Measurements of Top Quark Production and Properties at the Tevatron

Pavol Bartoš
(Comenius University)
On behalf of CDF and D0 collaborations

Moriond QCD, March 22-29, 2014
Outline

→ **Top quark production**
 → differential and inclusive cross-section of $t \bar{t}$ production

→ **Top quark properties**
 → decay width
 → branching fraction
 → charge asymmetry

According to SM:
$$B(t \rightarrow Wb) \sim 100\%$$

→ **Not included**
 → top quark mass (Sung Woo Youn)
 → single top production (Matteo Cremonesi)
$t\bar{t}$ cross sections
Inclusive $t\bar{t}$ cross section

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Method</th>
<th>$\sigma_{t\bar{t}}$ (pb)</th>
<th>$\sigma_{t\bar{t}}$ (scales)</th>
<th>$\sigma_{t\bar{t}}$ (PDF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF dilepton</td>
<td>2D0</td>
<td>7.09 ± 0.83</td>
<td>$7.35^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>CDF ANN lepton+jets</td>
<td>4CDF</td>
<td>7.82 ± 0.56</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>CDF SVX lepton+jets</td>
<td>4CDF</td>
<td>7.32 ± 0.71</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>CDF all-jets</td>
<td>4CDF</td>
<td>7.21 ± 1.28</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>CDF combined</td>
<td>4CDF</td>
<td>7.63 ± 0.50</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>DØ dilepton</td>
<td>4CDF</td>
<td>7.36 ± 0.85</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>DØ lepton+jets</td>
<td>4CDF</td>
<td>7.90 ± 0.74</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>DØ combined</td>
<td>4CDF</td>
<td>7.56 ± 0.59</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
<tr>
<td>Tevatron combined</td>
<td>4CDF</td>
<td>7.60 ± 0.41</td>
<td>$6.14^{+0.11}_{-0.21}$</td>
<td>7.60 ± 0.41</td>
</tr>
</tbody>
</table>

$\chi^2 = 0.01/1$; Prob 92%

$\sigma_{t\bar{t}} = (7.60 \pm 0.41) \text{ pb}$

SM prediction (NNLO+NNLL):

$\sigma_{t\bar{t}} = 7.35^{+0.11}_{-0.21} \text{ (scales)}^{+0.17}_{-0.12} \text{ (PDF)}$

(using $M_t = 172.5 \text{ GeV}$)
Differential $t\bar{t}$ cross sections (I)

→ provides direct test of QCD, constraints on axigluon models
→ important for QCD modeling (searches for new physics)

→ **l+jet channel with 1 b-tag**
→ final state is obtained by kinematic reconstruction (χ^2–based method)
→ result is corrected to parton-level top quark
→ cross section as a function of m_{tt}, $p_T(t)$, $|y(t)|$

arXiv:1401.5785, submitted to PRD

→ measured with typical precision ~9%
→ main systematic source: signal modeling
→ **general agreement with predictions**
 by QCD generators & approximate NNLO
Differential $t\bar{t}$ cross sections (II)

- Different axigluon models with different couplings (used in asymmetry studies)
 differential cross section predictions provided by A. Falkowski (et al)
 arXiv 1401.2443

- in these models, forward-backward asymmetry will be increased, but also the differential cross section distributions will be changed

- high-mass axigluons highly constrained by LHC measurements, while low masses not so much (but the effects are small)

Some models are in tension with the presented data!
Differential $t\bar{t}$ cross sections

→ employ Legendre polynomials to characterize the shape of differential cross section:

\[\frac{d\sigma}{d(\cos \theta_t)} = \sum_{\ell=0}^{\infty} a_\ell P_\ell(\cos \theta_t), \]

θ_t is angle between top-quark momentum and the incoming proton momentum in $t\bar{t}$ center-of-mass frame

→ full shape has potential to discriminate among various calculations of SM and non-SM physics models

