Measurements of Top Quark Properties at the Tevatron

David Mietlicki, University of Michigan

On behalf of the CDF and D0 Collaborations
Why Study the Top Quark?

- Unique among quarks in many ways
 - Very heavy - special role in electroweak symmetry breaking or enhanced couplings to new physics?
 - Very short lifetime - spin information and other properties passed directly to decay products

- CDF and D0 have collected thousands of top events
 - Precision studies of top properties are possible
 - Many analyses are unique to the Tevatron and/or complementary to LHC measurements

- Covered today:
 - W helicity in top decay
 - Branching ratio
 - Top width
 - Spin correlations
 - Top forward-backward asymmetry
Measuring Top Properties

- **Top almost always decays to Wb**
 - Decay modes characterized by W decays

- **Two main modes for top properties analyses:**
 - **Lepton+Jets**: one W decays to quarks, one to $e(\mu) + \nu$
 - Moderate backgrounds, reasonable branching ratio; fully constrained kinematically
 - Usually require a b-tag to reduce backgrounds
 - **Dilepton**: both W's decay to $e(\mu) + \nu$
 - Very low backgrounds, but small branching ratio; under-constrained kinematically
W Boson Helicity in Top Decays

\[\omega(\cos \theta^*) \propto 2(1 - \cos^2 \theta^*) f_0 + (1 - \cos \theta^*)^2 f_- + (1 + \cos \theta^*)^2 f_+ \]

- Study V-A nature of \(Wtb \) coupling
- Extract \(f_0, f_+ \) from distribution of \(\theta^* \) (angle between lepton and top direction in \(W \) rest frame)

For pre-tagged events

CDF Run II Preliminary (5.1 fb\(^{-1}\))

- CDF:
 \[f_0 = 0.71 \pm 0.19 \]
 \[f_+ = -0.07 \pm 0.10 \]
 (CDF Conf. Note 10543)

- D0:
 \[f_0 = 0.669 \pm 0.102 \]
 \[f_+ = 0.023 \pm 0.053 \]
 (PRD 83, 032009 (2011))

First Published CDF and D0 Combination \((arXiv:1202.5272[hep-ex]):\)

- \(f_0 = 0.722 \pm 0.081 \)
- \(f_+ = -0.033 \pm 0.046 \)
Top ($t \to b$) Branching Ratio

- **SM**: $t \to Wb$ in $\sim 100\%$ of decays
- **Expect 2 b’s in each top-antitop event**
 - How often does this happen?
 - Tagging efficiency determines expected size of samples with 0, 1, or 2 tagged jets
 - Determine R from measured size of each subsample
- **Derive $|V_{tb}|$ from result (assume CKM unitary)**

$$R = \frac{B(t \to Wb)}{B(t \to Wq)}$$

DØ: $R = 0.90 \pm 0.04$

$$|V_{tb}| = 0.95 \pm 0.02$$

PRL 107, 121802 (2011)

CDF: $R = 0.91 \pm 0.09$

$$|V_{tb}| = 0.95 \pm 0.05$$

CDF Conf. Note In Preparation
Top Width at CDF

- **SM Prediction:** $\Gamma_t \sim 1.5$ GeV
- **CDF:** template method
 - 4.3 fb^{-1}
- Direct measurement of top decay width
 - Likelihood fit to the reconstructed top mass distribution based on templates with various input widths
 - $0.3 \text{ GeV} < \Gamma_t < 4.4 \text{ GeV}$ at 68% C.L.
 - $\Gamma_t < 7.6 \text{ GeV}$ at 95% C.L.

PRL 105, 232003 (2010)
Top Width at D0

- **D0**: derived measurement based on other top properties results
 - Complementary to CDF measurement
 - Requires theory input, but gains in sensitivity
 - Also provides a limit on $|V_{tb}|$

\[
\Gamma_t = \frac{\Gamma(t \rightarrow Wb)}{B(t \rightarrow Wb)}
\]

From top pair production

\[
\Gamma(t \rightarrow Wb) = \sigma(t - \text{channel}) \frac{\Gamma_{SM}(t \rightarrow Wb)}{\sigma_{SM}(t - \text{channel})}
\]

\[
\Gamma_t = 2.00^{+0.47}_{-0.43} \text{ GeV} \quad 0.81 < |V_{tb}| \leq 1 \text{ at 95% C.L.}
\]

Top-Antitop Spin Correlations

- Top pairs are produced with a definite spin state depending on production mechanism
 - Quark-Antiquark Annihilation (~85%): Spin 1
 - Gluon Fusion (~15%): Spin 0

- Top decays before hadronization (only known quark to do so!)
 - Spin information passed to decay products – the correlated spins can be measured from decay product angular distributions

- Correlation strength (frame dependent!) is defined as:

\[
\kappa = \frac{N_{\uparrow \uparrow} + N_{\downarrow \downarrow} - N_{\uparrow \downarrow} - N_{\downarrow \uparrow}}{N_{\uparrow \uparrow} + N_{\downarrow \downarrow} + N_{\uparrow \downarrow} + N_{\downarrow \uparrow}}
\]

\[
\kappa^{SM}_{beam} = 0.78^{+0.03}_{-0.04}
\]

