Status and prospects for B physics and discrete symmetries at Tevatron

Kevin Pitts
University of Illinois
Outline

- Introduction
 - B physics at the Tevatron
 - Detectors & datasets

- Physics with (semi)leptonic final states
 - $B_s \rightarrow J/\psi \phi$
 - Dimuon CP asymmetry
 - Rare decays: $B_s \rightarrow \mu^+\mu^-, \mu^+\mu^-\phi$

- Physics with hadronic final states
 - A bit of history
 - $B \rightarrow D^0K$
 - Charmless two-body decays ($b \rightarrow u\bar{u}d, \bar{u}u\bar{s}, s\bar{s}s$)
 - CP asymmetry in $D^0 \rightarrow \pi^+\pi^-$

- A bit more on prospects

- Conclusion
B Physics at the Tevatron

Production is by strong interaction:

- **Pros**
 - Large cross-section
 - $\sim 3-5 \mu$ barn “reconstructable”
 - At $2 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$ \Rightarrow $\sim 800 \text{Hz}$ of reconstructable BB!!
 - All B species produced
 - $B_u, B_d, B_s, B_c, \Lambda_b, \ldots$
 - CP symmetric initial state
 - Equal numbers of q and \bar{q}

- **Cons**
 - Large inelastic background
 - Triggering and reconstruction are challenging
 - Modes with π^0’s are tough
 - Reconstruct a B hadron, ~ 20-40% chance 2^{nd} B is within detector acceptance
 - p_T spectrum relatively soft
 - Typical $p_T(B) \sim 10$-15 GeV for reconstructed B’s ($\beta\gamma \approx 2$-3)

Pros

Cons
Detectors

- Both detectors
 - silicon microvertex detectors
 - axial solenoid
 - central tracking
 - high rate trigger/DAQ system
 - calorimeter & muon systems

- DØ
 - Excellent electron & muon ID
 - Excellent tracking acceptance

- CDF
 - Silicon vertex trigger
 - Particle ID (TOF and dE/dx)
 - Excellent mass resolution
Datasets

- Tevatron performing well
 - Delivering 2.5 fb\(^{-1}\)/year

- Run II total: 10 fb\(^{-1}\) delivered
 - analyze 75–80% of delivered
 - Show 1–6 fb\(^{-1}\) results today

- Peak \(\mathcal{L}_{\text{inst}}\) 3.5-4x10\(^{32}\) cm\(^{-2}\) s\(^{-1}\)
- 6-8 interactions per crossing
- Reduced efficiency for flavor physics at high \(\mathcal{L}_{\text{inst}}\)
Currently integrating about 2.5 fb$^{-1}$ per year. Projection assumes no major luminosity improvements.

Oct 2011, 12 fb$^{-1}$ delivered

now 10 fb$^{-1}$ delivered

Three year extension: 18-19 fb$^{-1}$ delivered
⇒ 14-15 fb$^{-1}$ analysis
Trigger Strategies

- **Dimuons**
 - Clean signatures, less background
 - Get lots of $B \to J/\psi$ modes
 - Also rare decays ($B \to \mu\mu$, $\mu\mu\chi$)

- **Single electrons/muons**
 - Semileptonic decays

- **Track only**
 - Hadronic modes
Comments

- Tevatron experiments primarily contribute measurements of B_s, B_c, b-baryons
 - Can contribute to B^0 and B^+ in a few places
 - $B \rightarrow DK$, $A_{CP}(B^0 \rightarrow K\pi)$, $B^0 \rightarrow \mu^+\mu^-$, $B^0 \rightarrow \mu^+\mu^- K^*$,
 - $A_{CP}(B^+ \rightarrow J/\psi K^+)$, $B^+ \rightarrow \phi K^+$, τ_{B^+}/τ_{B^0}
 - In many cases (e.g. lifetimes, mixing) B^0 and B^+ are calibration or normalization modes...

