CDF – the party crashers

Capri 2010
July 5, 2010

Diego Tonelli
Fermilab
for the CDF Collaboration
Or “flavor problem”?

Kaon physics and B factories: SM picture of CP violation satisfactory at least at tree level in B^0 and B^+ decays. NP amplitudes < 10%, if any.

Success of the CKM picture rules out NP with a generic, natural flavor structure.

To keep the NP-scale in the TeV range, physics beyond the SM should have a highly fine-tuned flavor structure.

...the end of the story?
Why bother with CDF?

World’s largest samples of B and charm.

Challenge B factories (on charged final states)

Access strange bottom: new, uncharted territory of independent dynamics.

Access b-baryons and B^+_c.

40M J/ψ (~20% from B)

6K $B^0_s \rightarrow J/\psi \phi$, 32K $B^0 \rightarrow J/\psi K^*$

50M $D^0 \rightarrow K^- \pi^+$, 12K $B^0 \rightarrow K^+ \pi^+$
The program

So far 58 Run II papers published: 11 topcite50+ and 7 topcite100+

BSM

$A_{FB}(B \to K\mu\mu)$

$B \to \mu\mu$

$D \to \mu\mu$

CKM

$\sin 2\beta_s$

$B_s \to D_s D_s$

A_{SL}

$B \to h h$

$B \to D K$

Lifetimes

QCD

XYZ mesons

$D \to h h$

$B \to \phi\phi$

B-production

c-baryons

b-baryons

Ψ & Y production

Capri2010– 2010-07-05

D Tonelli– Fermilab

5/41
Gettin’ the basics straight
Vertexing - Lifetimes

45k \(B^+ \rightarrow J/\psi K^+ \), 17k \(B^0 \rightarrow J/\psi K^* \), 12k \(B^0 \rightarrow J/\psi K_s \), 1.7 \(\Lambda_b \rightarrow J/\psi \Lambda \) in 4.3 fb\(^{-1}\)

Use \(J/\psi \) vertex to measure \(ct \). Common to all modes, systematic uncertainties cancel in ratios – the ones HQE cares about.

Joint fit: mass, mass-uncertainty, decay time, and decay-time uncertainty.

Similar S/B for all modes
Resolution model from data sidebands
World leading measurements

No surprises from B^0 and B^+: further confidence in HQE.

Same expansion as for Γ_{12} - crucial for interpretation of CPV in B^0_s mixing

Λ_b higher than theory predictions.

Λ_b theory worse than for mesons: NLO not completed yet, non perturbative ME on lattice still at exploratory stage

CDF Public Note 10071
Momentum – Ω_b mass

Reconstruct complex $\Omega_b \rightarrow J/\psi \Omega$ (5 tracks, 3 vertices) using known $B^0 \rightarrow J/\psi K^*$, $J/\psi K_s$ as reference.

Joint mass, mass uncertainty and lifetime fit

16^{+6}_{-4} Ω_b candidates 5.5σ

$M(\Omega_b) = 6054.4 \pm 6.8 \pm 0.9$ MeV/c2

Inconsistent with D0 measurement (6105 ± 10 ± 13 MeV/c2).

PRD 80, 072003 (2009)
New Physics in Penguins
$b \rightarrow s\mu^+\mu^-$ - analysis

Suppressed in SM. $\text{Br} \sim 10^{-6}$

NP in penguin or box modifies decay-kinematics

Pretty clean theoretically and experimentally.

- Need huge statistics (low-p_T dimuon trigger collects 1.5-2 GeV/c muons at $|\eta|<1$)
- NN selection that uses PID on K.
- Use “resonant” channels as reference
Observation of $B^0_s \rightarrow \phi \mu^+ \mu^-$, the rarest B^0_s decay observed.

$Br = [1.44 \pm 0.33 \text{ (stat)} \pm 0.46 \text{ (syst)}] \times 10^{-6}$

(consistent with predictions of 1.61×10^{-6})
$b \rightarrow s \mu^+ \mu^- \ - A_{FB}$

Final state hadrons.

Theory uncertainties limited using relative quantities (μ distribution asymmetries) very sensitive to NP.
$b \rightarrow s \mu^+ \mu^-$ - status

Charmonium regions excluded

2.7σ

Cleaner predictions

PRL103, 171801 (2009)
$b \rightarrow s \mu^+ \mu^-$ - results

Not yet able to discriminate SM from non-SM
Consistent and competitive with best B-factories results.

