Searches for Diboson production in final states with heavy flavor jets at CDF

Marco Trovato*
on behalf of the CDF collaboration

ICHEP 2012, Melbourne
4-11 July 2012

*: Scuola Normale Superiore (Pisa) & Fermilab
Outline

• Motivations
• Experimental Environment
• Milestones on diboson searches at CDF
• b-tagging
• Diboson searches as:
 ✴ benchmarks for Higgs analyses
 ✴ validation of the SM
Motivation

- Important test of the EWK sector of the SM
 - deviations from the SM would hint to:
 - anomalous gauge couplings
 - new physics

- Important background to Top, Higgs, SUSY searches

- “Known” territory to test analysis techniques used for the CDF (low mass) Higgs analyses
Experimental Environment

Tevatron

- proton-antiproton collisions at $\sqrt{s} = 1.96\ TeV$
- delivered $\sim 12/fb$
 - $\sim 10/fb$ for analyzers

CDF

- Accurate tracking system with silicon
- Projective-towers calorimeters to measure $e, \gamma, \text{jet energy}$
- Muon detection system
Diboson at CDF: history

• Observation in fully leptonic states
 • $WZ \rightarrow ll\nu l\nu$, $ZZ \rightarrow llll$, $WW \rightarrow l\nu l\nu$

• Observation in semileptonic states
 • MET+jets, lepton+MET+jets

cannot separate WW and WZ due to dijet mass resolution
b-tagging

- **Goal:** separate jets containing B hadrons from other jets
 - key to separate WZ/ZZ from WW

- **Solution:** brand new multivariate tagger (HOBIT)
 - continuous output
 - operation points can be optimized upon search sensitivity
 - trained on Higgs and W+jets MC
 - built upon the strength of previous CDF taggers
 - using the most powerful inputs
b-tagging

- Higher performances than previous CDF b-taggers
- For identical u,d,s,g-jet accept rate (mistag rate), b-jet efficiency:
 - Tight: 38.6% → 53.6% (mistag rate: 1.4%)
 - Loose: 47.1 → 59.3% (mistag rate: 2.8%)

- Calibrated on two orthogonal samples
- Results combined to improve the precision
- Corrections for:
 - b-jet efficiency: 0.95 +/- 0.04 (tight), 0.96 +/- 0.04 (loose)
 - mistag-rate: 1.52 +/- 0.23 (tight), 1.48 +/- 0.17 (loose)
Diboson with heavy flavor jets as Higgs benchmark

<table>
<thead>
<tr>
<th>Process</th>
<th>$\sigma \times \text{BR} \ (\text{fb})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \to l\nu bb$</td>
<td>27</td>
</tr>
<tr>
<td>$ZH \to llbb$</td>
<td>5</td>
</tr>
<tr>
<td>$ZH \to vvbb$</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>$\sigma \times \text{BR} \ (\text{fb})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WZ \to l\nu bb$</td>
<td>105</td>
</tr>
<tr>
<td>$ZZ \to llbb$</td>
<td>24</td>
</tr>
<tr>
<td>$ZZ \to vvbb$</td>
<td>73</td>
</tr>
<tr>
<td>Total</td>
<td>202</td>
</tr>
</tbody>
</table>

- Diboson searches share the same final states as low mass Higgs analyses
- 4-5 times larger cross-sections
Diboson with heavy flavor jets

- Replicate low-mass Higgs analyses

★ 3 main final states:

- 2,3 jets (>=1 b-tagged jet) and
 - 2 identified leptons (“llbb”) or
 - 1 identified lepton and large MET (“lvbb”) or
 - large MET (“vbbb”)