→ moment a_0 contains only total cross section, we scale all moments, (a_ℓ), so that $a_0 = 1$.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>a_ℓ (obs)</th>
<th>a_ℓ (pred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.40 ± 0.12</td>
<td>$0.15^{+0.07}_{-0.03}$</td>
</tr>
<tr>
<td>2</td>
<td>0.44 ± 0.25</td>
<td>$0.28^{+0.05}_{-0.03}$</td>
</tr>
<tr>
<td>3</td>
<td>0.11 ± 0.21</td>
<td>$0.03^{+0.014}_{-0.007}$</td>
</tr>
<tr>
<td>4</td>
<td>0.22 ± 0.28</td>
<td>$0.035^{+0.016}_{-0.008}$</td>
</tr>
<tr>
<td>5</td>
<td>0.11 ± 0.33</td>
<td>$0.005^{+0.002}_{-0.001}$</td>
</tr>
<tr>
<td>6</td>
<td>0.24 ± 0.40</td>
<td>$0.006^{+0.002}_{-0.003}$</td>
</tr>
<tr>
<td>7</td>
<td>-0.15 ± 0.48</td>
<td>$-0.003^{+0.001}_{-0.001}$</td>
</tr>
<tr>
<td>8</td>
<td>0.16 ± 0.65</td>
<td>$-0.0019^{+0.0003}_{-0.0003}$</td>
</tr>
</tbody>
</table>

\[a_1 = 0.40 \pm 0.12 \]

PRL 111 182002 (2013)

\sim 2\sigma \text{ difference w.r.t. predictions}
Decay width
&
branching fractions
Top quark width

→ largest decay width of the known fermions
→ deviation from SM could indicate decays via e.g., charged Higgs boson, stop squark, or flavor changing neutral current.

CDF direct measurement

→ data fitted by the MC templates
→ Γ_t extracted from width of m_t^{reco}

CDF, l+jets, 8.7 fb$^{-1}$

$\Gamma_t = 2.21^{+1.84}_{-1.11}$ GeV

PRD 111, 202001 (2013)

D0 indirect measurement (l+jets, 5.4 fb$^{-1}$)

→ using σ(t-channel) to extract partial top width and $B(t \rightarrow Wb)$ to get total width

CDF, l+jets, 8.7 fb$^{-1}$

$\Gamma_t = 2.00^{+0.47}_{-0.43}$ GeV

PRD 85, 091104 (2012)
Branching fractions

→ using the measurement V_{tb} can be extracted
→ deviation from expected value could imply existence of extra generation of quarks

→ **CDF measurement**
→ divide sample into bins by lepton flavour and number of b-tagged jets
→ using likelihood fit with R as free parameter

\[R = 0.87 \pm 0.07 \text{ (stat+syst)} \]
\[|V_{tb}| = 0.93 \pm 0.04 \text{ (stat+syst)} \]

CDF note 11048

→ **D0 – l+jets & dilepton combination**
→ fit R and the $t\bar{t}$ cross section together

\[R = 0.90 \pm 0.04 \text{ (stat+syst)} \]

PRL 107, 121802 (2011)
Production asymmetries
tt forward-backward asymmetry

→ at NLO, the SM predicts asymmetry in \(\bar{t}t \) production
→ asymmetry comes from events with \(q\bar{q} \) initial states, \(gg \) is symmetric

\[\begin{align*}
\text{positive asymmetry} & \quad + \\
\text{negative asymmetry} &
\end{align*} \]

→ Definition:

\[A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \], \text{where } \Delta y = y_t - y_{\bar{t}}\]

→ Methodology:

→ using \(l+\text{jet} \) events (full statistics)

→ full kinematic reconstruction of \(\bar{t}t \) final state
 → CDF: \(\chi^2 \)-based fit
 → D0: new kinematic fit algorithm for events with \(\geq 4 \) jets
 \(m_{\bar{t}t} \) obtained from multivariate regression combining 3 algorithms

→ correction for parton level – using regularized unfolding in 2D
→ inclusive asymmetry expressed also as function of: \(m_{\bar{t}t} \) – CDF, DO

\[|\Delta y|, p_T(t \bar{t}) - \text{CDF} \]
tt forward-backward asymmetry

→ **CDF Results:**

\[A_{FB} = 0.164 \pm 0.039 \text{ (stat.)} \pm 0.026 \text{ (syst.)} \]

PRD 87, 092002 (2013)

Slopes different w.r.t. SM predictions:

- \(2.4\sigma \) (\(M_{t\bar{t}} \)),
- \(2.8\sigma \) (\(|\Delta y|\))