- In all cases, trigger imposes a significant bias (kinematic, decay time) that must be dealt with…

- Other than a few special modes, typically require all-charged final state

- Experiments are mature, analyses have developed well beyond their original projections.
B_s Mixing

- Mixing proceeds through “box” diagrams:

- Oscillation frequency, Δm_s

 $\Delta m_s \propto |V_{ts}|^2$ and $|V_{ts}|/|V_{td}| \approx 6$

- Updated CDF analysis (used for flavor tagging calibration)

 $\Delta m_s = 17.79 \pm 0.07 \text{ (stat) ps}^{-1}$

- What about the phase of V_{ts}?

Kevin Pitts
B physics and discrete symmetries at the Tevatron
CP Violation in $B_s \to J/\psi \phi$ Decays

Analogous to the neutral B^0 system, CP violation in B_s system is accessible through interference of decays with and without mixing:

$$B^0 \to J/\Psi K^0_s, \quad \bar{B}^0 \to J/\Psi \phi$$

$$\Rightarrow \sin(2\beta)$$

$$B^0_s \to J/\Psi \phi, \quad \bar{B}^0_s \to J/\Psi \phi$$

$$\Rightarrow \sin(2\beta_s)$$

- **Decay rate** ~
 - $s \to \bar{t}, c, u \to b$,
 - W^+, W^-

- **New Physics?**

$$\beta^S_{SM} = \text{arg}(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) \approx 0.02$$

- **CP violation phase** β_s in SM is predicted to be very small, $O(sin^2\theta_c)$
- New physics particles running in the mixing diagram may enhance β_s
$B_s \rightarrow J/\psi \phi$

Technique:
- Use flavor tagging to determine B_s vs. \bar{B}_s produced
- Measure decay time and angular distributions

Decay of B_s (spin 0) to J/ψ (spin 1) and ϕ (spin 1) leads to:
- $L = 0$ (s-wave), 2 (d-wave) \rightarrow CP even ($= \text{short lived or light } B_s \text{ if no CPV}$)
- $L = 1$ (p-wave) \rightarrow CP odd ($= \text{long lived or heavy } B_s \text{ if no CPV}$)

Extract:
- B_s lifetime τ_s
- B_{sH}, B_{sL} decay width difference $\Delta \Gamma_s = 1/\Gamma_{s,L} - 1/\Gamma_{s,H}$
- CP violating phase β_s
CDF + DØ combination done by the Tevatron B Working Group: http://tevbwg.fnal.gov/

Combination of 2.8 fb\(^{-1}\) analyses showed 2.1\(\sigma\) deviation from SM
$B_s \to J/\psi \phi$ New Results

- **CDF**
 - 6500 signal events
 - Include s-wave KK component in fit.
 - Better particle ID

 CDF Run II Preliminary, $L = 5.2\, \text{fb}^{-1}$

 ![CDF Diagram](image)

- **DØ**
 - 3435 signal events
 - Check for s-wave KK in data
 - No same-side tagging
 - Include strong phase constraints

 Preliminary, $DØ, 6.1\, \text{fb}^{-1}$

 ![DØ Diagram](image)

Trends are the same as before, but both experiments now see SM consistency at about 1σ.

see Louise Oakes’ talk on Friday
$B_s \rightarrow J/\psi K$

- Cabibbo suppressed $b \rightarrow c\bar{c}d$
 - Smaller tree contribution larger relative penguin contribution

- $B_s \rightarrow J/\psi K^{*0}(892)$
 - Analogous to $B_s \rightarrow J/\psi \phi$

- $B_s \rightarrow J/\psi K_S$
 - CP eigenstate, 100% B_s heavy

- First observations, branching ratios consistent with spectator estimate
Dimuon charge asymmetry

Search for CP violation in mixing using same sign dimuon events from **semileptonic B decays**:

\[
A_{sl}^b \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}
\]

- \(N_{b}^{++}, N_{b}^{--}\) - number of events with two \(b\) hadrons decaying semileptonically producing two same-sign muons
 - One muon comes from direct semileptonic decay \(b \rightarrow \mu^- X\)
 - Second muon comes from direct semileptonic decay after mixing \(\bar{b} \rightarrow b \rightarrow \mu^- X\)