- Re-train multivariate discriminants to extract VZ=WZ+ZZ signal

- Some signal contribution from $W \rightarrow cs, \ Z \rightarrow cc$
llbb

- Cleaner sample, lowest signal rate
- **Selection:**
 - 2 High P_T electrons/muons
 - $75<M_{ll}/GeV<105$
 - 2,3 large E_T jets
 - ≥ 1 b-tagged jet
- **Analysis strategy:**
 - 16 orthogonal channels examined simultaneously
 - channels divided upon lepton flavor, number of jets, heavy flavor content
 - multivariate discriminant for extracting the signal
 - full reconstruction of the final state
 - improved sensitivity compared to using dijet invariant mass
• Highest signal yield
• Selection:
 ➡ =1 High P_T electron/muon
 ✓ extended lepton acceptance due to a more inclusive triggers
 ➡ large MET
 ➡ 2,3 large E_T jets
 ➡ multivariate techniques to reject multi-jet background

Analysis strategy:
 ➡ 7 orthogonal channels depending on the flavor content, number of jets
 - sensitivity improved thanks to HOBIT
 ➡ Bayesian neural network to discriminate signal from background
 ▶ different optimization in 2 and 3 jets channels
Selection:
- lepton veto
- large MET
- 2,3 large E_T jets
- NN-based discriminant to reject the large instrumental background
- NN to parameterize trigger efficiency curve
 - allows for more relaxed kinematic cuts

Analysis strategy:
- 3 orthogonal channels depending on the flavor content
 - still using “pre-HOBIT” CDF taggers
- Final neural network to discriminate signal from background
 - trained separately in 2 and 3 jet sample
CDF combination

- Simultaneous fit on the discriminant distributions of all (26) sub-channels
- Systematic uncertainties either fully correlated or uncorrelated
 - b-tagging efficiency, jet energy scale correlated
 - multi-jet rate uncorrelated
 - uncertainties on background rates do not contribute much
 - heavily constrained across different channels

\[\sigma(VZ) = 4.08^{+1.38}_{-1.26} \text{ pb} \]

- Significance \(\sim 3.2 \sigma \)
- Result compatible with SM
 - \(\sigma^{SM}(VZ) = 4.42 \text{ pb} \)
Diboson with heavy flavor jets as test of the SM

- Optimized analysis to isolate WZ/ZZ from WW
- Uses the same tools and signature of $l\nu bb$ analysis
 - multivariate techniques to reject multi-jet background
 - at least 1 b-tagged jet
- 2-D fit to extract $\sigma(WZ/ZZ), \sigma(WW)$
 1. dijet invariant mass
 2. NN-based jet flavor separator

\[\sigma(WW) = 5.10^{+3.97}_{-3.63} \text{ pb} \quad (\sigma^{SM} = 11.34 \text{ pb}) \]
\[\sigma(WZ + ZZ) = 7.25^{+3.67}_{-3.40} \text{ pb} \quad (\sigma^{SM} = 4.42 \text{ pb}) \]

Consistent with SM
CDF is sensitive to diboson in final states with heavy-flavor jets

- paving the way for (low mass) Higgs analyses
- but also as a sanity check of the SM / search for new physics

\[\sigma(VZ) = 4.08^{+1.38}_{-1.26} \text{ pb} \]
- compatible with SM expectations

\[3.2 \sigma \text{ evidence for } WZ+ZZ \]
- assuming SM \(\sigma(WZ)/\sigma(ZZ) \)

More details at http://www-cdf.fnal.gov/physics/new/hdg/Results.html
• backup
llbb: NN for jet corrections

<table>
<thead>
<tr>
<th>Inputs to the NN jet-energy correction algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead jet E_T</td>
</tr>
<tr>
<td>lead jet η</td>
</tr>
<tr>
<td>$\Delta \phi(\vec{E}_T, \text{lead jet})$</td>
</tr>
<tr>
<td>Z projection onto the lead jet</td>
</tr>
<tr>
<td>\vec{E}_T projection onto the lead jet</td>
</tr>
<tr>
<td>second jet E_T</td>
</tr>
<tr>
<td>second jet η</td>
</tr>
<tr>
<td>$\Delta \phi(\vec{E}_T, \text{second jet})$</td>
</tr>
<tr>
<td>Z projection onto the second jet</td>
</tr>
<tr>
<td>\vec{E}_T projection onto the second jet</td>
</tr>
<tr>
<td>\vec{E}_T</td>
</tr>
<tr>
<td>$\Delta \phi(\text{lead jet, second jet})$</td>
</tr>
<tr>
<td>number of jets</td>
</tr>
</tbody>
</table>

TABLE I: Inputs to the jet-energy correction neural network.

