K-, \ K^* \to K^+\pi^- \\
B_s^0 \to D_s^- \pi^+, \ D_s^- \to (3\pi)^- \\
B_s^0 \to D_s^- (3\pi)^+, \ D_s^- \to \phi^0\pi^-, \ \phi^0 \to K^+K^- \\
\]

12877±113 combined signal events

B flavour tagging: SSKT calibration

- Mixing amplitude ≈ 1:
 - Tagger assesses its performance accurately
- Amplitude > 1
 - Tagger underestimates its power
- Amplitude < 1
 - Tagger overestimates performance
- Measured amplitude used to scale event by event tagging dilution

Agreement between this and the published CDF measurement is very good

$A = 0.94 \pm 0.15 \text{ (stat.)} \pm 0.13 \text{ (syst.)}$

$\Delta m_s = 17.79 \pm 0.07 \text{ ps}^{-1} \text{ (stat. only)}$

$\epsilon A^2 D^2 \approx 3.2 \pm 1.4 \%$
S-wave contamination

- Potential contamination of $B_s \rightarrow J/\psi \phi$ signal by: $B_s \rightarrow J/\psi$ KK (KK non-resonant) and $B_s \rightarrow J/\psi f^0$ where KK and f^0 are S-wave states
- Contamination could bias towards SM value of β_s
- S-wave KK component has been added to full angular, time-dependent likelihood fit.

The fitted fraction of KK S-wave contamination in the signal is $< 6.7\%$ at the 95% CL
Checking the fitter: projections

Fit projections on physical parameters such as B_s lifetime used to check performance of the likelihood fit.

- Angular distributions are used to separate CP odd and even final states.
- Angular projections used to check our parameterisation of the angular distributions.

B_s lifetime distribution consisting of:
- B_s^H (short lived)
- B_s^L (long lived)
Flavour tagged fit with $\beta_s = 0.0$

- Tagged $B_s \rightarrow J/\psi \phi$ likelihood fit
- CP violating phase, $\beta_s = 0$, set to SM prediction

PDG value:

$$\tau_s = 1.47^{+0.026}_{-0.027} \text{ ps}$$

CDF II Preliminary 5.2 fb$^{-1}$

$$\tau_s = 1.53 \pm 0.025 \text{ (stat.)} \pm 0.012 \text{ (syst.) ps}$$

$$\Delta \Gamma = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.01 \text{ (syst.) ps}^{-1}$$

$$|A_{||}(0)|^2 = 0.231 \pm 0.014 \text{ (stat.)} \pm 0.015 \text{ (syst.)}$$

$$|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat.)} \pm 0.015 \text{ (syst.)}$$

$$\phi_\perp = 2.95 \pm 0.64 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$$

World’s most precise single measurement of B_s lifetime and decay width difference
New CDF measurement of β_s

Coverage adjusted 2D likelihood contours for β_s and $\Delta \Gamma$

P-value for SM point: 44% (0.8σ deviation)

(68% CL):

$[0.02, 0.52] \cup [1.08, 1.55]$

(95% CL):

$[-0.13, 0.68] \cup [0.89, \pi/2]$

$\cup [-\pi/2, -1.44]$
Comparisons

new CDF result

2D likelihood contours for β_s and $\Delta \Gamma$ without coverage adjustment

Inclusion in the fit of S-wave KK (f^0) contamination to phi meson signal has small effect on likelihood contours
Future prospects

- Tevatron delivering record luminosity, CDF records \(\sim 60 \text{pb}^{-1} \) per week

- End of 2011: double again the dataset, further improvements to analysis

- Search for NP in \(B_s^0 \) mixing at CDF has potential to observe/exclude wide range of non-SM mixing phase values

- Investigating other channels related to this physics – such as recently observed

\[B_s \rightarrow J/\Psi K_s \text{ and } B_s \rightarrow J/\Psi K^* \]
Observation of new suppressed B_s^0 decays and measurement of their branching ratios
Observation of previously unseen B_s decays:

$B_s^0 \rightarrow J/\Psi K_s$
$B_s^0 \rightarrow J/\Psi K^*$

- Binned maximum likelihood fit to find ratios of B^0 and B_s^0 to each final state
- Exploit strong mass and lifetime resolution
- 3 Gaussian templates used to model both B^0 and B_s^0
- Exponential models combinatorial background
- Relative acceptance factor calculated from MC

Suppressed B_s decays

$B_s \rightarrow J/\psi \ K^*$

- Admixture of CP states
- Possible extraction of $\sin(2\beta_s)$
- 8σ significance
- Yield: 151 ± 25
- $B^0\rightarrow J/\psi \ K^*$ yield: 9530 ± 110

\[
\frac{BR(B^0_s \rightarrow J/\psi K^*)}{BR(B^0 \rightarrow J/\psi K^*)} = (0.041 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \pm 0.005 \text{ (frag.)})
\]
Suppressed B_s decays

