SVT internal note N. 51

Hit Buffer Specifications and Design

Last revised: 15 September, 1996
Paocla Giannetti, Franco Spinella

Contents
1 Introduction

2 Communications
2.1 SVT Protocol . . . . . . . . ...
2.2 Packets and Events . . . . . . . ...

3 Hit Buffer Data
3.1 Inputdata. .. .. .. ...
3.2 Outputdata. . . ... .. .. ...
3.3 Dataprocessing . . . . . . ..o

4 Hit Buffer Architecture
4.1 Afewrulesandnotes . . . . . .. . .. ...

5 Data-flow
51 Write Mode . . . . . . . ..
52 Read Mode . . . . . . . . . ..

6 Finite State Machine
6.1 FSMinputs . . . . . . . . . . ..
6.2 FSM outputs . . . . . . . . ...
6.3 FSM internal signals . . . . . . .. ... o oo

7 FSM Auxiliary Logic
7.1 FSM Auxiliary Logic inputs . . . . . . . .. .. .. ... ... ...,
7.2 FSM Auxiliary Logic outputs . . . . . . .. .. .. ... ... ...,

8 Hit List Control
81 Hit Count . . . .. .. L
8.2 Hit List Control block diagram . . . . . ... ... ... ... ....
8.3 Hit List Control timing in the Read and Write Modes . . . . . . ..
8.4 More on Hit addressing . . . . . . ... oo
8.5 Details of the block diagram . . . . . . . ... ... .. ...

9 Hit Buffer Block Diagram

13
13
15
16

17
19
23

25
25
29
29
32
33

34



10 Checking for Integrity and Consistency

10.1 Exception Handling . . . . ... ... ... ... ...

11 Spy Buffers

11.1 Spy Buffer Implementation . . . . ... .. ... ...

12 Init

13 Test Mode

14 VME Interface

14.1 VME Internal Address Map . . . . . .. .. ... ...
14.2 VME Hardware Implementation . . .. .. ... ...

15 Design Partitioning
16 Input/Output Interface
17 Physical Implementation

18 APPENDIX

i

41
41

45
47

49

50

50
51
54

54

56

58

59



1 Introduction

The Hit Buffer (HB) is part of the Silicon Vertex Tracker (SVT), a trigger pro-
cessor dedicated to the reconstruction of particle trajectories in the Silicon Vertex
Detector (SVX) and Central Tracking Chamber (CTC) of the Collider Detector
at Fermilab. A detailed description of the Silicon Verter Tracker can be found in
“SVT: Technical Design Report”.

The overall architecture of SVT is shown in Figure 1. Hit coordinates from Hit
Finders (HF) and tracks from the CTC Track Finder (XFT) are fed both into the
Associative Memory (AM) and the Hit Buffer. The Associative Memory performs
the first stage of a pattern recognition process and reconstructs particle trajectories
with a limited spatial resolution. These coarse resolution track candidates are
named roads. Roads are transmitted from the Associative Memory to the Hit
Buffer, which associates each road with the proper hit coordinates and XFT tracks
and transmits them to the Track Fitters (TF) for the final and refined track finding
process.

The Hit Buffer shall meet the functional and hardware requirements specified
in this document.

2 Communications

Data flow in and out the Hit Buffer as data streams. FEach stream enters or leaves
the Hit Buffer through a dedicated connector and cable. There are two input
streams — called respectively hit stream and road stream — and one output stream
— called road-info stream.

2.1 SVT Protocol

A uniform communication protocol is used for all data transfers throughout the
SVT system. Data flow through unidirectional links connecting one source to one
destination. The protocol is a simple pipeline transfer driven by an asynchronous
Data Strobe (DS_ in the following text, it is an active low signal). To maximize
speed, no handshake is implemented on a word by word basis. A Hold signal is
used instead as a loose handshake to prevent loss of data when the destination is
busy (it is an active low signal and will be called HOLD._ in the following text).
Data words are sent on the cable by the source and are strobed in the destination
at every positive going DS_ edge. The DS_ is driven asynchronously by the source.
Correct DS_ timing must be guaranteed by the source (more details on the data
transfer timing are given later in this document).