CDF Public note 10047
Upcoming

Compare Br*10^-6

<table>
<thead>
<tr>
<th></th>
<th>BaBar (384M BB)</th>
<th>Belle (657M BB)</th>
<th>CDF (4.4fb^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^0 µµ</td>
<td>1.35^{+0.40}_{-0.37} ± 0.10</td>
<td>1.06^{+0.19}_{-0.14} ± 0.07</td>
<td>1.06 ± 0.14 ± 0.09</td>
</tr>
<tr>
<td>K^*ll</td>
<td>1.11^{+0.19}_{-0.18} ± 0.07</td>
<td>1.07^{+0.11}_{-0.10} ± 0.09</td>
<td>same as above</td>
</tr>
</tbody>
</table>

DØ weighing in (?)

LHCb: 1200 events expected with 1 fb^-1 to exclude SM at 4σ and <1 GeV^2 precision on zero-crossing point.
$B^0_s \rightarrow \phi \phi$

Rich dynamics from three polarization amplitudes in PVV. First order SM hierarchy

$$|A_0|^2 \gg |A_\parallel|^2 \sim |A_\perp|^2$$

OK in $b \rightarrow d$ and $b \rightarrow u$. Violated in $b \rightarrow s$.

“Ad hoc” SM solutions are model dependent or inconclusive.

NP option still valid.

Further experimental info key to discriminate. $B^0_s \rightarrow \phi \phi +$ SU(3) checks for “penguin annihilation” EPJ C60 (2009)

$$BR(B^0_s \rightarrow \phi \phi) = [2.40 \pm 0.21 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.82(BR)] \cdot 10^{-5}$$
First measurement of $b \rightarrow s$: penguin polarization in B^0_s sector.

Puzzling behavior confirmed

Measurement of CPV unrealistic at CDF. Statistics penalty from flavor tagging.
The deadliest NP killer around - $B^0_s \rightarrow \mu^+ \mu^-$
$B^0_s \rightarrow \mu^+ \mu^-$ - trivia

Gets all available suppressions in SM

All leptonic decay: robust SM prediction $\text{Br} = (3.6 \pm 0.3) \times 10^{-9}$.

NP can enhance rate up to 100x.

Sensitive to a broad class of NP models, complementary to many TeV/LEP direct searches.
$B^0_s \rightarrow \mu^+ \mu^-$ - the measurement

Latest result (summer 2009) uses 3.7 fb$^{-1}$ (half of current sample)

- Signal decays at 95%CL to be measured
- Trigger acceptance ratio from MC approx. 0.2-0.3
- Rec. efficiency ratio from MC/DATA approx 0.8
- $\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-) = \frac{N_s}{N_+} \cdot \frac{\alpha_+}{\alpha_s} \cdot \frac{\epsilon_+}{\epsilon_s} \cdot \frac{1}{\epsilon_N} \cdot \frac{f_u}{f_s} \cdot \mathcal{B}(B^+) \cdot \text{PDG}$
- $B^+ \rightarrow J/\psi K^+$ decays from data approx. 20K
- Efficiency of NN requirement from MC, approx 80-20% (cut-dependent)

The challenge: reject 10^6 background while keeping signal efficiency high.
$B^0_s \rightarrow \mu^+ \mu^-$ - selection

Discriminants: mass, life, p_T (obvious), B isolation and pointing to pp vertex

Combine discriminants into a NN. Validation of NN modeling and efficiency on B^+
$B^0_s \rightarrow \mu^+ \mu^-$ - backgrounds

✓ continuum $\mu^+ \mu^-$ from Drell-Yan
✓ sequential $b \rightarrow c \mu X \rightarrow \mu \mu s$ semilept.
✓ double semileptonic $b\bar{b} \rightarrow \mu^+ \mu^- + X$
✓ $b/c \rightarrow \mu + fake$
✓ fake + fake (peaking $B \rightarrow hh$)

Suppress fakes: calorimeter, dE/dx, muon-track matching.
All calibrated on $J/\psi \rightarrow \mu \mu$, $D^0 \rightarrow K\pi$, $\Lambda \rightarrow ph$ decays in data.

Combinatorial: extrapolate from sidebands into signal region

Extensive checks with background-enriched control samples: same-sign dimuons, dimuons with <0 decay-length, dimuons failing fake veto
World-leading.

\[\text{Br}(B^0_s \rightarrow \mu^+\mu^-) < 4.3 \times 10^{-8} \ (95\% \ CL) \]

10*SM with 3.7 fb\(^{-1}\).