Derived from dimuon and inclusive muon asymmetries:

\[
A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}, \quad \text{and} \quad a \equiv \frac{n^+ - n^-}{n^+ + n^-}
\]
Experimental issues

- use one muon as the “tag” and the other as the “probe”.
- At Tevatron, both B^0 and B_s contribute.
- Lots of subtleties, but two main issues:
 1. Asymmetric backgrounds from kaons faking μ
 2. Asymmetric μ^+ and μ^- acceptance/efficiency

Deal with acceptance/efficiency issue by periodically reversing polarity on central solenoid and muon toroids.
- Check residual asymmetry with data.
Fake muon backgrounds

- $\sigma(K^+N) < \sigma(K^-N)$
 - more K^+ get through calorimeter making fake μ

- Need to know:
 - Number K faking μ
 - $K^+ \rightarrow \mu^+$ vs. $K^- \rightarrow \mu^-$

- Define sources of kaons:
 - $K^{*0} \rightarrow K^+\pi^-$
 - $\varphi(1020) \rightarrow K^+K^-$

- Require that the kaon is identified as a muon

- Compute asymmetry from observed $+/-$ yields

Graph (a)

- $\phi \rightarrow K^+K^-$ decay
- χ^2/dof = 64/27
- $D\O, \ 6.1 \ fb^{-1}$

Graph (b)

- $N(K^+ \rightarrow \mu^+) + N(K^- \rightarrow \mu^-)$
- χ^2/dof = 22/35
- $D\O, \ 6.1 \ fb^{-1}$

Kevin Pitts
DØ 6.1 fb\(^{-1}\) analysis yields:

\[A_{s1}^b = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)}) \%
\]

SM prediction:

\[A_{s1}^b (SM) = (-0.023^{+0.005}_{-0.006}) \%
\]

\(\Rightarrow \) using prediction of \(a_{s1}^d \) and \(a_{s1}^s \) from A. Lenz, U. Nierste, hep-ph/0612167

- Differs from SM by \(\sim 3.2 \sigma \)
DØ Combined results

- Result from $B_s \rightarrow J/\psi\phi$ consistent with dimuon asymmetry

![Graph showing $\Delta \Gamma_s$ vs. $\phi_s^{J/\psi\phi}$ with 68% and 95% CL regions.

$\delta_1 \equiv -0.42 \pm 0.18$
$\delta_2 \equiv 3.01 \pm 0.14$
$\Delta M_s \equiv 17.77 \pm 0.12 \text{ ps}^{-1}$

DØ, 6.1 fb$^{-1}$
$B_s^0 \rightarrow J/\psi\phi$
Projections for dimuon A_{CP}

- DØ dimuon A_{CP} has a statistical error of 0.25% using 6.1 fb$^{-1}$

- Can CDF perform this measurement?
 - Cannot reverse magnet polarity
 - Probably not a major concern, CDF axially symmetric
 - Dominant charge bias is in central tracker at low momentum, can be measured with other modes.
 - DØ has better muon coverage at high $|\eta|$
CDF used a different technique

- Use muon impact parameter information to fit for sample composition.
- $A_{SL} = 0.0080 \pm 0.0090\text{(stat)} \pm 0.0068\text{(syst)}$

Scaling to 7 fb\(^{-1}\) would have statistical error of 0.45%

Unclear if systematics scale with statistics using CDF technique
$B_s \rightarrow \mu^+\mu^-$

- $B_s \rightarrow \mu\mu$ is highly suppressed in SM
- Some new physics models enhance BR significantly.