Input data are pushed into a FIFO buffer. The FIFO provides an Almost Full
signal that is sent back to the source on the HOLD_ line. The FIFO is popped by
whatever processor sits in the destination device. If the destination processor does
not keep up with the incoming data rate, the FIFO becomes Almost Full and the
HOLD_ signal is sent to the source. The source responds to the HOLD_ signal by
suspending the data flow. Using Almost Full instead of Full gives the source plenty
of time to stop (the equivalent of 127 DS_ cycles).



SVX

Raw SVX Data

HIT
FINDERS

SVX Hits

ASSOCIATIVE
MEMORY

- 3

CTC

XFT

HIT
BUFFER

TRACK
FITTERS

CTC Tracks

Tracks

Figure 1: SVT architecture




The source is not required to wait for an acknowledge from the destination
device before sending the following data word, allowing the maximum data transfer
rate compatible with the cable bandwidth even when transit times are long.

Signals are sent over flat cable as differential TTL.

The maximum DS_ frequency is 30 MHz.

2.2 Packets and Events

On each cable there are 21 data bits, Data Strobe (DS_), HOLD_, Fnd Packet (EP),
End Event (FE), for a total of 25 signals (50 wires). Data are sent as packets of
words. The first word of each packet is called head. In the simplest case a packet
may consist of a single word — the head — otherwise, if more than 21 bits are
needed, a packet may consist of two or more words. The words following the head,
in a multi-word packet, are collectively called body. The EP bit marks the last word
of each packet — the End Packet word. In one-word packets, of course, the word
has EP=1.

The EE bit is used to mark the end of the data stream for the current event.
The complete sequence of words in a data stream is called an Fvent. The Hit Buffer
will assert EE on the output stream after it has received an EE in each input stream
and has no more data to output. The last word of each Event — the End Fvent
word — has a special format. It has EE=1 and EP=1. The data field in the End
Event word is used for Event Tag (8 bits), Parity (1 bits), and Error Flags (12
bits), as shown in Table 1. These bits are processed by the Hit Buffer as specified
below under “Exception Handling”.

bit range 20-9 8 7-0
signal name | Error Flags | Parity | Event Tag

Table 1: Data field in the End Event word

3 Hit Buffer Data

3.1 Input data

In the hit stream, driven by the Hit Finders and the CTC Track Finder, each
packet is called a hit. Each word contains a hit coordinate in the data field (21
bits). Hits may be one word long or more depending on what kind of detector the
hit is coming from (SVX or XFT). The Layer number (3 MSb) is contained only
in the packet head. XFT hits are also called tracks.

In the road stream, driven by the Associative Memory, each packet is called a
road. All roads are one word in length. The 17 LSb of the data field are the road
number and the 4 MSb are the ¢ sector. Internally, the Hit Buffer does not use
the ¢ sector, but it passes this information to the board downstream.



HF & XFT - AM & HB

(2 [t Jof9[8]7[6]s[4[3]2[1[0]9[8 [T][6[5]4[3[2][1]0]

EP | layer(3) | barrel(3) abscissa(15)
EP | layer(3) | barrel(3) abscissa(15)
EP | layer(3) | barrel(3) abscissa(15)
layer(3) $(13) | Pt(5)
additional info(21)
EP additional info(21)
layer(3) | $(13) | Pt(5)
EP additional info(21)
EP | layer(3) [ barrel(3) | abscissa(15)
EE | EP Error Flags(12) | PA | Event Tag(8)
AM — HB

(2 [ 1 [0]9]8]7[6[5[4[3[2[1[0[9[8 [7T[6][5[4[3[2]1]0]

EP | ¢ sector(4) road number(17)
EP | ¢ sector(4) road number(17)
EP | ¢ sector(4) road number(17)
EE | EP Error Flags(12) | PA | Event Tag(8)

3.2 Output data

In the output stream, packets are variable in length. Each packet, called a road-
info, contains a variable number of hits and is terminated by an End Packet word
(EP=1) that contains a road. The output format of the hits is identical to the input
format described above with EP bits removed. The output format of the road 1is
identical to the input format.

