
Level 2 Test Stand

Feb. 22, 02

TL

This talk is intended as a starting point
to discuss L2 test stand issues within

the trigger group

So far people who have been involved
in developing the test stand tools (part time or full time):

Bill Ashmanskas
Henry Frisch
Natalia Kuznetsova
Peter Wittich
TL

UC engineer: Mircea Bogdan and Harold Sanders

“In the longer term, the test-stand system should be aggressively pursued. This
will allow completion of the development effort and longer-term maintenance of
the full system.” As recommended by the committee, we will schedule a workshop
for the L2 group to discuss the specifications for this system…

“The committee thinks that the test station system, combined with the 2nd test
crate sounds like the perfect way to provide various types of simulated event data
(different luminosity, trigger types, suspected failure modes etc.). Providing that
this effort won't impact any activities needed to make the baseline system work, it
should be strongly supported, and prototyping and testing work should go ahead
at full speed.”

L2 Review committee Recommendation (Dec. 14th, 2001):

“Hold a design workshop by the rest of the Level 2 groups in order to ensure that
what is built is safe to use and is capable of exercising all the important parts of
the system in a realistic fashion”.

At Level 2 review, the committee recommended that

“this effort won't impact any activities needed to make the baseline

system work”, so we have had to work a bit independently in the past.

Most of what we have done so far was to learn about various tools and

to learn (and is still learning) about each subsystems to see how to

integrate various interfaces into one board, to fully prepare ourselves to

build the test stand.

Now the Level 2 system is working, things are much less hectic,

we can do what we should have done much earlier, which is to get

together to talk about the test stand plans.

this meeting should focus on the functionality requirements

(or specifications) for the Level 2 test stand, once we agree on what we

should build, then things can move very fast…

We will have more meetings on test stand issues as needed.

A few words about this meeting

How you could use expanded teststand capabilities ?
(from this meeting agenda)

• if we have a teststand with a general input pulser, how
would you want to use it?

--- debugging broken/spare boards;
--- testing firmware modifications;
--- ???

• what type of tests would you want to run?
--- is fixed patterns with fixed timing good enough?
--- data from real events?
--- test multiple boards and check for interference?
--- Randomly timed L1A patterns?
--- Random/user controlled latency of input data?
--- L1As etc driven in a deterministic way? (TESTCLK)
--- L1As etc driven by TS?
--- ???

• what kind of software tools you will need for your testing?

Basic requirement for a L2 data source board:

L1A for buffer n

Data block

latency
To L2 interface
Board input

FIFO

RAM

Test
pattern

(1) upon L1A for buffer n, start a counter for buffer n;

(2) At the same time clock data from RAM into the FIFO,

(3) once the counter reaches latency threshold, clock the data out from the FIFO at the
speed which matches with that of the subsystem… the actual latency is controlled by
when the data is clocked out the FIFO.

This is an over simplified picture. Each subsystem is
somewhat different and to design an universal test
board is not all that easy, we will need the support from
the entire group….

Reces x 4L
1

X
T
R
P

S
V
T

C
L
I
S
T

I
S
O

M
U
O
N

Alphas
X 4

One SVT
Cable each

6 fiber (hotlink)
1 LVDS cable 7 fibers (Taxi) 16 fibers (hotlink)

12 fibers(Taxi)L1 cables

Magic bus

L2 crate inputs

can one design an universal L2 test (pulser) board?
-- to enhance the testability of L2

“provide various types of simulated
event data (different luminosity,
trigger types, suspected failure modes etc.)”

Fixed or variable
data length?

SVT XTRP L1 CLIST ISO Muon

Data with Buffer#?

Incoming data
Clock rate

data size range

Latency range*

EOE with data?
(or from separate path?)

B0 marker?

Data gap within
one event?

Reces

30Mhz 7.6Mhz 7.6Mhz 20Mhz 12Mhz 30Mhz
cdfclk x 4

Interface hardware SVT cable SVT cable L1 cable Hotlink+fiber Taxi+fiber Hotlink+fiber

7.6 Mhz
cdfclk

Taxi+fiber

96 bits/evt

fixed fixed

no
yes yes - no no yes -

yes

Let’s try to fill (or fix) this table

Flow control ?