FIG. 1: The dijet invariant mass distribution for all b-tagged candidates before (left) and after (right) NN correction. The bin at 400 GeV/c2 contains the histogram overflow.
llbb: Final discriminant

<table>
<thead>
<tr>
<th>Inputs to the expert neural networks</th>
<th>$t\bar{t}$ Expert</th>
<th>$Z + l \ell_1 + Z + c\bar{c}$ Expert</th>
<th>WZ/ZZ Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T</td>
<td>NN Corrected M_{jj}</td>
<td>2nd jet E_T</td>
<td>2nd jet E_T</td>
</tr>
<tr>
<td>E_T projection onto the all jets</td>
<td>H_T [23]</td>
<td>$\Delta R(Z, \text{jet 1})$</td>
<td>$\cos(\theta^*)$ [24]</td>
</tr>
<tr>
<td>E_T of $Z + \text{all jets}$</td>
<td>combined mass of Z and all jets</td>
<td>$\Delta R(Z, \text{jet 1})$</td>
<td>$\Delta R(Z, H)$</td>
</tr>
<tr>
<td>R_T projection onto the lead jet</td>
<td>combined mass of Z and H candidates</td>
<td>H_T</td>
<td>Z projection onto all jets</td>
</tr>
<tr>
<td>E_T of $Z + H$ candidates</td>
<td>$\Delta R(\text{lepton 1, lepton 2})$</td>
<td>Z projection onto all jets</td>
<td>$\Delta R(\text{lepton 1, lepton 2})$</td>
</tr>
<tr>
<td>$\Delta R(Z, \text{all jets})$ [22]</td>
<td>$Z p_T$</td>
<td>$Z p_T$</td>
<td></td>
</tr>
<tr>
<td>NN Corrected M_{jj}</td>
<td>jet 1 E_T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II: Inputs to the expert neural networks, listed in descending order of importance.
llbb: modeling of the final discriminant - pretag

FIG. 3: Output of the expert discriminants in the PreTag (defined in text) sample. The bin at zero (one) contains the histogram underflow (overflow).
llbb: event yields

<table>
<thead>
<tr>
<th>Process</th>
<th>TT</th>
<th>TL</th>
<th>Tx</th>
<th>LL</th>
<th>TT</th>
<th>TL</th>
<th>Tx</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>20.1 ± 2.8</td>
<td>21.5 ± 2.8</td>
<td>36.1 ± 4.7</td>
<td>6.1 ± 0.8</td>
<td>7.5 ± 1.2</td>
<td>9.3 ± 1.4</td>
<td>13.5 ± 1.9</td>
<td>2.9 ± 0.5</td>
</tr>
<tr>
<td>Diboson</td>
<td>4.7 ± 0.6</td>
<td>6.5 ± 0.9</td>
<td>19.6 ± 1.8</td>
<td>3.9 ± 0.4</td>
<td>0.7 ± 0.1</td>
<td>1.3 ± 0.2</td>
<td>3.0 ± 0.4</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>$Z + bb$</td>
<td>19.1 ± 8.0</td>
<td>26.8 ± 11.3</td>
<td>81.5 ± 34.2</td>
<td>10.2 ± 4.4</td>
<td>4.5 ± 2.0</td>
<td>6.5 ± 2.9</td>
<td>14.1 ± 6.2</td>
<td>2.5 ± 1.1</td>
</tr>
<tr>
<td>$Z + cc$</td>
<td>1.5 ± 0.6</td>
<td>6.9 ± 2.9</td>
<td>39.0 ± 16.8</td>
<td>7.3 ± 3.1</td>
<td>0.5 ± 0.2</td>
<td>1.7 ± 0.8</td>
<td>7.4 ± 3.3</td>
<td>2.4 ± 1.1</td>
</tr>
<tr>
<td>$Z + t.f.$</td>
<td>0.7 ± 0.3</td>
<td>8.3 ± 2.0</td>
<td>124.9 ± 27.5</td>
<td>27.5 ± 6.6</td>
<td>0.3 ± 0.1</td>
<td>2.8 ± 0.8</td>
<td>20.3 ± 5.5</td>
<td>8.1 ± 2.3</td>
</tr>
<tr>
<td>mis-ID Z</td>
<td>0.1 ± 0.0</td>
<td>5.1 ± 2.6</td>
<td>7.7 ± 3.9</td>
<td>1.1 ± 0.6</td>
<td>0.0 ± 0.0</td>
<td>2.1 ± 1.0</td>
<td>5.2 ± 2.6</td>
<td>3.0 ± 1.5</td>
</tr>
</tbody>
</table>