3.3 Data processing

Within the Hit Buffer, hits are stored in the Hit List Memory (HLM). A structured
data base i1s built on the fly so that each road number can then be used as a key
to directly access lists of hits. Incoming hits are sorted into a number of classes
according to coordinate value ranges. These classes are called SuperStrips. One hit
list 1s maintained for each SuperStrip, all these lists are built on the fly in the Hit
Buffer as the hits are received on input.

The Hit Buffer works as a well organized library, where books arrive in arbitrary
order and are quickly arranged on bookshelves by basic subjects — one shelf for
each subject. The librarian also maintains a list of complex, interdisciplinary topics.
Each complex topic (e.g. “CMOS VLSI Design”) points to several specific basic
subjects (e.g. “MOS transistor”, “VLSI technology”, “Logic design”, and “System
design”). Usually, the same basic subject will be pointed by many different topics.
When a complex topic is later requested by the user, the librarian looks at the basic

bit number

SVT hit
SVT hit
SVT hit
XFT track
XFT track

SVT hat

end event

bit number

end event



HB — TF

(2 [T JO[9[8]7[6]5[4[3]2[1[0]9[8 [7T[6[5]4[3[2]1]0]

layer(3) | barrel(3) abscissa(15)
layer(3) | barrel(3) abscissa(15)
layer(3) | barrel(3) abscissa(15)
layer(3) $(13) | Pt(5)
additional info(21)
EP | ¢ sector(4) | road number(17)
Tayer(3) | o(13] )
additional info(21)
layer(3) | barrel(3) | abscissa(15)
EP | ¢ sector(4) | road number(17)
EE | EP Error Flags(12) | PA | Event Tag(8)

subjects pointed by the topic and all books on these subjects are quickly found and
delivered.

The book corresponds to the hit, the basic subject to the SuperStrip, the com-
plex topic to the road, and the set of bookshelves to the Hit List Memory. During
the “Write Mode”, hits are copied from the input and immediately organized in
the Hit List Memory, depending on the SuperStrip they belong to. Roads are made
of SuperStrips (one SuperStrip per layer). During the “Read Mode”, each road
received by the Hit Buffer requires that the Hit Lists corresponding to that road
are sent from the Hit List Memory on the output stream, one SuperStrip (i.e. one
layer) after the other.

To provide a very fast access to the Hit List Memory, the Hit Buffer has large
look-up tables where pointers into the Hit List Memory are stored. The “SuperStrip
Map” (SS Map) provides the starting address of the Hit List where each hit must
be written when it arrives (Write Mode), while the “Associative Memory Map”
(AM Map) provides the starting addresses of the Hit Lists to be sent on output
for each road (Read Mode). The contents of the SS Map and of the AM Map are
essentially the same, but the two maps implement different data base structures
with different addressing schemes.

These look-up tables work in the following way:

e SS Map: from hits to SuperStrips

The SuperStrip each hit belongs to is determined by the layer number and the
value of the coordinate in the packet head. Possible body words, containing
additional coordinates, will be ignored for this purpose. The mapping from
coordinate to SuperStrip is defined by a look-up table — the SS Map —
implemented as a RAM where the 17 MSb of the coordinate are used as an
address and the corresponding “SuperStrip ID” is stored in each location.

Two informations are encoded in the SuperStrip ID:

1. the starting address of the relevant Hit List in the Hit List Memory (base
address),

bit number

SVT hat
SVT hat
SVT hat
XFT track

trailer
XFT track

SVT hit
trailer
end event



2. the space reserved for the Hit List of that SuperStrip in the Hit List
Memory (size).