CDF preliminary (3.7 fb$^{-1}$)
$\text{BR}(B_s \rightarrow \mu^+\mu^-) < 4.3 \times 10^{-8} @ 95\% \text{CL}$

D0 arXiv:1006.3469 (6.1 fb$^{-1}$)
$\text{BR}(B_s \rightarrow \mu^+\mu^-) < 5.1 \times 10^{-8} @ 95\% \text{CL}$
Projection for $B_s \rightarrow \mu^+\mu^-$

CDF $\text{BR}(B_s \rightarrow \mu^+\mu^-)$ Projection

- Excluded: CDF PRL 100, 101802 (2008) (2 fb$^{-1}$)
- DØ arXiv:1006.3469 (6.1 fb$^{-1}$)
- CDF preliminary (3.7 fb$^{-1}$)
- DØ expected limit (6.1 fb$^{-1}$)

With 8 fb$^{-1}$ project 95% confidence limit of $\text{BR}(B_s \rightarrow \mu\mu) < 2 \times 10^{-8}$

SM prediction $\text{BR}(B_s \rightarrow \mu\mu) = (3.42 \pm 0.54) \times 10^{-9}$
$B_s \rightarrow \mu^+\mu^-h$

- $e^+e^- B$ factory results for $A_{fb}(B^0 \rightarrow \mu^+\mu^-K^*)$ shows interesting behavior

Belle

(Belle arXiv:0904.0770v1, 657M $B\bar{B}$)

BaBar

(BaBar PRD79,031102R(2009), 384M $B\bar{B}$)

No crossing? (i.e., opposite sign C_7?)

Opposite sign C_9C_{10} is disfavored
CDF 4.4 fb\(^{-1}\) analysis

\(A_{fb}\) in \(B^0 \rightarrow \mu^+ \mu^- K^*\)

\(101 \pm 12\) signal events

First observation of \(B_s \rightarrow \mu^+ \mu^- \phi\)

\(27 \pm 6\) signal events

(SM expectation 31 events)

Signal significance: 6.3\(\sigma\)
Outline

- Introduction
 - B physics at the Tevatron
 - Detectors & datasets
- Physics with (semi)leptonic final states
 - $B_s \rightarrow J/\psi \phi$
 - Dimuon CP asymmetry
 - Rare decays: $B_s \rightarrow \mu^+\mu^-$, $\mu^+\mu^-\phi$
- Physics with hadronic final states
 - A bit of history
 - $B \rightarrow D^0K$
 - Charmless two-body decays ($b \rightarrow u\bar{u}d$, $u\bar{u}s$, $s\bar{s}s$)
 - CP asymmetry in $D^0 \rightarrow \pi^+\pi^-$
- A bit more on prospects
- Conclusion
We’ve come a long way…

- Success of the Tevatron B program has benefitted from:
 - More luminosity
 - Better detectors, triggers, DAQ systems
 - Better understanding of heavy flavor production
 - Improved of analysis techniques

- Two **major** transitions:
 1. silicon microvertex detector (~1991)
 2. utilizing silicon in the trigger (~2002)
The early days...

- Before silicon
- After silicon

B° mixing
F. Bedeschi, D. Lucchesi et al.
Silicon Vertex Trigger (SVT)

- SVT incorporates silicon info in the Level 2 trigger… select events with large impact parameter!
- Uses fitted beamline
- impact parameter per track
- System is "deadtimeless":
 \[\approx 35 \mu \text{sec/event for readout} + \text{clustering} + \text{track fitting} \]
What do we get with the SVT?

Access to many new modes

without

with

inefficiency for events with low decay time

[can be accounted for e.g. B_s lifetimes/mixing]
Towards CP angle γ from $B^- \rightarrow D^0 K^-$

γ could be extracted by exploiting the interference between the processes $\bar{b} \rightarrow \bar{c}usu$ ($B^+ \rightarrow D^0 K^+$) and $\bar{b} \rightarrow \bar{uc}s$ ($B^+ \rightarrow D^0 K^+$).

\[A_1 \sim V_{cb} V_{us}^* \sim \lambda^3 \]

\[A_2 \sim V_{ub} V_{cs}^* \sim \lambda^3 R_B e^{-i\delta_B} e^{-i\gamma} \]

ADS (Atwood-Dunietz-Soni) method ([PRL78,3257;PRD63,036005])

uses the $B^\pm \rightarrow D K^\pm$ decays with D reconstructed in the doubly cabibbo suppressed $D_{DCS}^0 \rightarrow K^+ \pi^-$