$B_s \rightarrow J/\psi \ K_s$

- pure CP odd state
- access to B_s^H lifetime
- access to unitarity triangle angle γ
- 7.2 σ significance
- Yield: 64 ± 14
 - $B^0 \rightarrow J/\psi \ K_s$ yield: 5954 ± 79

\[
\frac{BR(B_s^0 \rightarrow J/\psi K^0)}{BR(B^0 \rightarrow J/\psi K^0)} = (0.062 \pm 0.009 \text{ (stat.)} \pm 0.025 \text{ (syst.)} \pm 0.008 \text{ (frag.)})
\]
Summary

Updated CDF search for NP in $B_s^0 \rightarrow J/\psi\phi$

- Tightened constraints on CP violating phase β_s

 \begin{align*}
 [0.02, 0.52] & \cup [1.08, 1.55] \quad (68\% \text{ CL}) \\
 [-0.13, 0.68] & \cup [0.89, \pi/2] \cup [-\pi/2, -1.44] \quad (95\% \text{ CL})
 \end{align*}

- P-value for SM point: 44\% (0.8\sigma)

- World’s best measurement of B_s lifetime and decay width
difference in hypothesis of no CP violation

- SSKT calibrated on updated B_s mixing measurement

First observation of 2 suppressed B_s decays, with high
significance

- Measurement of Branching Ratios

 \begin{align*}
 BR(B_s^0 \rightarrow J/\psi K^*) &= (8.3 \pm 1.2 \text{ (stat.)} \pm 3.3 \text{ (syst.)} \pm 1.0 \text{ (frag.)} \pm 0.4 \text{ (PDG)}) \times 10^{-5} \\
 BR(B_s^0 \rightarrow J/\psi K^0) &= (3.53 \pm 0.61 \text{ (stat.)} \pm 0.35 \text{ (syst.)} \pm 0.43 \text{ (frag.)} \pm 0.13 \text{ (PDG)}) \times 10^{-5}
 \end{align*}

- With sufficient statistics, both could be used to extract
parameters of interest for CP violation measurements
Back up
Opposite side tag (OST):

- b quarks are pair produced (strong interaction -> flavour conservation)
- Can deduce properties of the candidate B meson from decay of the B hadron formed by the pair produced partner of its b quark
- b or \bar{b} content of charged opposite side B can be identified by
 - Jet charge
 - Lepton charge (e, μ)
- $\epsilon D^2 \approx 1.2\%$

Same side kaon tag (SSKT):

- Sign of kaon from primary vertex of candidate B can tag B_s or \bar{B}_s flavour
- Kaon contains the pair produced s (\bar{s}) quark of the B_s
- $\epsilon D^2 \approx 3.2\%$

Important tagging parameters:
tag decision, tagging dilution (weight) and tagging efficiency
Inclusion of S-wave KK component

- S-wave KK component has been added to full angular, time-dependent likelihood fit.
- Both f_0 and non-resonant KK are considered flat in mass within the small selection window,
- Φ meson mass is modelled by asymmetric, relativistic Breit Wigner
- J/ψ KK (f_0) is pure CP odd state \rightarrow follows time dependence of CP odd component of $B_s \rightarrow \Psi \phi$
- KK mass is NOT a fit parameter

The fitted fraction of KK S-wave contamination in the signal is $< 6.7\%$ at the 95% CL
Potential NP contributions

- 4th generation could enhance the weak mixing diagram in the neutral B_s system
- George W.S. Hou suggests the t' as a possible contribution to the mixing box diagrams
- SM contains the ingredients to generate the 100% Baryon Asymmetry of the Universe (BAU)
- Predicted CP violation from 3 generations is negligible compared to what is observed in BAU
- 4th generation of quarks would lead to “unitarity quadrangle”
 -> enhances SM CP violation by 10 orders of magnitude!

arXiv:0803.1234v3 George W.S. Hou
Systematic study for point estimates uses pseudo experiments to estimate potential effects of any mis-parameterisations in the fitter.

2 techniques used:

- Generating pseudo experiments using an altered parameterisation, fitting with default model
- Generating pseudo experiments according to histograms of real data distribution

| Systematic | $\Delta \Gamma$ | $c\tau_s$ | $|A_{\|}(0)|^2$ | $|A_{\perp}(0)|^2$ | ϕ_{\perp} |
|---|----------------|-----------|----------------|----------------|--------------|
| Signal efficiency: | | | | | |
| Parameterisation | 0.0024 | 0.96 | 0.0076 | 0.008 | 0.016 |
| MC reweighting | 0.0008 | 0.94 | 0.0129 | 0.0129 | 0.022 |
| Signal mass model | 0.0013 | 0.26 | 0.0009 | 0.0011 | 0.009 |
| Background mass model | 0.0009 | 1.4 | 0.0004 | 0.0005 | 0.004 |
| Resolution model | 0.0004 | 0.69 | 0.0002 | 0.0003 | 0.022 |
| Background lifetime model | 0.0036 | 2.0 | 0.0007 | 0.0011 | 0.058 |
| Background angular distribution: | | | | | |
| Parameterisation | 0.0002 | 0.02 | 0.0001 | 0.0001 | 0.001 |
| $\sigma(c\tau)$ correlation | 0.0002 | 0.14 | 0.0007 | 0.0007 | 0.006 |
| Non-factorisation | 0.0001 | 0.06 | 0.0004 | 0.0004 | 0.003 |
| $B^0 \rightarrow J/\psi K^*$ crossfeed | 0.0014 | 0.24 | 0.0007 | 0.0010 | 0.006 |
| SVX alignment | 0.0006 | 2.0 | 0.0001 | 0.0002 | 0.002 |
| Mass error | 0.0001 | 0.58 | 0.0004 | 0.0004 | 0.002 |
| $c\tau$ error | 0.0012 | 0.17 | 0.0005 | 0.0007 | 0.013 |
| Pull bias | 0.0028 | | 0.0013 | 0.0021 | |
| **Totals** | 0.01 | 3.6 | 0.015 | 0.015 | 0.07 |
Point estimates: results comparison