Referring to the first information, we say that the SuperStrip ID “points” to
a memory location, as shown in Table 2. The SuperStrip ID code is described

Hit List Memory
base — | word
| SuperStrip 1D | word Hit List

size word

base+size —

| base | — | word

| SuperStrip 1D | word
| size |

base+size —>

} Hat Lest

Table 2: SuperStrip ID and Hit List structure in the Hit List Memory. Two in-
formations are encoded in the SuperStrip ID: base and size. Base is the starting
address of the memory space reserved for the SuperStrip. Size is the number of
reserved memory cells.

in Section 8. A word counter exists for each SuperStrip to remember the
current length of the corresponding Hit List. All these counts are stored in a
separate Hit Count block described in Section 8.

e AM Map: from Roads to SuperStrips

Each road defines an array of SuperStrips, one SuperStrip per detector layer
— we say that a road is made of a number of SuperStrips. The number of
layers 1s determined by the physical structure of the detector and the Hit
Buffer is capable of accommodating from one to seven layers. Roads are
identified by integer numbers. The correspondence between road number and
SuperStrips is defined by a look-up table — the AM Map — implemented as
a RAM where road number and Layer number are used as an address and the
corresponding SuperStrip 1D is stored in each location.

When a road number is received, it is used to access the look-up table and
sequentially retrieve the pointers to all Hit Lists corresponding to the relevant
SuperStrips, one per detector layer.

These pointers are used to access the corresponding lists. All hits retrieved
in this way are queued to form an output packet. The last word of the packet
contains the road number.



4

Hit Buffer Architecture

The main points about the Hit Buffer architecture are shown in Figure 2 and listed
below:

e the Hit Buffer is synchronized by an internal clock signal, all state transitions

1.

happen on the clock rising edge.

Input data are asynchronously loaded by upstream modules into two FIFO
buffers: Hit-FIFO and Road-FIFO. These FIFQO’s are read via two FIFO
Controllers that convert the asynchronous FIFO protocol to the Hit Buffer
internal synchronous pipeline protocol. This protocol and the FIFO Con-
troller are described in detail in another document (SVT note 34).

After initialization the Hit Buffer is in Write Mode, it turns into Read Mode
after End Fvent is received on the hit input stream, and it goes back to Write
Mode after E'nd Event is received on the road input stream and sent on output
to the next board. In the design Write Mode is distinguished by WR flag =
1 and Read Mode by WR flag = 0. During normal operation the Hit Buffer
starts each event in Write Mode, switches after a while to Read Mode and
stays there until the end of the event, then clears all hit lists and switches to
Write Mode again.

Data-flow from the two input FIFO’s to the output connector is coordinated
by a Finite State Machine (FSM). The FSM requests data from the input
FIFOQ’s and then latches them in an internal latch — called Middle Latch or
ML in the following — which separates the look-up tables (SS Map and AM
Map) from the Hit List Memory. Middle Latch is subdivided in two sections:
ML DATA and ML ADD. When in Write Mode, MLL DATA contains the hit
to be written in the Hit List Memory and ML ADD contains the SuperStrip
ID with the pointer to the Hit List where it will be written (this information
is fetched from SS Map). When in Read Mode, ML DATA contains the
road number and ML ADD contains the SuperStrip ID with the pointer (this
information is fetched from AM Map) to the Hit List to be fetched and sent
on the output stream.

The Hit Buffer can therefore be thought of as a 4 stage pipeline (Figure 2):

from input FIFO’s to FIFO REGISTER under control of the FIFO Controllers
HFCTR and RFCTR (see SVT note 34).

. from FIFO REGISTER to Middle Latch, via SS Map and AM Map, under

control of FSM.

. from Middle Latch to OUT REGISTER, via the Hit List Memory, under

control of FSM. Addressing of the Hit List Memory is done with the help of
the Hit Count and of the Hit List Control logic (HLC).

from OUT REGISTER to the input FIFO of the next board downstream,
under control of FSM.