Total Bkg.	46.2 ± 8.6	75.2 ± 12.4	309.2 ± 47.4	56.1 ± 8.6	13.6 ± 2.3	23.6 ± 3.5	63.5 ± 9.5	19.9 ± 3.2
$ZH(120)$ GeV/c²	1.1 ± 0.1	1.1 ± 0.1	1.6 ± 0.2	0.3 ± 0.03	0.2 ± 0.04	0.2 ± 0.04	0.3 ± 0.1	0.1 ± 0.01
Data	45	83	352	66	16	23	59	23

TABLE IV: Comparison of the expected mean event totals for background and ZH signal with the observed number of data events for the $ZH \rightarrow e^+e^- + bb$ channels. The totals are for full event selection, and uncertainties are systematic.

<table>
<thead>
<tr>
<th>Process</th>
<th>TT</th>
<th>TL</th>
<th>Tx</th>
<th>LL</th>
<th>TT</th>
<th>TL</th>
<th>Tx</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>20.8 ± 3.1</td>
<td>22.1 ± 3.1</td>
<td>30.4 ± 3.9</td>
<td>5.7 ± 0.8</td>
<td>6.4 ± 1.2</td>
<td>7.4 ± 1.2</td>
<td>10.4 ± 1.5</td>
<td>2.4 ± 0.4</td>
</tr>
<tr>
<td>Diboson</td>
<td>3.8 ± 0.6</td>
<td>5.1 ± 0.7</td>
<td>15.1 ± 1.5</td>
<td>3.0 ± 0.4</td>
<td>0.6 ± 0.1</td>
<td>0.9 ± 0.2</td>
<td>2.3 ± 0.3</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>$Z + bb$</td>
<td>15.0 ± 6.3</td>
<td>21.0 ± 8.8</td>
<td>64.4 ± 27.0</td>
<td>7.7 ± 3.2</td>
<td>3.5 ± 1.5</td>
<td>5.2 ± 2.4</td>
<td>11.3 ± 5.0</td>
<td>2.3 ± 1.1</td>
</tr>
<tr>
<td>$Z + cc$</td>
<td>1.0 ± 0.4</td>
<td>4.6 ± 2.0</td>
<td>30.0 ± 12.6</td>
<td>6.3 ± 2.6</td>
<td>0.4 ± 0.2</td>
<td>1.5 ± 0.7</td>
<td>5.8 ± 2.5</td>
<td>1.9 ± 0.8</td>
</tr>
<tr>
<td>$Z + t.f.$</td>
<td>0.6 ± 0.3</td>
<td>6.2 ± 1.5</td>
<td>91.7 ± 20.2</td>
<td>19.4 ± 4.5</td>
<td>0.3 ± 0.1</td>
<td>2.2 ± 0.6</td>
<td>15.3 ± 4.0</td>
<td>6.3 ± 1.7</td>
</tr>
<tr>
<td>mis-ID Z</td>
<td>1.0 ± 0.1</td>
<td>0.0 ± 0.0</td>
<td>10.0 ± 0.5</td>
<td>1.0 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>8.0 ± 0.4</td>
<td>8.0 ± 0.4</td>
<td>5.0 ± 0.3</td>
</tr>
</tbody>
</table>