From differential cross section result (PRL 111 182002 (2013) and slide 7):

favors the asymmetry models with strong s-channel components

→ **D0 results**

\[A_{FB} = 0.106 \pm 0.027 \text{ (stat.)} \pm 0.013 \text{ (syst.)} \]

D0 Conf note 6425

Compatible with SM predictions and with CDF result

March 22-29, 2014
Lepton based asymmetry

→ **Advantage:** no need to reconstruct the $t\bar{t}$ final state.
 sensitive to top quark polarization
 → lepton direction is measured with high precision + good charge determination

→ **Definition:**

Dilepton events: $\Delta \eta = \eta_+ - \eta_-$

$$A_{FB}^\ell = \frac{N(qy_\ell > 0) - N(qy_\ell < 0)}{N(qy_\ell > 0) + N(qy_\ell < 0)}.$$

→ **CDF methodology:** (same for l+jets and dilepton events)

→ asymmetry is decomposed into symmetric and asymmetric parts:

$$S(qy_\ell) = \frac{N(qy_\ell) + N(-qy_\ell)}{2}, \quad A(qy_\ell) = \frac{N(qy_\ell) - N(-qy_\ell)}{N(qy_\ell) + N(-qy_\ell)},$$

→ symmetric part (obtained from MC) – largely insensitive to physics model
→ asymmetric part is parametrized:

$$\mathcal{A}(qy_\ell) = a \tanh \left(\frac{qy_\ell}{2} \right)$$

→ fit of asymmetric part allows to extrapolate to unmeasured region
Lepton based asymmetry

→ **D0 methodology: (l+jets events)**

 → using l + 3 jets in addition to l + ≥4 jets – increase statistics twice
 → l+3 jets has lower S/B ratio, helps to reduce acceptance corrections

→ improve modeling of A_{FB}^l in W+jets using control region (3 jets+0 btag)
→ asymmetry and sample composition is extracted by likelihood fit
→ unfold for acceptance effects, study dependence on lepton p_T and y_l

I+jets channel:

→ **D0 methodology: (dilepton events)**

 → background subtraction,
 → correction for selection effects
 → extrapolation to the full range of η
Single-lepton asymmetry results

l+jets channel

CDF:

PRD 88, 072003 (2013)

\[
A_{FB}^{l} = 0.094 \pm 0.024 \text{(stat.)}^{+0.022}_{-0.017} \text{(syst.)}
\]

D0:

|y|<1.5:

arXiv 1403.1294 submitted to PRD

\[
A_{FB}^{l} = 0.042 \pm 0.023 \text{(stat.)}^{+0.017}_{-0.020} \text{(syst.)}
\]

SM predicts:

\[
A_{FB}^{l} = 0.038 \pm 0.003
\]

MC@NLO |y|<1.5:

\[
A_{FB}^{l} = 0.020
\]
Single lepton asymmetry

Dilepton channel

SM predicts:

\[A_{FB}^{l} = 0.038 \pm 0.003 \]

CDF:

CDF note 11035

\[A_{FB}^{l} = 0.072 \pm 0.052 \text{ (stat.)} \pm 0.030 \text{ (syst.)} \]

CDF note 11035

\[A_{FB}^{l} = 0.090 \pm 0.028 \]

2σ larger than the SM prediction

CDF: PRD 88, 112002 (2013)

D0:

\[A_{FB}^{l} = 0.044 \pm 0.037 \text{ (stat.)} \pm 0.011 \text{ (syst.)} \]

Combination \((l+\text{jet, dilepton})\)

→ using BLUE method

SM predicts:

\[A_{FB}^{l} = 0.038 \pm 0.003 \]

CDF: arXiv 1403.1294, submitted to PRD

D0:

\[A_{FB}^{l} = 0.047 \pm 0.023 \text{ (stat.)} \pm 0.015 \text{ (syst.)} \]
Dilepton asymmetry

Dilepton channel

CDF:

\[A_{FB}^{\Delta \eta} = 0.072 \pm 0.081 \]

CDF note 11035

CDF:

\[A_{FB}^{\Delta \eta} = 0.048 \pm 0.004 \]

D0:

\[A_{FB}^{\Delta \eta} = 0.123 \pm 0.054 \text{(stat.)} \pm 0.015 \text{(syst.)} \]

PRD 88, 112002 (2013)

SM predicts:

\[A_{FB}^{\Delta \eta} = 0.048 \pm 0.004 \]