[z-0lw + [ ]
[s1-€1 SS [e-0lAV1
TOYLNOD -l
1S 1IH = @iﬂ
le-olss/| & o I
Y z 5 VN3
3 [st-0] aay, “HMLIH © z NS4
1 Y ¥ &
2(3\(3) | 15 1
(& o_ AHOW3 1SI7 LIH o
El5 3 ] SSN3
W s o 1H30
310
1
D .
o H104Y
I ;
(M) El
10 3
=z 3
HSNd @ m -0
>
[oz-0] v.1va 3 ) [2z-0lo4uH a
130 4 [0z-0] MSHH % m m
a0 | & d
| 310 IS 3
HOLV1 L Y104H
37AdiiN
abels yuno- abels payL abejs puoosg abels 1si14

9661-g34-v1 20|19 gH

weibelq xoo|g 21607 Joyng HH

dNI'T3dId

JOV1S-v

Figure 2: Hit Buffer architecture



4.1 A few rules and notes

In the next sections we explain the way in which data flow among the different
components of the Hit Buffer, the behaviour of the Finite State Machine that
controls such flow, and the details of all components. The following rules apply in
what follows.

1. All numerations (bits, bus lines...) start from 0.

2. A signal means a wire. Therefore it has a unique name which has to be the
same in the schematics, in the simulation, and in the documentation. Such
a name is UPPERCASE. To make the name more meaningful, lower case
characters may be added freely whenever allowed by space, compilers, etc.

3. The logical operator NOT is indicated by either “NOT.” or “I”. The logical
operator AND is indicated by either “*. AND.” or “*”. The logical operator
OR is indicated by either “.OR.” or “4”.

4. The polarity of control signals is often indicative. In actual implementation,
control signals may be turned from high-active to low-active ones (or vicev-
ersa) if this is called for by the components actually chosen as registers and

RAM’s.

5. By default all signals have positive (high-active, I=TRUE) logic. Negative
logic (low-active, 0=TRUE) signals will be flagged by putting an underscore
(0) at the end of the name. In situation that do not allow underscores (e.g.
ABEL) the letter “X” will be used.

5 Data-flow

5.1 Write Mode

Figure 3 shows data-flow in the Hit Buffer during the Write mode.

In this schematic drawing, all signals entering from or exiting to the sides of the
figure are connected to the FSM and are described in Section 6. The box labeled
“INPUT FIFO 1”7 represents the “Hit part” of the input logic described above,
including the FIFO REGISTER.

21-bit data words — the hit coordinates — are read from the Hit-FIFO under
the HPOP-HPOK protocol (SVT note 34) handled by the FSM. The 17 MSb of the
data word in each packet head are sent as address to the SS Map, whose output,
the SuperStrip ID, is latched in ML ADD controlled by LEADD. The packet head
is identified as the first word after an End Packet word, which is in turn signaled by
the flag LEP. The packet body, if any, must be propagated to the Hit List Memory
without changing the SuperStrip ID stored in ML ADD.

The full 21-bit data words, including those in the packet body, are also latched
in ML DATA, controlled by LEDATA  as data for the Hit List Memory. The address
for the Hit List Memory is generated by the Hit List Control on the basis of two
informations: the SuperStrip ID stored in ML ADD and the content of the Hit
Count. In one clock cycle a read-modify-write operation i1s performed on the Hit



HIT BUFFER SCHEMATIC (WRITING) — V3.4 14-2-96

'

HPOP
—
FIF NTROLLER [
HPOK O cCo O INPUT FIFO 1
1 21 L LEP
(17 FF
Y EP
SS MAP
o1 RAM — 128k
HLE LEDATA Y Y Y HLE
—»{ = | MLDATA | | ML ADD |<«— HLE*LEP |-—
, LEADD
16
21 ’
address , 3 13 |
lower upper CLRTAG
data 6
/ | | ) Yy
write(8)
HIT LIST L HITLIST 7 HIT COUNT
RAM — 64k CONTROL | . . [|TAGRAM -84k
B Y
match(8)

Figure 3: Hit Buffer data-flow: Write mode

10



Count by the Hit List Control — the number of existent words in the current Hit
List is read, incremented by 1, and written back. In the next clock cycle the data
word 1s written into the Hit List Memory. The Hit List Control and the Hit Count
are described in Section 8. The Write Mode ends when the EE bit goes up in the
input hit stream.