150bits/trk 21 bits/trk 46bits/clu 145bits/clu 11Kbits/evt 1.5Kb/evt

~ 6 us

yesyes

~132 ns~1us - 10us

variable

yes

BC#

yes

not used

~10-100us

variable

yes

BC#

yes

Not used

yes

no

no

no

~1-20us

variable

yes

no

no

no

variable

no

fixed

no no

no

nono

~1-5 us~few us

* Latency range also depends on L1A history …

no

Design issues for an universal test board:

Hardware requirement is clear:

• have all hardware interfaces for all data paths;

Firmware requirements need more thinking:

• variable data size for some subsystem;
• variable latency (from event to event);
• correct buffer number in the data for a given L1A;
• gaps for certain data paths;
• record real data and reproduce in test stand;
• response to HRR etc
• ….???

a
S
V
T

X
T
R
P

C
L
I
S
T

I
S
O

L2 decision crate

L
1

Reces

Pulsar

Hotlink IO

Taxi IO

SVT/XTRP
L1
TS

CDFctrl

VME

M
U
O
N

Pulsar is designed to have all the data
interfaces that Level 2 decision crate
has. It is a data source for all inputs to
Level 2 decision crate, it can be used
to record data from upstream as well.

PulsAR: Pulser And Recorder

Basic hardware requirement: have all hardware interfaces

S
V
T

Control

T
S

L
1

L
1

S
V
T

Optical IO
Mezz card
connectors

Level2_Pulsar Functional Block

9U VME

CDF
ctrl

Optical
IO

Optical
IO

Optical
IO

Optical
IO

for
hotlink
or Taxi

4 fiber channels

Can source data, also can record data from upstream

T
S

Mezzanine
Card

PULSAR (baseline design)

IO

Ctrl

IO

Hotlink/
Taxi

T
S

L
1

S
V
T
S
V
T

L
1

Front-panel
(double width)

component side
Other connectors (1 L1, 1 TS) will stay inside the board.
The mezzanine card connectors are used for optical I/O (hotlink and taxi)

work on hotlink mezzanine cards is well underway …(Natalia Kuznetsova).
The details are being documented and will be made available to everyone later.

FIFO

FIFO

FIFO

FIFO

Mezzanine cards
• Hotlink: Tx and Rx (CLIST, Muon data paths)
• Taxi: Tx and Rx (Iso, Reces data paths)

Control unit

SRAM

Internal
Test

RAM

controller

L1A
Buf #

FIFOs
L1 data
SVT data
XTRP data

The latency is controlled

by when the data is clocked

out the FIFO

If we want to load large number of events,
we will need to use external SRAM.

FIFO
FIFO
FIFO
FIFO

Optical IO Unit

SRAM

Internal
Test

RAM

controller

L1A
Buf #

The latency is controlled
by when the data is clocked
out the FIFO

hotlink examples:

Muon case
(4 mezzanine cards)

FIFO
FIFO
FIFO

Optical IO Unit
for CLIST caseF E D C B A

8 bits each @50ns, one cluster is encoded
in 6 8-bit words in all 6 fibers

8 bits data streams will be pushed into the FIFOs in the mezzanine card after L1A,
later on they will be clocked out onto fibers. The end of event marker comes out via LVDS connector.

FIFO
FIFO
FIFO
FIFO

LVDS

outputs: 6 fibers + LVDS Another hotlink example

8 bits wide
per fiber

128 words deep

Simple way to load test patterns and send them out (optical paths
as an example)

buffer0

buffer3

buffer2

buffer1
Clocked

FIFO
Fiber

Tx8 1

8

The actual latency will be controlled by
when the data is clocked out the FIFO
after L1A (use a register via VME)

This means the latency will be fixed
for a given test run. This is not good
enough to mimic the real system
as the latency varies from event to event, but
may be good enough for testing spares

FPGA
Internal
RAM

8 bits
data

8 bits
data

8 bits
data

4 Ctrl
bits

another way to load test pattern memory:
use 36 bits data width, 32 will be for 4 fiber output (4 x 8), the highest 4 bits will be used as control bits
to mark the content of data. For each event worth data, the first one will be the header, and the 32 bits
data will contain the latency (&number of words etc) for this particular event and this particular path.
The last one is the trailer, which can contain other info if needed (such as what L2 decision should be etc)
(either use internal RAM or use 16 bit address 36 bit data external SRAM):

Buffer0 data

Buffer1 data

Buffer2 data

Buffer3 data

36bits

8 bits
data

The highest two address bits will be controlled by buffer number to divide
automatically the memory for 4 buffers

How does it work:
(1) after L1A, read the first word(header) and get the latency, at the same time start a counter;
(2) continue to readout the rest of the data words from the memory and clock them into a FIFO,

until the trailer is reached (can get the L2 decision information there)
(3) once the counter reaches latency threshold, clock the data out from the FIFO at the speed

which matches with the subsystem.
this way the latency for each event and each data path can be individually controlled by user.