This result CDF Public Note 9892,

2 fb\(^{-1}\) PRL100, 101802 (2008) topcite100+

0.78 fb\(^{-1}\) PRL93, 032001 (2008) topcite50+

6 bckg expected, 7 evts observed
$B^0_s \rightarrow \mu^+\mu^- - a broad impact$

Lot of recent activity on implications for DM searches

$B^0_s \rightarrow \mu^+\mu^-$ rate and neutralino x-section depend on $\tan(\beta)$. Bounds on $\text{Br}(B^0_s \rightarrow \mu^+\mu)$ reduce allowed space of parameters for DM

Strongly constrains specific SUSY models, e.g. SO(10) Dermisek et al. JHEP 0509, 029 (2005)
B^0_s → μ^+μ^- - year 2012

Upper Limits on BR($B^0_s → μ^+μ^-$) at 95% C.L. at Tevatron

- SM value won’t be probed anytime soon, but eating-in last chunks of NP space.

Competition may be tight. ATLAS and CMS may join.

@ 3.5 + 3.5 TeV

- LHCb
 - CDF (3.7 fb\(^{-1}\))
 - CDF+DØ (8 fb\(^{-1}\))
 - 5σ Observation
 - 3σ Evidence

- SM prediction

Capri2010– 2010-07-05

D Tonelli– Fermilab
New Physics in B^0_s mixing phase
 Why the phase?

\[
\frac{\langle M | H_{\text{full}}^{\text{eff}} | \bar{M} \rangle}{\langle M | H_{\text{SM}}^{\text{eff}} | \bar{M} \rangle} = C_M e^{2i\phi_M}
\]

Magnitude measured in 2006. It is SM within uncertainty that is now theory dominated.

Phase still largely unconstrained.

Large room for NP left unexplored.

Capri 2010-07-05
$B^0_s \rightarrow J/\psi \phi$ - the golden probe

Mixing phase sensitive to NP

Tree $b \rightarrow c\bar{c}s$ phase ≈ 0

Time-evolution:

$$2\beta_s = -\arg[(V_{tb}V_{ts}^*)^2/(V_{cb}V_{cs}^*)^2]$$

CKM hierarchy predicts $2\beta_s$ tiny with error $<<$ current experimental sensitivity.

Any significant deviation is golden probe for new physics entering the box.
At a glance

Dimuon trigger

NN selection

Joint fit to mass, angles, decay-time and production flavor distributions

Mass to separate signal from bckg
Angles to separate CP-even/odd
Decay time to know time evolution
Flavor tagging to separate B from Bbar
Status

CDF Run II Prel. 2.8 fb$^{-1}$ + DØ 2.8 fb$^{-1}$

68% CL
95% CL
99% CL

SM

2.1σ

PRL101 161802 (2008) topcite100+
PRL101, 241801 (2008) topcite100+
http://tevbwg.fnal.gov/results/Summer2009_betals/
New update with 5.2 fb$^{-1}$
Selection optimized by minimizing the expected uncertainty on the phase as measured in pseudo-exp. 6500 signal decays. Compare with 3150 in 2.8 fb\(^{-1}\). Improvement better than \(\sim L\).
Calibrating production-flavor

SSKT fully recalibrated in data through new mixing analysis

$\Delta m_s = 17.79 \pm 0.07 \ p s^{-1}$ (stat. only)

$\epsilon A^2 D^2 \approx 3.2 \pm 1.4 \%$
Non-ϕ KK contributions

$B^0_s \to J/\psi KK$ decays (non resonant or f^0) can bias the phase measurement. Included their contribution in full fit.

Non-ϕ component < 7% at 95%CL
Results – SM fit

World-leading measurements of B^0_s lifetime, decay-width difference and decay polarization amplitudes

$ct_s = 458.6 \pm 7.5 \text{ (stat.)} \pm 3.6 \text{ (syst.)} \mu \text{m}$

$\Delta \Gamma = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.01 \text{ (syst.)} \text{ ps}^{-1}$

$|A_\parallel(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst.)}$

$|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst.)}$

$\phi_\perp = 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst.)}$

PDG 2009: $\tau_s = 1.472^{+0.024}_{-0.026} \text{ ps}$

$\Delta \Gamma = 0.062^{+0.034}_{-0.037} \text{ ps}^{-1}$

CDF Public Note 10206
Results -- CPV fit

Allowed region for phase greatly reduced

Two solutions clearly separated.

Unfortunately the contour moved toward SM…

CDF Public Note 10206

\[\beta_s \text{ in } [0.0, 0.5] \cup [1.1, 1.5] \text{ at 68\% CL (one-dimensional)} \]

\[\beta_s \text{ in } [-0.1, 0.7] \cup [0.9, \pi/2] \cup [-\pi/2, -1.5] \text{ at 95\% CL (one-dimensional)} \]

P-value = 44\% wrt SM
Comparison

Something old…
Something new…

P-value = 15% wrt SM
P-value = 44% wrt SM

Capri2010– 2010-07-05
PRL101 161802 (2008) topcite100+
Getting hot

Tevatron 2012: discover or exclude NP in wide range of phases. LHCb competitive (if everything turns out as expected)
More than 10 fb⁻¹ of physics-quality data on tape by end of 2011 (and perhaps keep running beyond)
Concluding remarks

B^0_s: one of our last resorts to avoid the MVF suicide.