5.2 Read Mode

Figure 4 shows data-flow during the Read Mode.

In this schematic drawing, all signals entering from or exiting to the sides of the
figure are connected to the FSM and are described in Section 6. The box labeled
“INPUT FIFO 2” contains the road related part of the input logic, including the
FIFO REGISTER. The multiplexer MUX indicated at the bottom is the logical
representation of what 1s more succinctly represented in the diagram of Figure 2,
where the DATA[0-20] bus combines the 3-state outputs of ML DATA and Hit List
Memory.

21-bit data words — the roads — are read from the Road-FIFO under the
RPOP-RPOK protocol (SVT note 34) controlled by the FSM. They are latched
in ML DATA, controlled by LEDATA, so that they are ready to be sent on the
output stream at the end of the road-info packet. The 17 LSb are the road number
(the 4 MSb are the ¢ sector) and make up the least significant part of the address
to the AM Map. The 3 MSb of such address are the Layer number and come
from COUNTERI1 — a counter controlled by FSM through the signals INCR1 and
CLR1. After a valid word is read from the Road-FIFO, the AM Map output (i.e.
a SuperStrip ID) is latched into ML ADD, controlled by LEADD. The SuperStrip
ID is kept in ML ADD until all hits belonging to that SuperStrip are sent out,
at which time the FSM increments the layer counter (sending INCR1) and latches
a new SuperStrip ID. This process goes on until the last layer i1s reached. This
condition is flagged by the LAST1 signal being asserted by the comparator CMP1
which compares the current layer number with a predetermined number of layers
NLAYT0-2]. NLAYJ0-2] is set, within the range 0 to 7, by a dip-switch located on
the board. In most cases, there will be only one word in each Hit List, therefore a
new word will be latched in ML ADD per clock cycle.

The SuperStrip ID stored in ML ADD is used to address all hits belonging to
that SuperStrip and stored in the Hit List Memory. The addresses of successive hit
words are generated by the Hit List Control on the basis of two informations: the
SuperStrip ID and the output of COUNTER2. COUNTER2, controlled by FSM
through the signals INCR2 and CLR2, counts the number of words read out from
a Hit List. The count limit for this counter, stored in the Hit Count, is retrieved
and tested by the Hit List Control. Hit List Control generates the EMPTY signal
if no hits are in the current Hit List, and LAST2 once all hits have been processed,
i.e. when the content of COUNTERZ is equal to the number of kit words in the
current Hit List.

One clock cycle is lost in case of zero hits, in which a valid LAST2 is also
asserted, as if there was only one hit. EMPTY is therefore used to prevent sending
any output word (disabling PUSH assertion).

The data out of the Hit List Memory are sent on the output stream, one word

11



NRLE

'

HIT BUFFER SCHEMATIC (READING) — V2.3— 14-FEB-96

B RPOP
FIFO -
INPUT FIFO 2 - CONTROLLER RPOK
| EE
4 -
N B INCR1
clk_pm| COUNTERI - CLR1
v 17 ‘
3/ ~ NLAY
LA Y Y Y’'s
21 4 AM MAP V4
RAM — 1M CMP1 LAST1
Y | -
Y
ML DATA ML ADD LEADD RLE
LEDATA
clk_—p! COUNTER?2 INCR2
16 4 3/ 13 4
16 I PPy
HIT LIST MEMORY HITLIST | match | HIT COUNT
RAM — 64k CONTROL [*#=\—] TAGRAM - 64k
8
EMPTY
A 21
Y LAST2
TRAIL
MUX Z
EPOUT
EEOUT
| I g PUSH
OUT REGISTER IHOLD
|

'

Figure 4: Hit Buffer data-flow: Read mode

12



per clock cycle, by asserting PUSH. PUSH assertion is disabled when HOLD_ is
received from the output cable and internally signaled by THOLD.