Measuring the Spin Correlation

- Results shown here assume spin quantized along beam axis

- **CDF:**
 - Template fits based on decay product angular distributions
 \[\kappa_{\text{CDF}}^{Lep+Jet} = 0.72 \pm 0.69 \]
 \[\kappa_{\text{CDF}}^{\text{Dilepton}} = 0.042 \pm 0.563 \]
 CDF Conf. Note 10211
 CDF Conf. Note 10719

- **D0:** 3 \(\sigma \) Evidence For Spin Correlations!
 - New matrix element approach
 - Significantly increased sensitivity
 - Likelihood fit based on probabilities that events are signal events and do (or do not) contain SM spin correlation
 \[\kappa_{\text{D0}}^{\text{Combo(Dil,Lep+Jet)}} = 0.66 \pm 0.23 \]

- 9

 PRL 108, 032004 (2012)

D. Mietlicki Moriond 2012
The Forward-Backward Asymmetry

- Do tops have a preference to travel along the proton or antiproton direction?
- Measure asymmetry in Δy
- **Leading order**: standard model predicts no asymmetry
- **Next-to-leading order**: small positive asymmetry
 - NLO predictions shown today based on MC generator **Powheg** with electroweak corrections added

$$\Delta y = y_t - y_{\bar{t}}$$

$$A_{FB}^{NLO} = 6.6\%$$

Powheg: JHEP 0709, 126 (2007)

The Asymmetry in \(~5\) fb\(^{-1}\)

- Inclusive asymmetries exceed standard model predictions by \(~1.5-2\) \(\sigma\)
- Somewhat ambiguous mass and rapidity dependence
 - Only two bins in \(M_{tt}/\Delta y\)

Measurement

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Parton Level</th>
<th>(A_{FB%})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF Lep+Jets(^1)</td>
<td></td>
<td>15.8 ± 7.4</td>
</tr>
<tr>
<td>CDF Dilepton(^2)</td>
<td></td>
<td>42 ± 16</td>
</tr>
<tr>
<td>CDF Combined(^3)</td>
<td></td>
<td>20.1 ± 6.7</td>
</tr>
<tr>
<td>D0 Lep+Jets(^4)</td>
<td></td>
<td>19.6 ± 6.5</td>
</tr>
</tbody>
</table>

Background Subtracted \(A_{FB\%}\) (%)

| | \(|\Delta y| < 1.0\) | \(|\Delta y| \geq 1.0\) |
|---------------------|---------------------|----------------------|
| D0 Lep+Jet | 6.1 ± 4.1 | 21.3 ± 9.7 |
| CDF Lep+Jet | 2.9 ± 4.0 | 29.1 ± 9.6 |

\(^1\)CDF L+J: PRD 83, 112003 (2011); \(^2\)CDF Dil: CDF Conf. Note 10436;
\(^3\)CDF Combo: CDF Conf. Note 10584; \(^4\)D0 L+J: PRD 84, 112055 (2011)
The Asymmetry at CDF in the Full Dataset

- Updates from CDF’s 5.3 fb\(^{-1}\) lepton+jets analysis:
 - Add new data stream and increase luminosity to 8.7 fb\(^{-1}\)
 - 2498 events (double sample size)
 - Use NLO generator Powheg for signal modeling
 - Parton level shape corrections use regularized unfolding algorithm
 - Proper multi-binned measurement of rapidity and mass dependence

- Parton Level \(A_{FB}\): 16.2 ± 4.7 %
 (NLO: 6.6%)

CDF Conf. Note 10807
Background-Subtracted M_{tt} and Δy Dependence

- Predicted background contribution has been removed
 - Measure asymmetry in only top events
- No correction to parton level yet
 - No assumptions about the underlying physics
- Data well-described by linear ansatz — determine best-fit slope
 - χ^2/d.o.f ≤ 1 for both Δy and M_{tt} dependence
- Determine p-value by comparing observed slope to NLO prediction
 - How often will NLO slope fluctuate to be at least as large as in the data?

<table>
<thead>
<tr>
<th>Slope Parameter α</th>
<th>A_{FB} vs. M_{tt}</th>
<th>A_{FB} vs. Δy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>$(11.1 \pm 2.9) \times 10^{-4}$</td>
<td>$(20.0 \pm 5.9) \times 10^{-2}$</td>
</tr>
<tr>
<td>SM</td>
<td>3.0×10^{-4}</td>
<td>6.7×10^{-2}</td>
</tr>
<tr>
<td>p-value</td>
<td>0.00646</td>
<td>0.00892</td>
</tr>
</tbody>
</table>

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$

A_{FB} vs. M_{tt} GeV/c2

A_{FB} vs. Δy_t

D. Mietlicki Moriond 2012
Parton Level M_{tt} and Δy Dependence

- Correct for acceptance and detector resolution
 - Regularized unfolding algorithm addresses resolution effects
 - Multiplicative acceptance correction factor applied to each bin
 - Both corrections use the NLO generator Powheg as the top model
- Parton level results can be compared directly to theory
- Determine best-fit slope for observed data and compare to NLO prediction

