Alpha Firmware Tests

Stephen Miller
August 30, 2002
Trigger Hardware Meeting
PIO Firmware

- Firmware for reading Reces
- New vhdl design from Rick Kwarciany.
- Successfully tested reading Reces
- Alpha arbitrates with interface boards – Can read Reces at any time. (reduce tail for Reces triggers)
- Takes 500ns of MBus time for reading
- Uses 64 bit burst transfers on PCI bus => only 13us to read all Reces data on a L2A
- Did test reading a single Reces channel for every event during processing
 - For iphi = 0, would hang the alpha and MBus every few minutes (at high rate)
 - For iphi=20 never saw any problem
 - Will get timeout added to design to add robustness to system

- 64 bit transfers requires new code
Pipeline Fpga

- Control of MBus loading now in firmware
- Reduces number of PCI reads/writes required by software
- Allows startload to be sent whenever L1A arrives
 - Better pipelining performance
 - Versus waiting to get to that point in code loop
- Backend of L2-TS handshake put in firmware. Saves about 2us
- Tests were done without any errors.
- Requires new code to use fpga
DMA Configuration

- Put Optimization into Code instead of fpga
- Use PCI burst transfer to write all 6 DMA buffers
 - Versus 6 separate PCI writes
- Saves about 1 us of overhead time for each event
Use new PIO, Pipeline fpga, DMA config code optimization
 – Plus removed DMA config reading, L1 scaler calculation, Timing calculation
 – Had Interface boards just sending EOE word. Only trigger crates in partition.
 – L1 BC trigger PS of 12 gave L1A rate of 143KHz!!, L2A rate of 5Hz
 – L2 ran with only 1% deadtime!

• Times
 – 4 us for MBus loading (pipelined with processing)
 – 6 us between data being loaded and alpha ready to check for next event
 • 1.1us Configuration time. Read fpga fifo, configure DMA, enable fpga for next startload
 • 2.6 us Processing: Unpacking, Autoaccept algorithms, error checking
 • 2.3us for L2-TS handshake
 • Times measured using Logic Analyzer

• Remember: < 1 year ago, this max rate was 20KHz.
VME Block Transfers

- Can enable 64 bit PCI burst transfers for VME readout of TL2D
 - This causes problems for alpha since PCI bus is heavily used during readout
 - Get errors sending last data and reading DMA buffers

- Option 1 Use readoutlist to reduce average TL2D size
 - L1 scalers- 64 words
 - Reces - 48 words
 - Diagnostic - 50 words
 - L2 trigger word - Nwords = Ntriggers
 - L2 scalers - Ntriggers*4
 - Total is 2,248 bytes per event

- Option 2. Put delays in readout code to separate bursts into smaller units
- Option 3. May be able to fix problem running a wire from data fifo ef* pin to fpga, but not certain
- Option 4. Ideally would do all/most of the above anyways.
Plan

• Need to put new code in CVS
• Make official table exe
• Do more Reces tests to better understand problem
• Test without beam
• Test with beam at end of store
• Improvements of not reading DMA buffers should come after new firmware has been running for awhile.
• Improvements for VME readout are separate path
• Once improvements are in place, inform MCR they can up the Luminosity.