When the FSM senses the LAST2 related to the last layer (i.e. LAST2 *
LASTI), it understands that it has finished processing one road and appends the
road identifier; stored in ML DATA, to the output stream, by asserting TRAIL,
EPOUT, and PUSH (this is the last word of a road-info packet).

In response to the End FEvent on the road stream, signaled by EE, the FSM
asserts EEOUT to append an End Event word to the output stream. The content
of the End Event word written into the OUT REGISTER is obtained from the End
FEvent REGISTER, where the Event Tag, Parity, and Error Flags have been stored
(see Sections 10 and 10.1 for a description of the End Event REGISTER).

6 Finite State Machine

Figure 5 shows the state diagram for the FSM and the equations that define the
values of its output signals.
The FSM has a 4-bit state register, as shown in the following table:

FSM state bit 3 2 1 0
bit name CLRTAG | TRAIL | READY | SMQO

The FSM is asynchronously reset by the FSMINIT signal, which is the logical
OR of INIT and TMOD (see Section 13).

After FSMINIT, the FSM seats in state 0 waiting for data in the input Hit-
FIFO. State transitions happen on clock rising edge, the next state is prepared
according to the current state and to the status of the input lines,; as indicated by
arrows. The outputs are combinatorial logic functions of the machine state and
of the inputs. In Figure 5, state dependent parts of the assignments are indicated
inside the relevant state box (e.g. EEOUT is asserted while in state S12). State
independent parts of the assignments are indicated in the top left box labeled “All
States” and are meant to be logically OR’ed (indicated with +...) with the state
dependent part derived from the state diagram. E.g., the full logic expression for

the CLR2 output is: CLR2 = NEWLAY .OR. (NOT.IHOLD .AND. State=4).

6.1 FSM inputs

EE Source: FIFO REGISTER. Explanation: “End Event” from either input stream,
bit 22 from FIFO REGISTER (i.e. 23rd bit).

EMPTY Source: M-LINES ENCODER, in Hit List Control. Explanation: This
signal means that the SuperStrip currently present at the output of ML ADD
does not have any hit.

ITHOLD Source: HOLD SYNC. Explanation: “Internal HOLD” is the asynchronous
external HOLD_ from the output connector, syncronized by a flip-flop. It sig-
nals a request to halt data pushing from the downstream board. THOLD is

13



All States

HB FSM Flowchart - 14-FEB-96

RLE =RPOK*NEWLAY +

RPOP = RPOK*NEWLAY*LAST1+....
CLR1 =RPOK*NEWLAY *LAST1+....
INCR1 = RPOK*NEWLAY*(ILAST1)+...

CLR2 = NEWLAY + ...

INCR2 = READY*(IEMPTY)*(!IHOLD)*(ILAST2)

PUSH = READY*('EMPTY)*(!IHOLD) +

TRAIL*(!IHOLD)

FSM FLOWCHART

FSM=
[CLRTAG,TRAIL,READY,SMQOQ]

RPOK*(IEE)

S1| NRLE=RPOK*(IEE)
RLE=...+RPOK
INCR1=...+RPOK

EE*HPOK

NEWLAY=LAST2*(!IHOLD)

S2
READY

RPOK*('EE)*(IHOLD)

_<_

(IRPOK)*(IHOLD)

—)
i}

RPOP =...+4EE*HPOK

S0 O + O

HPOP=(IEE)*HPOK

WR=!(EE*HPOK)
CLR1

HLE=HPOK

A

RPOK*EE

LAST1*NEWLAY

{

READY S3

LAST2*(IIHOLD)