Buffer 0 data memory

header

trailer

Latency for this event, and other info

data data data data

Other information (what L2 decision should be etc)

One could have more
control by inserting
gaps in between
data words…etc using
the 4 control bits,
to better mimic the
real situation for
certain data paths.

This approach
seem to be
quite flexible

1st event

A few comments:

(1) On average, the maximum data size is from muon. Each fiber can send up to
30 x 4 = 120 8-bit words per event (with 16 fibers total) . If we use a 36 data
bits 16 address bits SRAM, we can load up to a few hundreds of different
events for muon for a given test run. Can load much more for other subsystems.

(2) The latency for each event and for each data path (arrival time into L2 decision
crate after L1A) can be controlled by user to better mimic the real system;

(3) The long data gaps or long delays for some subsystems can be simulated this way;

(4) latency for individual events?

* estimate based on data size (i.e. more clusters -> longer latency etc);
* it may be possible to record the real data with Pulsar in recorder mode and

time stamp the incoming data during recording. Then save them and
can later be used to reproduce the real data with real timing.

* note: actual latency also depends on the history of L1As.

S
V
T

L
1

L
1

S
V
T

9U VME
(VME FPGA not shown)

CDF
ctrl

Optical
IO

Optical
IO

Optical
IO

Optical
IO

Can use Pulsar in recording mode

Rx
mezzanine cards

It is possible to record real data with short test runs.
If fiber splitters are used, then it is possible to even
spy on the data and to record real events, may also possible to
record problem events… shall we look into fiber splitter?

for example, it may be possible to record XTRP data with
timing information: would this be useful?

XTRP input

data
recording

RAM

time
recording

RAM

Counter for L1A buffer n

Both data and arrival time can be recorded with the data strobe from XTRP.
The data latency AND “gap” information can be recorded this way, and can be
reproduce in test stand mode. Since Pulsar has both XTRP input and output connectors,
spying on the data is possible. For fiber connections, need to use fiber splitters to spy
on data, or take short test runs.

P
U
L
S
A
R

Magic bus

Ideal test stand setup: Alpha + Pulsar + interface board(s)
(this setup has been done already at VME speed by Steve, Matt and Peter

with SVT Merger board acting as Pulsar)

A
L
P
H
A

I
N
T
F
A
C
E
data input

Data source: Level2_Pulsar
Data sink: Alpha
Possible data patterns:

(1) hand made
(2) derived from MC
(3) derived from data bank
(4) recorded from upstream,

catch errors and reproduce them

T
R
A
C
E
R

R
O
C

• can test individual board

• can test the full data path;
• can also test multiple boards
and check for interference

• note that with only 2 Pulsar boards
one can source data at the same time for
L1, XTRP, SVT, CLIST, Iso and muon.
need one extra Pulsar to drive one Reces,

• …. what else?

P
U
L
S
A
R

Magic bus or TDC backplane

Another possible setup:
Pulsar + MMB + Interface board

I
N
T
F
A
C
E
data input

Data source: Level2_Pulsar
Data sink: MMB+Pulsar/GB

T
R
A
C
E
R

R
O
C

M
M
B

Magicbus
Analyzer

in case Alpha is not available,
it is possible to use MMB
to sink the data and convert
into SVT data format then
send the data into Pulsar or
a GhostBuster board.

details see Bill’s talk.

or TESTCLK?

Summary

• what’s shown in this talk is what (we think) is possible
to implement, and what we see this test stand can possibly do

• some of what we talked will be easy, and some of them
could take more time to implement.
We need to set priority and get the basic part implemented.
The important thing for this meeting is for our L2 group to
come up with a realistic test stand specifications which

“is capable of exercising all the important parts of the system
in a realistic fashion”.

“allow completion of the development effort and longer-term
maintenance of the full system” and

Will need help from subsystem experts to understand
each subsystem data format, timing requirement etc.