<table>
<thead>
<tr>
<th></th>
<th>Tagged, with S-wave</th>
<th>Tagged, no S-wave</th>
<th>Untagged, with S-wave</th>
<th>Untagged, no S-wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c\tau$</td>
<td>458.64 ± 7.54 (stat.) μm</td>
<td>459.1 ± 7.7 (stat.) μm</td>
<td>456.93 ± 7.69 (stat.) μm</td>
<td>457.2 ± 7.9 (stat.) μm</td>
</tr>
<tr>
<td>$\Delta \Gamma$</td>
<td>0.075 ± 0.035 (stat.) ps^{-1}</td>
<td>0.073 ± 0.03 (stat.) ps^{-1}</td>
<td>0.071 ± 0.036 (stat.) ps^{-1}</td>
<td>0.070 ± 0.04 (stat.) ps^{-1}</td>
</tr>
<tr>
<td>$</td>
<td>A_\parallel</td>
<td>^2$</td>
<td>0.231 ± 0.014 (stat.)</td>
<td>0.232 ± 0.014 (stat.)</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
<td>^2$</td>
<td>0.524 ± 0.013 (stat.)</td>
<td>0.523 ± 0.012 (stat.)</td>
</tr>
<tr>
<td>ϕ_\perp</td>
<td>2.95 ± 0.64 (stat.)</td>
<td>2.80 ± 0.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurement of β_s: coverage adjustment

Use likelihood ratio ordering technique to account for non-Gaussian behaviour (ensure confidence regions not under-covered) and to include effect of systematics on the errors:

- Generate pseudo experiments at the SM point in the $\Delta\Gamma-\beta_s$ plane.
- Fit with all parameters floating
- Fit again with $\Delta\Gamma$ and β_s fixed to the SM point
- Form a likelihood ratio:

$$\mathcal{L}\mathcal{R} = 2 \log \frac{\mathcal{L}(\beta_s^{J/\psi\phi}, \Delta\Gamma, \tilde{\xi})}{\mathcal{L}(\tilde{\xi})}$$
Measurement of β_s

- Ideal case: produce fit value of β_s as we do for lifetime, etc.
- At current statistical level, fit shows some bias for β_s
- Instead, produce 2D likelihood contours in β_s - $\Delta \Gamma$ space
 - Perform fits on data with β_s and $\Delta \Gamma$ fixed at 400 points on 20x20 grid
 - Ratio of log likelihood value for fit at each point to the global minimum used to construct likelihood contour plots
 - Use profile-likelihood ratio ordering technique to ensure coverage
CP violation in neutral B_s system

Flavour eigenstates:

$|B_s^0\rangle = (\bar{b}s)$

$|\bar{B}_s^0\rangle = (b\bar{s})$

Mixing of flavour eigenstates is governed by:

$$\frac{d}{dt} \left(\frac{B_s^0(t)}{\bar{B}_s^0(t)} \right) = H \left(\frac{B_s^0(t)}{\bar{B}_s^0(t)} \right) = \left[\begin{pmatrix} M_0 & M_{12} \\ M_{12}^* & M_0 \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_0 & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_0 \end{pmatrix} \right] \left(\frac{B_s^0(t)}{\bar{B}_s^0(t)} \right)$$

Mass matrix

Decay matrix

Flavour eigenstates are not mass eigenstates:

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle$$

$$|B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

Different masses \rightarrow mixing frequency:

$$\Delta m_s = m_H - m_L \approx 2|M_{12}|$$

\rightarrow phase:

$$\varphi_s^{SM} = \text{arg}(-M_{12}/\Gamma_{12}) \approx 0.004$$

Different decay widths:

$$\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}| \cos(2\varphi_s^{SM})$$
Fit function: angular separation

Final state is a mixture of CP even (~75%) and odd (~25%) states.

Three angular momentum states of J/ψ phi:
- L=0 S-wave CP even
- L=1 P-wave CP odd
- L=2 D-wave CP even

Can separate final CP states using angular variables

Transversity basis describes these contributions as: A_0, $A_//$(CP even), A_{\perp}(CP odd) according to their polarisation.

Can be separated using the angular distributions of the final state particles
Comparison of data periods

- Data 0-1.35 fb⁻¹
- S-wave not included

- Data 1.35-2.8 fb⁻¹
- S-wave not included

- Data 2.8-5.2 fb⁻¹
- S-wave not included