Single Top Quark Production at CDF

Sandra Leone (INFN Pisa)
On behalf of the CDF Collaborations

ICHEP 2014 Valencia, July 3rd, 2014
The Tevatron and CDF

Run II: $\sqrt{s} = 1.96$ TeV
Tevatron stopped providing collisions on September 30, 2011

Tevatron was the birthplace of the top quark, observed in 1995 (Tevatron Run I) by CDF and D0

Luminosity (pb$^{-1}$)

- Delivered: ~ 12 fb$^{-1}$
- CDF recorded ~ 10 fb$^{-1}$
Top Quark Production at Tevatron

- **QCD pair production**
- **First observed at Tevatron in 1995**

 \[\sigma_{SM} = 7.35^{+0.28}_{-0.33} \text{ pb} \]

 (for \(m_{Top} = 173 \text{ GeV} \))

 \([\text{PRL 110, 252004 (2003)}]\)

- Dominant process at Tevatron (~85%)
- Dominant process at LHC (~15%)
Top Quark Production at Tevatron

- **QCD pair production**
 - First observed at Tevatron in 1995
 - $\sigma_{SM} = 7.35^{+0.28}_{-0.33}$ pb
 - (for $m_{Top} = 172.5$ GeV)

- **EWK single-top production**
 - First observed at Tevatron in 2009
 - s-channel: $\sigma_{SM} = 1.06 \pm 0.06$ pb
 - t-channel: $\sigma_{SM} = 2.1 \pm 0.1$ pb
 - (for $m_{Top} = 172.5$ GeV)
 - PRL 103 092001 (2009), PRL 103 092002 (2009)
 - PRD 83, 091503 (2011)
 - PRD 81, 054028 (2010)
 - PRD 82, 054018 (2010)
 - arxiv:1210.7813.

- **Single top associated production** Wt: $\sigma \sim 0.25$ pb, too small at the Tevatron

Dominant processes:
- at Tevatron: ~85% s-channel, ~15% t-channel
- at LHC: ~29% s-channel, ~64% t-channel
Single top production: Tevatron versus LHC

- Tevatron and LHC are both sensitive to t-channel
- Tevatron is not sensitive to Wt production but has an advantage in s-channel

\[\text{Tevatron: } \sigma_{\text{tot}} = 3 \text{ pb} \]
\[\text{LHC: } \sigma_{\text{tot}} = 114 \text{ pb @ 8 TeV} \]

<table>
<thead>
<tr>
<th>Cross section(pb)</th>
<th>t\bar{t}</th>
<th>s-channel</th>
<th>t-channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron(1.96 TeV)</td>
<td>7.08 \times 33</td>
<td>1.05 \times 5.3</td>
<td>2.08 \times 42</td>
</tr>
<tr>
<td>LHC(8 TeV)</td>
<td>234</td>
<td>5.55</td>
<td>87.2</td>
</tr>
</tbody>
</table>

(N. Kidonakis, arXiv:1210.7813)
Why measure Single Top Production?

- $\sigma_{\text{single top}} \propto |V_{tb}|^2$
- Give access to the W-t-b vertex
 - \Rightarrow probe V-A structure
 - \Rightarrow access to top quark spin
- Allows direct measurement of Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{tb}|$:

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix}
=
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]

Direct measurements:
- Ratio from B_s oscillations
- Not precisely measured
- Inferred using unitarity

ICHEP2014, Valencia July 3rd, 2014
Why measure Single Top Production?

- \(\sigma_{\text{single top}} \propto |V_{tb}|^2 \)
- Give access to the W-t-b vertex
 \(\Rightarrow \) probe V-A structure
 \(\Rightarrow \) access to top quark spin
- Allows direct measurement of Cabibbo-Kobayashi-Maskawa (CKM) matrix element \(|V_{tb}| \):
 \(\Rightarrow \) Is this Matrix 3x3?
 \(\Rightarrow \) Is there a 4\(^{th}\) generation?
 \(\Rightarrow \) Does unitarity hold?

\[|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1 \]

- Precision electroweak measurements rule out "simple" fourth generation extensions, but see for example:
Sensitivity to New Physics

- New physics may affect the rate of t and s channel differently

- Flavor changing neutral currents (t-Z-c, t-γ-c, t-g-c)

- heavy W' boson
- charged Higgs H^+
- Kaluza Klein excited W'^{kk}

T. Tait, CP Yuan PRD63, 014018 (2001)
The Challenge

- Single Top observation came 14 years after top discovery....
 ⇒ Single Top production is a rare process at the Tevatron: $S/B \sim 1: 10^9$ before any selection
 ⇒ not an easy measurement
- First step:
 ⇒ Trigger on high P_T leptons/MET
 ⇒ Improves $S:B$ by $\sim 10^6$
- Second step:
 ⇒ Topological event selection
 ⇒ Efficient b-jet selection
 ⇒ Careful background estimates → average $S/B \sim 1/20$
Third step: no single variable provides sufficient signal-background separation:
⇒ take advantage of small signal-background separation in many variables
⇒ Perform multivariate analysis (MV)
⇒ Multiple variables combined into a single more powerful discriminant to separate S from B
⇒ analyses shown here use artificial NN techniques
Event Selection