Only requires extraction of yields by charge, Does not require flavor tagging or time dependent measurement
ADS analysis

- Looking for “wrong sign” $B^+ \rightarrow [K^- \pi^+]K^+$ decays from:
 - Color suppressed $B^+ \rightarrow D^0 K^+$ with $D^0 \rightarrow K^- \pi^+$
 - Cabibbo favored $B^+ \rightarrow \overline{D}^0 K^+$ with DCS $\overline{D}^0 \rightarrow K^- \pi^+$

CDF Run II Preliminary $L_{\text{int}} = 5 \text{ fb}^{-1}$

- Cabibbo favored $B^+ \rightarrow [K^+ \pi^-] \pi^+ + \text{c.c.}$
- Color suppressed + DCS D decay $B^+ \rightarrow [K^- \pi^+] \pi^+$

- Total sample about 19,000 $B^+ \rightarrow DK/D\pi$ events
$B^\pm \to D^0 K/D^0 \pi$

- Use kinematic and particle ID information to extract $D^0 K$ component
- Cabibbo favored modes:

CDF Run II Preliminary $L_{\text{int}}=1 \text{ fb}^{-1}$

$\chi^2 = 88/95$

From (PRD81:031105,2010) analysis of CP even components of GLW (Gronau- London- Wyler) method ([PLB253,483 PLB265,172]) uses the $B^\pm \to D K^\pm$ decays with D_{CP} decay modes. $D_{CP+} \to \pi^+ \pi^- K^+ K^-$

Particle ID (dE/dx) information on hadron (h) from $B \to D^0 h$

CDF Run II Preliminary $L_{\text{int}}=1 \text{ fb}^{-1}$

$\chi^2 = 66/72$
ADS results

- Color suppress/doubly Cabibbo suppressed modes
- Combined significance (is there anything there?) $>5\sigma$

CDF Run II Preliminary $L_{\text{int}} = 5 \text{ fb}^{-1}$

$R_{\text{ADS}}(\pi) = 0.0041 \pm 0.0008\, (\text{stat}) \pm 0.0004\, (\text{syst})$

$A_{\text{ADS}}(\pi) = 0.22 \pm 0.18\, (\text{stat}) \pm 0.06\, (\text{syst})$

$R_{\text{ADS}}(K) = 0.0225 \pm 0.0084\, (\text{stat}) \pm 0.0079\, (\text{syst})$

$A_{\text{ADS}}(K) = -0.63 \pm 0.40\, (\text{stat}) \pm 0.23\, (\text{syst})$

see Paola Garosi’s talk on Thursday
$B_s \rightarrow \phi\phi$

CDF Run II Preliminary
$L_{\text{int}} = 2.9 \text{ fb}^{-1}$

$BR(B_s \rightarrow \phi\phi) = (24.0 \pm 2.1(\text{stat.}) \pm 2.7(\text{sys.}) \pm 8.2(BR)) \cdot 10^{-6}$

- Penguin decay
- Normalize observed yield to $B_s \rightarrow J/\psi\phi$
- Measured BR consistent with expectation.

- $B_s \rightarrow \phi\phi$ is $P \rightarrow VV$ transition
- polarization sensitive to penguins, new physics.
- Analysis similar to $B_s \rightarrow J/\psi\phi$
B → h⁺ h⁻

- Charmless two-body modes
- Kinematics and particle ID

measure:
- BR and Direct CP asymmetry in 4 modes
 - $B^0 \rightarrow K^+ \pi^-$, $B_s \rightarrow K^- \pi^+$
 - $\Lambda_b \rightarrow p \pi^-$, $\Lambda_b \rightarrow p K^-
- BR in 2 modes
 - $B^0 \rightarrow \pi^+ \pi^-$, $B_s \rightarrow K^+ K^-$
- BR limits on 2 modes
 - $B^0 \rightarrow K^+ K^-$, $B_s \rightarrow \pi^+ \pi^-$

Next iteration:
- Reduced uncertainties on direct CP uncertainties
- Flavor tagged indirect CPV search