Total Bkg.	42.3 ± 7.1	58.9 ± 9.7	241.5 ± 36.3	43.0 ± 6.2	12.2 ± 1.9	25.2 ± 2.8	53.0 ± 7.0	18.8 ± 2.2
$ZH(120)$ GeV/c²	0.9 ± 0.1	0.9 ± 0.1	1.4 ± 0.1	0.3 ± 0.03	0.2 ± 0.03	0.2 ± 0.04	0.2 ± 0.04	0.1 ± 0.01
Data	41	69	273	51	15	24	46	25

TABLE V: Comparison of the expected mean event totals for background and ZH signal with the observed number of data events for the $ZH \rightarrow \mu^+ \mu^- + bb$ channels. The totals are for full event selection, and uncertainties are systematic.
• Cleaner sample, lowest signal rate

• Selection:
 ➡ 2 High PT electrons/muons
 ➢ $75 < M_{ll}/\text{GeV} < 105$
 ➡ 2,3 large ET jets
 ➢ ≥ 1 b-tagged jet

• Analysis strategy:
 ➡ 16 orthogonal channels examined simultaneously
 ➢ channels divided upon lepton flavor, number of jets, heavy flavor content
 ➡ multivariate discriminant for extracting the signal
 ➢ full reconstruction of the final state
 ➢ improved sensitivity wrt using dijet invariant mass

$\sigma(VZ) = 0.79^{+1.68}_{-0.70} \text{ pb}$
• Highest signal yield

• Selection:
 ➡ 1 High PT electron/muon
 ✓ extended lepton acceptance due to a more inclusive triggers
 ➡ large MET
 ➡ 2,3 large ET jets
 ➡ multivariate techniques to reject multi-jet background

■ Analysis strategy:
 ➡ 7 orthogonal channels depending on the flavor content, number of jets
 - sensitivity improved thanks to HOBIT
 ➡ Bayesian neural network to discriminate signal from background
 ▶ different optimization in 2 and 3 jets channels

\[\sigma(VZ) = 7.78^{+2.47}_{-2.25} \text{ pb} \]
lvbb: even yield

<table>
<thead>
<tr>
<th>Number of Jets</th>
<th>2 jets</th>
<th>3 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagging categories</td>
<td>TT</td>
<td>TL</td>
</tr>
<tr>
<td>DiTop</td>
<td>177.49±22.17</td>
<td>211.19±19.8</td>
</tr>
<tr>
<td>STopS</td>
<td>59.1±7.06</td>
<td>66.39±5.85</td>
</tr>
<tr>
<td>STopT</td>
<td>17.4±2.48</td>
<td>32.45±3.98</td>
</tr>
<tr>
<td>WW</td>
<td>1.9±0.48</td>
<td>15.54±3.13</td>
</tr>
<tr>
<td>WZ</td>
<td>21.86±2.63</td>
<td>25.97±2.28</td>
</tr>
<tr>
<td>ZZ</td>
<td>2.6±0.3</td>
<td>2.73±0.24</td>
</tr>
<tr>
<td>Zjets</td>
<td>11.94±1.29</td>
<td>23.24±2.47</td>
</tr>
<tr>
<td>Wbb</td>
<td>284.99±116.78</td>
<td>382.43±155.86</td>
</tr>
<tr>
<td>Wcc</td>
<td>22.54±9.39</td>
<td>141.43±58.32</td>
</tr>
<tr>
<td>WIf</td>
<td>5.17±1.54</td>
<td>73.93±16.53</td>
</tr>
<tr>
<td>QCD</td>
<td>12.35±7.94</td>
<td>101.82±41.71</td>
</tr>
<tr>
<td>Bkg</td>
<td>617.34±172.05</td>
<td>1077.12±309.74</td>
</tr>
<tr>
<td>Obs</td>
<td>556</td>
<td>907</td>
</tr>
<tr>
<td>WH115</td>
<td>9.57±0.98</td>
<td>9.98±0.62</td>
</tr>
</tbody>
</table>