- In the SM top quark decays most of the times to Wb
- (1) \(W + 2 \) or \(3 \) energetic jets selection
 - One high \(p_T \) isolated lepton (e or \(\mu \)) from the decay of the W
 - Large missing transverse energy, MET, from the neutrino
 - At least one jet identified as “b” jet

- (2) MET + jets Selection
 - MET > 35 GeV
 - Veto leptons
 - 2 or 3 energetic jets
 - At least one jet identified as “b” jet

- Orthogonal Event Selections: (2) adds 33% acceptance to (1)
Background Modeling

- **W + jets**
 ⇒ Normalization and flavor composition from data
 ⇒ Shape from simulation
- **Diboson, Z+jets** from simulation
- **top pair production**
 ⇒ normalization to NNLO
 ⇒ Shape from Alpgen
- **QCD multijet production**
 ⇒ Normalization from data
 ⇒ Shape from data

<table>
<thead>
<tr>
<th>Process</th>
<th>2 jets 1 b-tag</th>
<th>3 jets 1 b-tag</th>
<th>2 jets 2 b-tags</th>
<th>3 jets 2 b-tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/Z+jets</td>
<td>4378 ± 547</td>
<td>1295 ± 164</td>
<td>213 ± 56</td>
<td>84 ± 20</td>
</tr>
<tr>
<td>tt</td>
<td>474 ± 49</td>
<td>1067 ± 109</td>
<td>98 ± 14</td>
<td>284 ± 42</td>
</tr>
<tr>
<td>Diboson</td>
<td>203 ± 22</td>
<td>62.7 ± 7</td>
<td>10 ± 1</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>Non-W</td>
<td>316 ± 126</td>
<td>141 ± 57</td>
<td>7 ± 4</td>
<td>3 ± 3</td>
</tr>
<tr>
<td>t-channel</td>
<td>193 ± 25</td>
<td>84 ± 11</td>
<td>6 ± 1</td>
<td>15 ± 2</td>
</tr>
<tr>
<td>s-channel</td>
<td>128 ± 11</td>
<td>43 ± 4</td>
<td>32 ± 4</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>Wt-channel</td>
<td>16 ± 4</td>
<td>26 ± 7</td>
<td>1 ± 0</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>Total</td>
<td>5707 ± 877</td>
<td>2719 ± 293</td>
<td>367 ± 66</td>
<td>403 ± 53</td>
</tr>
<tr>
<td>Observed</td>
<td>5533</td>
<td>2432</td>
<td>335</td>
<td>355</td>
</tr>
</tbody>
</table>
lvbb s+t Analysis

- Lepton+jets with 7.5 fb^{-1}
- # of jets/b-tags to define samples (4)
- Train NN with 11-14 variables
- Use s-channel as signal in only 2jet-2tag channel, t-channel for the rest
- Use admixture of systematics shifted samples \rightarrow 3% improvement
- Validate data-background agreement in 0-tag sample
Measure cross section using maximum likelihood fit to the binned NN output distributions

Assume uniform prior probability density for the c.s.

Integrate the posterior probability density over the parameters associated with all sources of systematic uncertainties

\[\sigma_{s+t+Wt} = 3.04^{+0.57}_{-0.53} \text{ pb} \]

CDF II Preliminary 7.5 fb^{-1}

CDF Pub. Note 10793

ICHEP2014, Valencia July 3rd, 2014

Sandra Leone INFN Pisa
t-channel vs s-channel

- We assume a uniform prior-probability density distribution in the two-dimensional plane \((\sigma_s, \sigma_{(t+W_t)})\).
- Determine the cross sections that maximize the posterior-probability density distribution.
- The t-channel and Wt processes are combined as they share the same final-state topology.

\[
\sigma_s = 1.81^{+0.63}_{-0.58} \text{ pb} \\
\sigma_{(t+W_t)} = 1.66^{+0.53}_{-0.47} \text{ pb}
\]

CDF 7.5 fb\(^{-1}\):

- \(\sigma_s^{SM} = 1.06 \pm 0.06 \text{ pb}\)
- \(\sigma_{t+Wt}^{SM} = 2.34 \pm 0.30 \text{ pb}\)

CDF Pub. Note 10793

Theor:
- PRD 83, 091503 (2011)
- PRD 81, 054028 (2010)
- PRD 82, 054018 (2010)
METbb s+t analysis