<table>
<thead>
<tr>
<th>Slope Parameter α</th>
<th>A_{FB} vs. M_{tt}</th>
<th>A_{FB} vs. Δy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>$(15.6 \pm 5.0) \times 10^{-4}$</td>
<td>$(30.6 \pm 8.6) \times 10^{-2}$</td>
</tr>
<tr>
<td>SM</td>
<td>3.3×10^{-4}</td>
<td>10.3×10^{-2}</td>
</tr>
</tbody>
</table>

D. Mietlicki Moriond 2012
Conclusions

- The full Tevatron dataset is now being studied in top properties measurements.
- Many areas of study (spin correlations, A_{FB}) are complementary to LHC measurements.
- CDF and D0 combinations are available (W helicity) or in progress for many properties measurements.
- Please see the websites of CDF’s and D0’s Top Groups and the Tevatron Electroweak Working Group for more information and results not presented today:
 - http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/
 - http://tevewwg.fnal.gov
- Data-taking is done, but there’s a lot left to be learned from the Tevatron’s top quark sample!
Backup Slides
Comparison of Two-Bin Parton Level A_{FB} to Previous Results

- Previous version of CDF analysis only provided parton-level results for two bins of M_{tt} and Δy
- Table compares the new result in the same two bins to the previous results (all numbers are percentages)

<table>
<thead>
<tr>
<th>Selection</th>
<th>NLO (QCD+EW)</th>
<th>CDF, 5.3 fb$^{-1}$</th>
<th>D0, 5.4 fb$^{-1}$</th>
<th>CDF, 8.7 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive</td>
<td>6.6</td>
<td>15.8 ± 7.4</td>
<td>19.6 ± 6.5</td>
<td>16.2 ± 4.7</td>
</tr>
<tr>
<td>$M_{tt} < 450$ GeV/c2</td>
<td>4.7</td>
<td>$-11.6 ± 15.3$</td>
<td></td>
<td>7.8 ± 4.8 (Bkg. Subtracted)</td>
</tr>
<tr>
<td>$M_{tt} \geq 450$ GeV/c2</td>
<td>10.0</td>
<td>47.5 ± 11.2</td>
<td></td>
<td>11.5 ± 6.0 (Bkg. Subtracted)</td>
</tr>
<tr>
<td>$</td>
<td>\Delta y</td>
<td>< 1.0$</td>
<td>4.3</td>
<td>2.6 ± 11.8</td>
</tr>
<tr>
<td>$</td>
<td>\Delta y</td>
<td>\geq 1.0$</td>
<td>13.9</td>
<td>61.1 ± 25.6</td>
</tr>
</tbody>
</table>
Source of the Asymmetry?

- Is it a problem with the current understanding of the SM?
 - Mis-modeled top pair P_T spectrum?
 - Higher order corrections?
- Is it new physics?
 - Many new models have been proposed
 - Axigluon, Z-prime, W-prime, ...
 - Other top properties measurements can help differentiate between the possibilities
 - Differential cross-section in M_{tt}
 - Top spin or polarization
Reconstruction Level A_{FB}

- **Event selection:**
 - One high P_T central lepton
 - At least four jets
 - At least one b-tag
 - Large missing E_T
 - Total transverse energy H_T above 220 GeV

- **Background model:**
 - Diboson, single top, Z+jets from MC
 - W+jets shape from MC
 - QCD shape from data
 - W+jets and QCD normalization from fit to missing E_T spectrum

- **Events reconstructed via χ^2-based kinematic fit to top-antitop hypothesis**

- **Event count:**
 - 2498 total candidates
 - 505 predicted background

$$A_{FB}^{reco.} = 6.6 \pm 2.0\%$$

$$A_{FB}^{bkg_sub.} = 8.5 \pm 2.5\%$$
The Asymmetry Over the Data-Taking Period

- Look at the background-subtracted asymmetry as a function of the number of events in the sample
 - Verify it was not cause by some time-dependent detector effect
 - “0 events” = start of Run II
- A_{FB} remains constant (within uncertainties) over the entire sample

CDF Run II Preliminary $L = 8.7 \text{ fb}^{-1}$
Leptonic Asymmetry

- Motion of lepton in semi-leptonic top decay correlated with parent top
 - A real top pair asymmetry will manifest itself here as well
- Measure asymmetry in $q^* \eta_{lep}$ [lepton +jets] or $(\eta^+_{lep} - \eta^-_{lep})$ [dilepton]
- Smaller expected asymmetry than in Δy ($\sim 1-2\%$ after event selection without backgrounds)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Background Subtracted Leptonic A_{FB} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 Lep+Jet</td>
<td>14.2 ± 3.8</td>
</tr>
<tr>
<td>CDF Lep+Jet</td>
<td>6.6 ± 2.5</td>
</tr>
<tr>
<td>CDF Dilepton</td>
<td>21 ± 7</td>
</tr>
</tbody>
</table>

CDF Run II Preliminary $L = 8.7$ fb$^{-1}$