TABLE I: Background summary, signal expectation and data yield for the events with two jets in all b-tagging categories for central leptons.
lvbb: Mj1 j2
$\nu\nu bb$: BNN 3 jets

All Leptons, 3 jets, "TT" b-tags

WH-$\nu b\bar{b}$

CDF Run II Preliminary (9.4fb⁻¹)

Number of events

10^3

10^2

10

10^1

1

0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2

BNN output ($M_H = 115$ GeV/c²)

643 Data Events

Friday, July 6, 2012
$\nu\nu bb$

<table>
<thead>
<tr>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude of \vec{E}_T</td>
</tr>
<tr>
<td>Magnitude of \vec{p}_T</td>
</tr>
<tr>
<td>\vec{E}_T / $\sqrt{\sum E_T}$</td>
</tr>
<tr>
<td>\vec{E}_T / H_T</td>
</tr>
<tr>
<td>H_T / \vec{E}_T</td>
</tr>
<tr>
<td>$M(\vec{E}_T, \vec{j}_1, \vec{j}_2)$</td>
</tr>
<tr>
<td>$\Delta \varphi$ between \vec{E}_T and \vec{p}_T</td>
</tr>
<tr>
<td>Maximum of $\Delta \varphi$ between any two jets</td>
</tr>
<tr>
<td>Maximum of ΔR between any two jets</td>
</tr>
<tr>
<td>Minimum of $\Delta \varphi$ between the \vec{E}_T and \vec{j}_i</td>
</tr>
<tr>
<td>Minimum of $\Delta \varphi$ between the \vec{p}_T and \vec{j}_i</td>
</tr>
<tr>
<td>$\Delta \varphi(\vec{j}_1, \vec{j}_2)$ in the 2-jet rest frame</td>
</tr>
<tr>
<td>Sphericity</td>
</tr>
<tr>
<td>Centrality</td>
</tr>
</tbody>
</table>

TABLE III: Input variables to the neural network devised to suppress the QCD background, and the background coming from production of light flavor jets.

(a) Exclusive SecVtx

(b) Exclusive SecVtx
\textbf{\textit{\nu\nu}bb: inputs NN to correct jet ET}

\begin{table}[h]
\begin{center}
\begin{tabular}{|l|p{15cm}|}
\hline
Variable & Description \\
\hline
Raw E_T & Uncorrected transverse jet energy \\
L_5 m_T & Transverse jet mass corrected to hadronic level \\
H_1 E_T & H1-corrected transverse jet energy \\
π^0 Energy & CES detector energies of π^0 candidates within jet cone \\
EM Fraction & Fraction of jet energy collected in EM calorimeter \\
Jet η & Jet pseudorapidity \\
Maximum Track p_T & Maximum transverse momentum of track within jet cone \\
Sum Track p_T & Linear sum of transverse momenta of tracks within jet cone \\
\hline
\end{tabular}
\end{center}
\end{table}

\textbf{TABLE II: Description of the NN_{JER} input variables.}

\textbf{\texttt{vVbb: inputs final discriminant}}

\begin{table}
\centering
\begin{tabular}{ll}
\hline
\textbf{Variable} & \\
\text{Invariant mass of the two leading jets in the event (M_{jj})} & \\
\text{Invariant mass of E_T, j_1^- and j_2^-} & \\
\text{Difference between the scalar sum of transverse energy of the jets (H_T) and E_T} & \\
\text{Difference between the vector sum of transverse energy of the jets (\vec{H}_T) and \vec{E}_T} & \\
\text{The output of the TRACKMET neural network} & \\
\text{Maximum of the difference in the $\eta - \phi$ space between the directions of two jets, taking two jets at the time} & \\
\text{The output of NN_{QCD}} & \\
\hline
\end{tabular}
\caption{Input variables to the final discriminant neural network.}
\end{table}
ννbb: event yields