CDF leading experimental force. With D0, unique exploration of this physics. May disclose long-awaited first whimpers of NP at the TeV scale.

First hints promising. Next 2-3 years crucial to determine whether we see BSM or just Poisson fluctuations around SM.

In addition, largest B and D samples available, challenge B factories (charged final states)

Today just a small selection of recent results. Many others not mentioned. Stay tuned for 4+ brand new results at ICHEP in 2 weeks.

CDF have a key role in HF now, will keep it for a while, hopefully challenged by LHCb soon
Detailed MC-data validation using control mode.

Need for isolation and momentum reweighing.

< 4% residual discrepancies

\[B \rightarrow \mu^+\mu^- \] – NN validation
$B \rightarrow \mu^+\mu^-$ - background control

Predicted vs observed backgrounds in 4 control sample for 3 different NN cuts: 24 independent checks of bckg estimation method.

<table>
<thead>
<tr>
<th>sample</th>
<th>NN cut</th>
<th>CMU-CMU</th>
<th>CMU-CMX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pred</td>
<td>obsv</td>
</tr>
<tr>
<td>OS-</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>275±(9)</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>122±(6)</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>44±(4)</td>
<td>41</td>
</tr>
<tr>
<td>SS+</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>2.7±(0.9)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>1.2±(0.6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>0.6±(0.4)</td>
<td>0</td>
</tr>
<tr>
<td>SS-</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>8.7±(1.6)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>3.0±(1.0)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>0.9±(0.5)</td>
<td>0</td>
</tr>
<tr>
<td>FM+</td>
<td>$0.80 < \nu_{NN} < 0.95$</td>
<td>169±(7)</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>$0.95 < \nu_{NN} < 0.995$</td>
<td>55±(4)</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>$0.995 < \nu_{NN} < 1.0$</td>
<td>20±(2)</td>
<td>20</td>
</tr>
</tbody>
</table>
$B \rightarrow \mu^+\mu^- - \text{background control}$

Combinatorics from linear fit to sidebands. Use exp for systematics.
B$\rightarrow \mu^+\mu^-$ - results

<table>
<thead>
<tr>
<th>Mass Bin (GeV)</th>
<th>5.310-5.334</th>
<th>5.334-5.358</th>
<th>5.358-5.382</th>
<th>5.382-5.406</th>
<th>5.406-5.430</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU NN bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80-0.95</td>
<td>Exp Bkg</td>
<td>9.66 ± 0.47</td>
<td>9.46 ± 0.46</td>
<td>9.27 ± 0.46</td>
<td>9.08 ± 0.46</td>
<td>8.88 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>UU NN bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95-0.995</td>
<td>Exp Bkg</td>
<td>3.42 ± 0.27</td>
<td>3.33 ± 0.27</td>
<td>3.25 ± 0.27</td>
<td>3.17 ± 0.26</td>
<td>3.09 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>UU NN bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.995-1.0</td>
<td>Exp Bkg</td>
<td>0.869 ± 0.17</td>
<td>0.821 ± 0.18</td>
<td>0.783 ± 0.19</td>
<td>0.75 ± 0.19</td>
<td>0.717 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UX NN bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80-0.95</td>
<td>Exp Bkg</td>
<td>9.94 ± 0.48</td>
<td>9.8 ± 0.48</td>
<td>9.66 ± 0.48</td>
<td>9.51 ± 0.47</td>
<td>9.37 ± 0.47</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>UX NN bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95-0.995</td>
<td>Exp Bkg</td>
<td>3.5 ± 0.29</td>
<td>3.47 ± 0.29</td>
<td>3.43 ± 0.29</td>
<td>3.39 ± 0.29</td>
<td>3.36 ± 0.29</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>UX NN bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.995-1.0</td>
<td>Exp Bkg</td>
<td>0.467 ± 0.14</td>
<td>0.438 ± 0.15</td>
<td>0.412 ± 0.15</td>
<td>0.387 ± 0.16</td>
<td>0.362 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 10: B_s signal window for CMU-CMU(top) and CMU-CMX(bottom): Expected backgrounds, including $B \rightarrow hh$, and number of observed events.
Checks
Checks