(L1, XTRP and SVT are documented)

Have been talking to many subsystem experts,
and will talk to you more in the coming month.

will show a few examples of the data format
we learned from CLIST and Muon,

train no. I II III IV V VI

sig_0 1 em(5) 1 had(5) 1 crate_sel
sig_1 L1AB(0) em(6) passbit(0) had(6) phi(0) ntow(0)
sig_2 L1AB(1) em(7) passbit(1) had(7) phi(1) ntow(1)
sig_3 em(0) em(8) had(0) had(8) eta(0) ntow(2)
sig_4 em(1) em(9) had(1) had(9) eta(1) ntow(3)
sig_5 em(2) em(10) had(2) had(10) eta(2) ntow(4)
sig_6 em(3) em(11) had(3) had(11) eta(3) ntow(5)
sig_7 em(4) em(12) had(4) had(12) eta(4) ntow(6)

CLIST cluster information from one LOCOS
6 8-bits words per cluster on one fiber input, arriving 50ns apart

Data format from Monica.

pin 1 BUF_DONE(0)+
pin 2 BUF_DONE(0)-
pin 3 BUF_DONE(1)+
pin 4 BUF_DONE(1)-
pin 5 CRSUM_SEND+ (not received by CLIST)
pin 6 CRSUM_SEND- (not received by CLIST)
pin 7 EVENT_DONE*+
pin 8 EVENT_DONE*-
pin 9 unused
pin 10 unused

1 CLIQUE connection (via 10 pin twisted ribbon cable)

The LVDS signals are driven by a 16.7 nsec clock which is a
divided-by-8 copy of the 132 nsec CDF clock:

The time of EVENT_DONE* with respect to the last cluster found
in the event is fixed.

8-bits wide cluster data:
Em(4:0), buff(1:0),1
Em(12 : 5)
Had(4:0), pass(1:0),1
Had(12 : 5)
Eta(4:0), phi(1:0), 1
Ntow(6:0), crate_sel

Evt_done, buff(1:0)

CLIQUE control word

(assume this is the last cluster
for the event è)

LVDS output

LVDS
signal

Hotlink
Fiber data

Transfer A (1st 33ns)

bit0 - data(0)
bit1 - data(1)
bit2 - data(2)
bit3 - data(3)
bit4 - data(4)
bit5 - data(5)
bit6 - data(6)

bit7 - VCC

Transfer B (2nd 33ns)

bit0 - data(7)
bit1 - data(8)
bit2 - data(9)
bit3 - data(10)
bit4 - data(11)
bit5 - data(12)
bit6 - data(13)
bit7 - VCC

Transfer C (3rd 33ns)

bit0 - data(14)
bit1 - data(15)
bit2 - data(16)
bit3 - data(17)
bit4 - data(18)
bit5 - data(19)
bit6 - data(20)
bit7 - Bunch Zero Marker

Transfer D (4th 33ns)

bit0 - data(21)
bit1 - data(22)
bit2 - data(23)
bit3 - GND
bit4 - GND
bit5 - GND
bit6 - L2 Endmark
bit7 - GND

Information from Eric James about muon input:

Each matchbox card sends up to 32 24-bit words for each fiber. The transfer
time for each word is 132 ns. Each 24-bit word is encoded into 32-bit transfer
over hotlink and come in as four groups of 8-bit words.

There is a register on the Matchbox card which gives one the ability to send zero, ten, twenty, or thirty
words to L2. This feature was included in case we needed to complete our data transfer within a given
time window to make the system work. The central trigger primitives are sent in the first ten words,
the forward trigger primitives are sent in the next ten words, and L1 trigger decision data is sent in
the last ten words. If one looks at the table in section 29.5.1 of CDF4152, the words which get sent to
L2 begin with the High Pt CMU East bits (P0+3) and end with the IMB Diagnostic bits (P0+32). The
output ordering of the words is the same as that shown in the table. The pre-match connections work
In exactly the same way. There are only 16 24-bit words output to L2 from each pre-match card.
From the table in section 29.5.2 of CDF4152, the first word which gets sent is the CMP primitives for
stacks 00-23 (P0+2). The last word sent is CMP/CSP west matches for stacks 72-95 (P0+17). The
ordering is the same as in the table. There are also register bits on the Pre-Match to control the
number of words being sent. For this card one would transfer either zero, eight, or sixteen words.

Muon data as an example.
Each word is 24 bits (sent as
4 8-bit words over hotlink).

CDF Muon bank data format