PRD 88, 112002 (2013)

D0:

\[A_{FB}^{l}/A_{FB}^{\Delta \eta} = 0.36 \pm 0.20 \]

SM (NLO):

\[0.79 \pm 0.10 \]

2\sigma difference

P. Bartoš

Moriond QCD, March 22-29, 2014

18
Conclusions

→ the measurements are mostly in agreement with SM prediction

→ CDF see higher production asymmetry in both $t\bar{t}$ inclusive and lepton-based measurements

→ D0 data compatible with SM prediction and also with CDF results

→ For more Tevatron top quark results, please see Matteo Cremonesi’s talk on single top (after coffee break)

Plans

→ Tevatron combination of production asymmetry results is on the table

→ finalize other analysis using full data-set (spin correlation, mass,...)
Thank you!
Back up slides
Inclusive $t\bar{t}$ cross section

arXiv:1309.7570, accepted by PRD

<table>
<thead>
<tr>
<th>Sources of systematic uncertainty</th>
<th>DIL</th>
<th>LJ-ANN</th>
<th>LJ-SVX</th>
<th>HAD</th>
<th>CDF combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central value of $\sigma_{t\bar{t}}$</td>
<td>7.09</td>
<td>7.82</td>
<td>7.32</td>
<td>7.21</td>
<td>7.63</td>
</tr>
<tr>
<td>Modeling of the detector</td>
<td>0.39</td>
<td>0.11</td>
<td>0.34</td>
<td>0.41</td>
<td>0.17</td>
</tr>
<tr>
<td>Modeling of signal</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.44</td>
<td>0.21</td>
</tr>
<tr>
<td>Modeling of jets</td>
<td>0.23</td>
<td>0.23</td>
<td>0.29</td>
<td>0.71</td>
<td>0.21</td>
</tr>
<tr>
<td>Method of extracting $\sigma_{t\bar{t}}$</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>Background modeled from theory</td>
<td>0.01</td>
<td>0.13</td>
<td>0.29</td>
<td>–</td>
<td>0.10</td>
</tr>
<tr>
<td>Background based on data</td>
<td>0.15</td>
<td>0.07</td>
<td>0.11</td>
<td>0.59</td>
<td>0.08</td>
</tr>
<tr>
<td>Normalization of Z/γ^* prediction</td>
<td>–</td>
<td>0.16</td>
<td>0.15</td>
<td>–</td>
<td>0.13</td>
</tr>
<tr>
<td>Luminosity: inelastic $p\bar{p}$ cross section</td>
<td>0.28</td>
<td>–</td>
<td>–</td>
<td>0.29</td>
<td>0.05</td>
</tr>
<tr>
<td>Luminosity: detector</td>
<td>0.30</td>
<td>0.02</td>
<td>0.02</td>
<td>0.30</td>
<td>0.06</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.67</td>
<td>0.41</td>
<td>0.61</td>
<td>1.18</td>
<td>0.39</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.49</td>
<td>0.38</td>
<td>0.36</td>
<td>0.50</td>
<td>0.31</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>0.83</td>
<td>0.56</td>
<td>0.71</td>
<td>1.28</td>
<td>0.50</td>
</tr>
</tbody>
</table>

![Graph showing the cross-section measurement for Tevatron Run II, ≤ 8.8 fb⁻¹](image-url)
Differential $t\bar{t}$ cross sections (I)

| Source of uncertainty | δ_{incl} | $|\delta_{\text{diff}}|$ |
|--|-------------------------|---------------------------|
| Signal modeling | $+5.2$ | $4.0 - 14.2$ |
| PDF | $+3.0$ | $0.9 - 4.4$ |
| Detector Modeling | $+4.0$ | $3.1 - 13.7$ |
| Sample composition | ± 1.8 | $2.8 - 9.2$ |
| Regularization strength | ± 0.2 | $0.8 - 2.1$ |
| Integrated luminosity | ± 6.1 | $6.1 - 6.1$ |
| Total systematic uncertainty | $^{+0.6}_{-0.3}$ | $8.5 - 23.1$ |

arXiv:1401.5785 submitted to PRD
Differential $t\bar{t}$ cross sections (II)