CDF Run II Preliminary

$L = 5.2 \text{ fb}^{-1}$

- S-wave not included
- S-wave included

$\Delta \Gamma (\text{ps}^{-1})$

$\beta_s \text{ (rad)}$

5.99
2.30
Mixing phase - *Enforcing coverage*

Remap observed $2\Delta\log L$ distribution in terms of actual CL from toys. E.g. to get the 95.5% CL, $2\Delta\log L \sim 9$ units (as opposed to 5.99 asymptotic)

Include systematics: vary nuisance parameters within 5\(\sigma\) of their estimates on data. Use worst case.

\[-2\log L \]

\[\text{parameter} \]

\[\begin{array}{c}
\text{Standard likelihood ratio method fails} \\
\end{array} \]

\[-2\log L \]

\[\begin{array}{c}
\text{parameter} \\
\end{array} \]

\[\begin{array}{c}
\text{Gaussian} \\
\text{reality} \\
\end{array} \]

\[\begin{array}{c}
\text{non-Gaussian} \\
\text{Gaussian} \\
\text{68\% CL} \\
\text{95\% CL} \\
\end{array} \]

\[\text{arXiv:0810.3229} \]
Fit mass and helicity angles of final state kaons.

\[B^0_s \rightarrow \phi\phi - \text{angular analysis} \]
How large correction?

CDF Run II Preliminary $L = 5.2 \text{ fb}^{-1}$

- Red: 5.99
- Blue: 2.30
- Black: SM prediction

Just out of the fit

Adjusted for non-Gaussian tails

Adjusted for non-Gaussian tails and systematics
Systematics

| Systematic | $\Delta \Gamma$ | $c\tau_s$ | $|A_{||}(0)|^2$ | $|A_0(0)|^2$ | ϕ_\perp |
|---|-----------------|-----------|----------------|----------------|--------------|
| Signal efficiency: | | | | | |
| Parameterisation | 0.0024 | 0.96 | 0.0076 | 0.008 | 0.016 |
| MC reweighting | 0.0008 | 0.94 | 0.0129 | 0.0129 | 0.022 |
| Signal mass model | 0.0013 | 0.26 | 0.0009 | 0.0011 | 0.009 |
| Background mass model | 0.0009 | 1.4 | 0.0004 | 0.0005 | 0.004 |
| Resolution model | 0.0004 | 0.69 | 0.0002 | 0.0003 | 0.022 |
| Background lifetime model | 0.0036 | 2.0 | 0.0007 | 0.0011 | 0.058 |
| Background angular distribution: | | | | | |
| Parameterisation | 0.0002 | 0.02 | 0.0001 | 0.0001 | 0.001 |
| $\sigma(c\tau)$ correlation | 0.0002 | 0.14 | 0.0007 | 0.0007 | 0.006 |
| Non-factorisation | 0.0001 | 0.06 | 0.0004 | 0.0004 | 0.003 |
| $B^0 \rightarrow J_\psi K^*$ crossfeed | 0.0014 | 0.24 | 0.0007 | 0.0010 | 0.006 |
| SVX alignment | 0.0006 | 2.0 | 0.0001 | 0.0002 | 0.002 |
| Mass error | 0.0001 | 0.58 | 0.0004 | 0.0004 | 0.002 |
| $c\tau$ error | 0.0012 | 0.17 | 0.0005 | 0.0007 | 0.013 |
| Pull bias | 0.0028 | | 0.0013 | 0.0021 | |
| **Totals** | **0.01** | **3.6** | **0.015** | **0.015** | **0.07** |
Detector sculpting

Angular sculpting from simulation.

Validated comparing with combinatorial background and measuring polarization of $B^0 \rightarrow J/\psi K^*$ decays consistent with B-factories.

CDF Run II Preliminary 5.2 fb$^{-1}$

Distribution of combinatorial background (sidebands data)

Angular sculpting from simulation
Efficiency = 94%. Dilution = 11% (correct tag probability ~56%)

Total tagging power = 1.2%
Nasty likelihood

Each plot is the result of the measurement from a single pseudo-experiment.
All experiments generated with same true values. Results vary wildly.
For starters – SM fit

Determination of B^0_s polarization amplitudes by imposing $\beta_s=0$
The CDF approach

Data-driven. 1.6 fb⁻¹

Use superior impact parameter resolution (45 µm) to unfold dimuons from b, c, and prompt sources

Nailing down sample composition ensures your dimuons come from B.

But impact parameter requires silicon tracking, which reduces statistics

If repeated on current sample a factor of ~2 worse resolution than DØ.

Would be non-informative

$A_{SL} = (0.8 \pm 0.9 \pm 0.7) \%$