<table>
<thead>
<tr>
<th></th>
<th>1S</th>
<th></th>
<th>SS</th>
<th></th>
<th>SJ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T + b$-jets 9.45 fb$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>158.8</td>
<td>± 17.2</td>
<td>0.8</td>
<td>± 0.1</td>
<td>2.5</td>
<td>± 0.3</td>
</tr>
<tr>
<td>WZ/ZZ</td>
<td>133.9</td>
<td>± 14.3</td>
<td>31.3</td>
<td>± 3.9</td>
<td>27.6</td>
<td>± 3.2</td>
</tr>
<tr>
<td>Single Top</td>
<td>273.6</td>
<td>± 35.2</td>
<td>48.3</td>
<td>± 7</td>
<td>41</td>
<td>± 5.6</td>
</tr>
<tr>
<td>Top Pair</td>
<td>741.5</td>
<td>± 93.1</td>
<td>147.2</td>
<td>± 21.1</td>
<td>133.3</td>
<td>± 18</td>
</tr>
<tr>
<td>$Z + h.f.$</td>
<td>812.2</td>
<td>± 146.2</td>
<td>73.6</td>
<td>± 14.2</td>
<td>72.4</td>
<td>± 13.5</td>
</tr>
<tr>
<td>$W + h.f.$</td>
<td>2868.1</td>
<td>± 528.8</td>
<td>123.5</td>
<td>± 23.9</td>
<td>154.4</td>
<td>± 29.3</td>
</tr>
<tr>
<td>QCD Multijet</td>
<td>10824.6</td>
<td>± 177.3</td>
<td>376.9</td>
<td>± 11.9</td>
<td>923.1</td>
<td>± 19.2</td>
</tr>
<tr>
<td>EWK Mistags</td>
<td>2287.8</td>
<td>± 283</td>
<td>16.5</td>
<td>± 5.4</td>
<td>38.4</td>
<td>± 20.3</td>
</tr>
<tr>
<td>Total</td>
<td>18100.6</td>
<td>± 1295.1</td>
<td>818</td>
<td>± 87.5</td>
<td>1392.7</td>
<td>± 109.5</td>
</tr>
<tr>
<td>Data</td>
<td>18165</td>
<td></td>
<td>807</td>
<td></td>
<td>1310</td>
<td></td>
</tr>
</tbody>
</table>
Selection:

- lepton veto
- large MET
- 2,3 large ET jets
- NN-based discriminant to reject the large instrumental background
- NN to parameterize trigger efficiency curve
 - allows for more relaxed kinematic cuts

Analysis strategy:

- 3 orthogonal channels depending on the flavor content
 - still using "pre-HOBIT" CDF taggers
- Final neural network to discriminate signal from background
 - trained separately in 2 and 3 jet sample

\[\sigma(VZ) = 3.09^{+2.21}_{-1.77} \, \text{pb} \]
Diboson at CDF: history

- Observation in fully leptonic states
 - $WZ \rightarrow l\nu ll$, $ZZ \rightarrow llll$, $WW \rightarrow l\nu l\nu$

- Observation in semileptonic states
 - MET+jets, lepton+MET+jets

cannot separate WW and WZ due to dijet mass resolution
b-tagging

• **Goal:** separate jets containing B hadrons from other jets
 - key to separate WZ/ZZ from WW

• **Solution:** brand new multivariate tagger (HOBIT)
 - continuous output
 - operation points can be optimized upon search sensitivity
 - trained on Higgs and W+jets MC
 - built upon the strength of previous CDF taggers
 - using the most powerful inputs

Some HOBIT inputs

- b-jets
- others
KIT input variables
KIT input variables