ArXiv:1401.5785, submitted to PRD

| | $\sigma_{\text{tot}}(p\bar{p} \to t\bar{t})$ [pb] | $M(t\bar{t}) \ [\chi^2/ndf]$ | $|y^{\text{top}}| \ [\chi^2/ndf]$ | $p_T^{\text{top}} \ [\chi^2/ndf]$ |
|---------|--|--------------------------------|---------------------------------|----------------------------------|
| Data | $8.27^{+0.92}_{-0.91}$ (stat. + syst.) | n.a. | n.a. | n.a. |
| pQCD NNLO | $7.24^{+0.23}_{-0.27}$ (scales + pdf) | 0.98 | 3.71 | 4.05 |
| non-SM model | $\Delta\sigma_{\text{tot}}(p\bar{p} \to t\bar{t})$ [pb] | $M(t\bar{t}) \ [\chi^2/ndf]$ | $|y^{\text{top}}| \ [\chi^2/ndf]$ | $p_T^{\text{top}} \ [\chi^2/ndf]$ |
| $G'(l)$, $m = 0.2$ TeV | $+0.97 \pm 0.06$ (scales) | 0.96 | 1.07 | 1.20 |
| $G'(r)$, $m = 0.2$ TeV | $+0.97 \pm 0.06$ (scales) | 0.96 | 1.07 | 1.20 |
| $G'(a)$, $m = 0.2$ TeV | $+0.06 \pm 0.04$ (scales) | 0.85 | 3.55 | 3.88 |
| $G'(a)$, $m = 0.4$ TeV | $+0.26 \pm 0.04$ (scales) | 0.44 | 2.65 | 3.26 |
| $G'(a)$, $m = 0.8$ TeV | $+0.22 \pm 0.04$ (scales) | 0.97 | 2.86 | 3.23 |
| $G'(l)$, $m = 2.0$ TeV | $+0.87 \pm 0.15$ (scales) | 0.58 | 1.27 | 3.78 |
| $G'(r)$, $m = 2.0$ TeV | $+0.55 \pm 0.06$ (scales) | 0.43 | 1.94 | 2.75 |
| $G'(a)$, $m = 2.0$ TeV | $+0.05 \pm 0.06$ (scales) | 0.88 | 3.56 | 4.11 |
| Z', $m = 0.22$ TeV | -1.00 ± 0.06 (scales) | 4.95 | 8.27 | 7.48 |

Table of χ^2/ndf values for data versus approximate pQCD at NNLO and the various axi gluon models and one Z' model. The masses of the new mediators are indicated together with the nature of the couplings (l left, r right and a axial couplings) in the first column (more details are given in Ref. [arXiv:hep-ph/1401.2443]).
Slopes different w.r.t. SM predictions: 2.8σ for |Δy| distribution

PRD 87. 092002 (2013)

\[\alpha_{\Delta y} = (25.3 \pm 6.2) \times 10^{-2} \]

\[\alpha_{\Delta y} = (9.7 \pm 1.5) \times 10^{-2} \]

PRL 111 182002 (2013)

- **NLO SM (PRD 86, 034026)**
- **LO t-channel (Z′ 200 GeV/c²)**
- **LO s-channel (Octet A)**
- **Data (stat+syst uncertainty)**
- **Data (stat uncertainty only)**

FIG. 3 (color online). Absolute contributions of the Legendre moments to the \(A_{\text{FB}}\), with theory predictions overlaid. The lines and symbols are the same as in Fig. 2. The inset shows the 1-, 2-, and 3-standard-deviation uncertainty ellipses.
tt forward-backward asymmetry

DØ preliminary

9.7 fb⁻¹

D0 Conf note 6425

![Graph showing the tt forward-backward asymmetry with data points for CDF and MC@NLO v3.4.](image)

- **CDF data**
- **MC@NLO v3.4**

W. Bernreuther and Z.-G.Si

PRD 86, 034026 (2012)
CDF Results:

PRD 87, 092002 (2013)

TABLE V. Systematic uncertainties on the parton-level A_{FB} measurement.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background shape</td>
<td>0.018</td>
</tr>
<tr>
<td>Background normalization</td>
<td>0.013</td>
</tr>
<tr>
<td>Parton shower</td>
<td>0.010</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>0.007</td>
</tr>
<tr>
<td>Initial- and final-state radiation</td>
<td>0.005</td>
</tr>
<tr>
<td>Correction procedure</td>
<td>0.004</td>
</tr>
<tr>
<td>Color reconnection</td>
<td>0.001</td>
</tr>
<tr>
<td>Parton-distribution functions</td>
<td>0.001</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.026</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.039</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>0.047</td>
</tr>
</tbody>
</table>