- Full CDF Run II dataset (9.5 fb\(^{-1}\))
- Recover non-reconstructed electrons and muons and \(W \rightarrow \tau \nu\) (hadronic decay)
- Completely orthogonal dataset to \(\ell + \text{jets}\) selection
- # of jets/b-tags to define samples (6)
- Several NN used against QCD, \(V + \text{jets}\) and \(t\bar{t}\)bar, for s- and t-channels
- \(\text{NN}_{\text{sig}}^{s+t}\) final discriminant is used to separate both s- and t-channel signal from remaining background
- Assume SM \(\sigma_s/\sigma_t\)

\[\sigma_{s+t} = 3.53^{+1.25}_{-1.16} \text{ pb}\]

CDF Pub. Note 11033

ICHEP2014, Valencia July 3rd, 2014

Sandra Leone INFN Pisa
CKM matrix element $|V_{tb}|$

- $\sigma(s+t+Wt) \propto |V_{tb}|^2$ → calculate posterior pdf in terms of $|V_{tb}|^2$

- To transform $\sigma(s+t)$ measurement into $|V_{tb}|$, assume:
 - \Rightarrow SM top quark decay: $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$
 - \Rightarrow V-A and CP conserving Wtb vertex
 - \Rightarrow No assumption on number of families or CKM unitarity

- Complementary with tt decay measurements of the ratio R

$$|V_{tb,meas}|^2 = \frac{\sigma_{meas}}{\sigma_{SM}} \cdot |V_{tb,SM}|^2$$

$|V_{tb}| = 0.95 \pm 0.09$ (stat+syst) ± 0.05 (theo)

$|V_{tb}| > 0.78$ (95% C.L.)

CDF Pub. Note 10793

11% precision
The results of the two analyses ($l+$jets and MET+jets) are combined by taking the product of their likelihoods and simultaneously varying correlated uncertainties.

$$\sigma_{s+t} = 3.02^{+0.49}_{-0.48} \text{ pb} \pm 16\% \text{ precision}$$

t-channel, considering the s-channel as background constrained to theoretical prediction:

$$\sigma_t = 1.65^{+0.38}_{-0.36} \text{ pb} \pm 23\% \text{ prec.}$$

$$|V_{tb}| > 0.84 \text{ @ 95\% C.L.}$$
s-channel optimized analyses

- New lepton+jets and MET+jets s-channel optimized analyses based on Higgs search techniques and selection
- Use CDF full Run II data set, extra lepton trigger adds 10% more leptons
- Innovative multivariate tagger, non-overlapping tagging categories
- Both use NN trained for s-channel in all categories

\[\sigma_s = 1.41^{+0.44}_{-0.42} \text{ (stat+syst) pb} \]

\[\sigma_s = 1.12^{+0.61}_{-0.57} \text{ (stat+syst) pb} \]

PRL 112, 231804 (2014)
PRL 112, 231805 (2014)
s-channel results

$l+\text{jets}$

CDF Run II Preliminary (9.4 fb$^{-1}$)

$\sigma_s = 1.41^{+0.44-0.42}_{-0.42} \text{ (stat+syst) pb}$

PRL 112, 231804 (2014)
CDF s-channel combination

$\sigma_s = 1.36^{+0.37}_{-0.32}\, (\text{stat+syst})\, \text{pb}$

$\pm 27\%$ precision

Single Top s-channel Combination CDF Run II Preliminary, $L = 9.5\, \text{fb}^{-1}$

- **Observed Value**
- **Background Only**
- **Signal + Background**

Observed p-value: $0.000016\, (4.2\sigma)$
Expected p-value: $0.000320\, (3.4\sigma)$

$4.2\, \text{s.d. significance}$

PRL 112, 231805 (2014)
Conclusion

- Single top quark was observed by CDF and D0 in 2009
- Since then, single top measurements have been refined
- Single top quark s-channel production evidence in 2014
- See next talk by C. Schwanenberger for Tevatron combined s-channel observation

- Now CDF single top quark program is almost complete
 \(\Rightarrow\) All measurements in agreement with the SM prediction
 \(\Rightarrow\) Single top quark is one of Tevatron legacies!

- Tevatron combined s+t production cross section is underway
- 2.5 years after the end of RunII CDF continues providing valuable top physics results
Single top & Higgs search

- Single top quark production was a background for searches for a low mass Higgs boson at the Tevatron
 ⇒ s-channel single top shares same final state $l\nu bb$ with Higgs production associated with a W-boson (WH-production)
- Single top observation was a Benchmark to WH Higgs search $\sigma_{WH} \sim 1/10 \sigma_{Singletop}$

Analysis strategy

- **Goal:** combine multiple variables into a single, more powerful discriminant to separate signal from background.

- Several methods have been used:
 - Likelihood functions,
 - Matrix Element,
 - Neural network (NN),
 - Boosted decision tree.

- Check discriminant performance using data control samples.

- Perform the statistical analysis:
 - Build Bayesian posterior probability density to measure cross section.
 - Shape normalization and systematics treated as nuisance parameters.
 - Correlations between uncertainties properly accounted for.