Top pair production distributions at the Tevatron

—including Afb, differential cross sections—

Hadron Collider Physics Symposium 2012

Nov. 13th, 2012

Kyoto University, Kyoto, Japan

Yuji Takeuchi (University of Tsukuba)
on behalf of the CDF and DØ collaborations
Top Quark Properties

- **Mass**
- **$m_t - m_\bar{t}$ difference**
- **Width**
- **Charge**

Intrinsic

Decay

- **Br($t \rightarrow Wb$)**
- **Br($t \rightarrow Zq$)**
- **W helicity**

Production

- **$t\bar{t}$ Cross-section**
- **$t\bar{t}$ resonance**
- **Differential XS**
 - $d\sigma/p_T^t, d\sigma/M_{t\bar{t}}$
- **$t\bar{t}$ spin correlation**
- **A_{FB} of $t\bar{t}$**

Hyun Su Lee’s talk

R. Demina’s talk

This talk
$t\bar{t}$ Production at Tevatron

- **$q\bar{q}$ annihilation**

 Dominant process at Tevatron

- **gluon fusion**

 10~20% contribution at Tevatron
 Dominant process at LHC

Tevatron is suitable to the study of $q\bar{q}$ annihilation process in $t\bar{t}$ production.

- Also interested in kinematical distributions, differential XS other than inclusive XS.
$t\bar{t}$ Differential XS ($d\sigma / dp_T^t$)

- $\ell + \geq 4$ jets channel (286 cand.)
- $t\bar{t}$ recons. by kinematical fitting
- Unfolding method to correct to parton level

\[
(N_{i}^{\text{Parton}}) = A^{-1}S^{-1}(N_{j}^{\text{Rec}} - N_{j}^{\text{Bkg}})
\]

A_i: Acceptance for i-th bin

S_{ij}: Response from i-th bin to j-th recons. bin

Good agreement w/ NLO,NNLO
$t\bar{t}$ Differential XS ($d\sigma/dM_{t\bar{t}}$)

- $\ell + \geq 4$ jets channel (650 cand.)
- $t\bar{t}$ recons. by kinematical fitting
- Unfolding method

No evidence beyond the SM

$\kappa/M_{Pl} > 0.16$ (95% CL) for $G \rightarrow t\bar{t}$ ($m_1 = 600\text{GeV}$) in RS model
$t\bar{t}$ F-B Asymmetry ($d\sigma / d\Delta y$)

$$\Delta y = y_t - y_{\bar{t}}$$

- $\ell + \geq 4$ jets channel (2653 cand.)
- $t\bar{t}$ recons. by kinematical fitting
- Unfolding method

- $A = 0.164 \pm 0.039 \pm 0.023$
 2.0\sigma away from NLO
- $A(\Delta y)$ has linear dep. on Δy
 Slope is larger than NLO pred. (2.2\sigma away)

CDF

Recons. Level

$\ell + \text{jets}$

9.4fb$^{-1}$

Parton Level

Unfolding

Δy

Data

Pred.
$t\bar{t}$ F-B Asymmetry ($d^2\sigma/d\Delta y \cdot dM_{t\bar{t}}$)

$A(M_{t\bar{t}})$ has linear dependency on $M_{t\bar{t}}$
Slope is larger than NLO pred. (2.4σ away)

Other AFB measurements at Tevatron

- Δy dist. in D0 $\ell+\text{jets}$ and CDF dilepton also indicate larger asymmetry than expected (2~3σ)
- Lepton asymmetry ($\Delta \eta_{\ell\ell}$) in D0 dilepton is consistent with pred.

More detail will be given in R. Demina’s talk in plenary session tomorrow
Top Polarization and Correlations at $t\bar{t}$ production

Because top quark decays before losing polarization, t/\bar{t} polarization and their correlations can be measured as angular distribution of decay products from $t\bar{t}$.

\[
\frac{1}{\sigma} \frac{d^2\sigma}{d\cos\theta_+ d\cos\theta_-} = 1 + C \cos\theta_+ \cos\theta_-
\]

More sensitive to $t\bar{t}$ production mechanism than other kinematic variables.

⇒ Might give a hint on $t\bar{t}$ F-B asymmetry.
Spin Correlation at CDF

- Dilepton channel (334 cand.)
- Extract C_{beam} from reconstructed 2D ($\cos\theta_+, \cos\theta_-$) distribution

\[C_{\text{beam}} = 0.04 \pm 0.56 \]

CDFnote 10719

- $\ell + \geq 4$ jets channel (725 cand.)
- up/down quark identification up-type is more energetic
- Extract C_{beam} from $\cos\theta_+ \times \cos\theta_-$

\[C_{\text{beam}} = 0.72 \pm 0.64 \pm 0.26 \]

CDFnote 10211

\(\Leftrightarrow \) SM pred.: $C_{\text{beam}} \sim 0.78$

Consistent with SM, but statistically limited...
Spin Correlation at DØ

- Dilepton (485 cand.) $\oplus \ell + \geq 4 \text{ jets (729 cand.)}$
- Matrix element method
 - Event probabilities on SM-correlation ME (P_c) and No-correlation ME (P_u)
 - Discriminant $R = P_c / (P_c + P_u)$

Measured fraction of SM correlation $f^{SM} = 0.85 \pm 0.29$

(f=1: SM, f=0: no correlation)

Exclude the no-correlation hypo. at 99.84% CL (3.1σ)

[Dilepton](image)

[Dilepton](image)
Top polarization in $t\bar{t}$ production

Top polarization along to helicity axis

Helicity basis

No evidence beyond the SM
Top polarization in $t\bar{t}$ production

Top polarization along to beamline axis

Beamline basis

No evidence beyond the SM
Summary

• Tevatron gives unique opportunity to study $q\bar{q} \rightarrow t\bar{t}$ production process for detail.
 • Kinematical distributions of $t\bar{t}$, $d\sigma/dX$ imply more information.
• $t\bar{t}$ AFB measurements at Tevatron suggest a contribution from new physics.
• Thanks to top quark short life-time, we can probe top quark polarization at $t\bar{t}$ production as well.
 • This might give more information on AFB.
Backup
Reconstructed $p_T(t\bar{t})$
Top/anti-top polarizations at $t\bar{t}$ production

Dominant process at Tevatron

Spin $1/2$, $J=1$, $J_z=\pm 1$

Helicity conservation

$tt\bar{t}$ has correlations in their polarizations

— in different way for $q\bar{q}$ and gg processes —
Spin Correlation in $q\bar{q} \rightarrow t\bar{t}$ process

Top quark polarizations can be probed via lepton flight direction

$q\bar{q} \rightarrow t\bar{t}$ (near threshold)

$q\bar{q} \rightarrow t\bar{t}$ Herwig MC at parton level
Lepton asymmetry in $t\bar{t}$ events at Tevatron

- CDF dilepton
 - $A_{\text{raw}}(\Delta \eta) = 0.14 \pm 0.05$

- D0 dilepton
 - $A_{\text{raw}}(\Delta \eta) = 0.03 \pm 0.06$

- D0 $l+\text{jets}$
 - $A_{\text{raw}}(q \cdot \eta) = 0.14 \pm 0.04$