D0 Results

D0 Conf note 6425

Systematic uncertainties in absolute %

<table>
<thead>
<tr>
<th>Source</th>
<th>Reco. level inclusive</th>
<th>Production level inclusive</th>
<th>2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background model</td>
<td>+0.7/−0.8</td>
<td>1.0</td>
<td>1.1–2.8</td>
</tr>
<tr>
<td>Signal model</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.8–5.2</td>
</tr>
<tr>
<td>Unfolding</td>
<td>N/A</td>
<td>0.5</td>
<td>0.9–1.9</td>
</tr>
<tr>
<td>PDFs and pileup</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5–2.9</td>
</tr>
<tr>
<td>Detector model</td>
<td>+0.1/−0.3</td>
<td>0.3</td>
<td>0.4–3.3</td>
</tr>
<tr>
<td>Sample composition</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Total</td>
<td>+0.8/−0.9</td>
<td>1.3</td>
<td>2.1–7.5</td>
</tr>
</tbody>
</table>
Lepton based asymmetry

PRD 88, 072003 (2013)

I+jets, single-lepton asymmetry

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backgrounds</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>+0.013</td>
</tr>
<tr>
<td>Recoil modeling</td>
<td>-0.000</td>
</tr>
<tr>
<td>Color reconnection</td>
<td>0.0067</td>
</tr>
<tr>
<td>Parton showering</td>
<td>0.0027</td>
</tr>
<tr>
<td>Parton distribution functions</td>
<td>0.0025</td>
</tr>
<tr>
<td>Jet-energy scales</td>
<td>0.0022</td>
</tr>
<tr>
<td>Initial- and final-state radiation</td>
<td>0.0018</td>
</tr>
<tr>
<td></td>
<td>+0.022</td>
</tr>
<tr>
<td></td>
<td>-0.017</td>
</tr>
<tr>
<td>Data sample size</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>+0.032</td>
</tr>
<tr>
<td></td>
<td>-0.029</td>
</tr>
</tbody>
</table>

CDF note 11035

single-lepton asymmetry
I+jets + dilepton combination

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>L+J (9.4 fb^{-1})</th>
<th>DIL (9.1 fb^{-1})</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backgrounds</td>
<td>0.015</td>
<td>0.029</td>
<td>0</td>
</tr>
<tr>
<td>Recoil modeling</td>
<td>+0.013</td>
<td>0.006</td>
<td>1</td>
</tr>
<tr>
<td>(Asymmetric modeling)</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetric modeling</td>
<td>-</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Color reconnection</td>
<td>0.0067</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parton showering</td>
<td>0.0027</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>0.0025</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>JES</td>
<td>0.0022</td>
<td>0.004</td>
<td>1</td>
</tr>
<tr>
<td>IFSR</td>
<td>0.0018</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.022</td>
<td>0.017</td>
<td>0.030</td>
</tr>
<tr>
<td>Data sample size</td>
<td>0.024</td>
<td>0.052</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>+0.032</td>
<td>-0.029</td>
<td>0.060</td>
</tr>
</tbody>
</table>
Lepton based asymmetry

DØ, 9.7fb^{-1}
Production Level, $|y|<1.5$

A_{FB}^{l}, %

$\begin{array}{c}
|y|<1.5 \\

DØ, 9.7 fb^{-1} \\
Production Level \\

MC@NLO 3.4 \\

l+jet channel \\
arXiv 1403.1294
\end{array}$

Forward-Backward Lepton Asymmetry, %

$\begin{array}{c}
3 \text{ jets, } 1 \ b \text{ tag} \\
3 \text{ jets, } \geq 2 \ b \text{ tags} \\
\geq 4 \text{ jets, } 1 \ b \text{ tag} \\
\geq 4 \text{ jets, } \geq 2 \ b \text{ tags} \\
MC@NLO 3.4 \\
\chi^{2}/\text{N.D.F.: } 8.1/3
\end{array}$

Dilepton channel (PRD 88, 112002 (2013))