Kevin Pitts

B physics and discrete symmetries at the Tevatron

slide 36
Search for charm CP violation

$$A_{CP}(D^0 \to \pi^+ \pi^-) = \frac{\Gamma(D^0 \to \pi^+ \pi^-) - \Gamma(\bar{D}^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to \pi^+ \pi^-) + \Gamma(\bar{D}^0 \to \pi^+ \pi^-)}$$

- Tagging the D^0 with D^*:
 $$\begin{align*}
 D^{*+} & \to D^0 \pi^+_s \\
 D^{*-} & \to \bar{D}^0 \pi^-_s
 \end{align*}$$

- CP symmetric initial state (p-\bar{p}) ensures charge symmetric production

- 215,000 $D^* \to D^0 \pi$ with $D^0 \to \pi \pi$.

CDF Run II Preliminary $\int L \, dt = 5.94 \, fb^{-1}$
Search for charm CP violation

- Use tagged and untagged $D^0 \rightarrow K^- \pi^+$ (data driven) to quantify soft pion charge bias.
 - Bias significant at low p_T

![Graph showing asymmetry vs. p_T for various decay modes.](image)

- Untagged samples:
 - $N(D^0 \rightarrow \pi^+ \pi^-) \approx 1.2 \times 10^6$
 - $N(D^0 \rightarrow K^+ K^-) \approx 3 \times 10^6$
 - $N(D^0 \rightarrow K^- \pi^+) \approx 30 \times 10^6$
CP Asymmetry in $D^0 \rightarrow \pi^+ \pi^-$

- **In 5.94 fb$^{-1}$ result:**

 \[
 A_{CP}(D^0 \rightarrow \pi^+ \pi^-) = (+0.22 \pm 0.24 \pm 0.11)\% \]

 \text{stat} \quad \text{syst}

- Because of displaced track trigger, CDF measures a different combination of direct and indirect CP components

- D^0 mixing parameters are small (xτ, y$\tau$$\ll$1), then the integrated asymmetry at the first order can be written as:

 \[
 A_{CP}(D^0 \rightarrow \pi^+ \pi^-) \approx a_{CP}^{dir} + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}
 \]

- **Coming:** CP asymmetry in $D^0 \rightarrow K^+K^-$

 see Fabrizio Ruffini’s talk on Friday

CDF Run II Preliminary $\int L \, dt = 5.94$ fb$^{-1}$

![Graph showing CP asymmetry with different data sets and error bands.](image-url)
Topics Not Covered (or in the pipeline…)

- **Lifetimes** (e.g. $\Lambda_b \rightarrow J/\psi \Lambda$
- **More B_s**
 - $B_s \rightarrow D_s D_s$
 - CPV in $B_s \rightarrow \mu D_s$
 - Other B_s modes
- **Baryons**
 - Properties
 - Excited states
 - Ω_b
- **B_c**
 - Decays
 - properties
- $D^0 \rightarrow \mu \mu$
- Production
- $X(3872), Y(4140), Z(4430)$
Conclusion

- Tevatron continuing to produce a rich program in heavy flavor physics.
 - Complementary to e^+e^- machines and LHC experiments

- Many interesting results will benefit from more data.
 - Anticipate 9 fb$^{-1}$ per experiment for analysis by end of FY11
 - If run is extended, ultimate sample could be 15 fb$^{-1}$

- Results will continue beyond the end of the run
Where the Real Info Is…

- T, C, P, CP symmetries, accidental symmetries 7 (Thursday afternoon)
 - Paola Garosi
 - *First ADS analysis of $B \rightarrow DK$ in hadron collisions*

- T, C, P, CP symmetries, accidental symmetries 9 (Friday afternoon)
 - Louise Oakes
 - *Measurement of B_s mixing phase and observation of suppressed B_s decays at CDF*

- T, C, P, CP symmetries, accidental symmetries 10 (Friday afternoon)
 - Fabrizio Ruffini
 - *Precision measurements of direct CP violation in $D^0 \rightarrow \pi\pi$ at CDF*