+ S4

TRAIL
EPOUT
NRLE=RPOK*(IEE)*(!IHOLD)
RLE=...+(!IHOLD)*RPOK
INCR1=...+(IHOLD)*RPOK
CLR2=...+(!IHOLD)

(HOLD) | CLRTAG S12

|
RPOK*EE*(IHOLD)

CLRTAG TRAIL

EEOUT

HPOP | S8 EPOUT
WR

Figure 5: Hit Buffer Finite State Machine state diagram

14



valid during the full clock cycle (synchronous signal) and can be tested at any
time. Suspension of data pushing may be delayed by a few clock cycles after
detection of HOLD_.

HPOK Source: Hit-FIFO Controller HFCTR.. Explanation: “Hit Pop OK” means
that data at the output of FIFO REGISTER are valid and can be latched at
the next clock rising edge. More details in SVT note 34.

LAST1 Source: Comparator CMP1. Explanation: this signal means that the
layer currently being processed is the last in a road.

LAST2 Source: Comparator CMP2 in Hit List Control. Explanation: LAST2
means that the current output of the Hit List Memory, i.e. the word that will
be latched in OUT REGISTER at the next clock rising edge, is the last word
in the current Hit List.

LEP Source: EP Flip Flop. Explanation: “Late EP bit” signals the End Packet
word with a one-cycle delay.

RPOK Source: Road-FIFO Controller RFCTR. Explanation: “Road Pop OK”
means that data at the output of FIFO REGISTER are valid and can be
latched at the next clock rising edge. It has the same meaning as HPOK, but
for the road stream. More details in SVT note 34.

6.2 FSM outputs

CLR1 Destination: COUNTER]1. Explanation: “CLeaR1” clears the content of
COUNTERI at next clock rising edge.

CLR2 Destination: COUNTER2. Explanation: “CLeaR2” clears the content of
COUNTER2 at next clock rising edge.

CLRTAG Destination: Hit Count. Explanation: “ CLeaR TAG ram” clears the
Hit Count contents all at once, at the end of the Read Mode. It must be
asserted for two consecutive clock cycles since the Hit Count is implemented
with chips IDT7T1B74 (see Section 8), which require a reset pulse width greater
than 50 nsec.

EEOUT Destination: OUT REGISTER. Explanation: “End Event OUTput bit”
to be registered in the output word at the next clock rising edge.

EPOUT Destination: OUT REGISTER. Explanation: “End Packet OUTput bit”
to be registered in the output word at the next clock rising edge. EPOUT
is actually equivalent to TRAIL (i.e. EPOUT = TRAIL), but for clarity we
continue to use both names.

HLE Destination: AUXILIARY LOGIC (see Section 7), HIT LIST CONTROL
and EE REGISTER. Explanation: a new word is available in the FIFO REG-
ISTER, from the hit stream. “Hit Latch Enable” enables the FIFO REGIS-
TER output to be latched into ML. DATA and the SS Map output to be

15



latched into ML ADD. It is also needed by the Hit List Control and is one of
the control lines CTRLINES to the EE REGISTER.

HPOP Destination: Hit-FIFO controller HFCTR. Explanation: “Hit POP” re-
quests a new word from the Hit-FIFO. Requested data (if available) will be
latched into FIFO REGISTER at the next clock rising edge. See SVT note
34 for more details.

INCR1 Destination: COUNTERI1. Explanation: “INCRementl” increments by
1 the content of COUNTERI at next clock rising edge.

INCR2 Destination: COUNTER2. Explanation: “INCRement2” increments by
1 the content of COUNTER2 at next clock rising edge.

NRLE Destination: AUXILIARY LOGIC and EE REGISTER. Explanation: a
new word 1s available in the FIFO REGISTER from the road stream. “New
Road Latch Enable” enables the FIFO REGISTER output to be latched
into ML DATA. It is also one of the control lines CTRLINES to the EE
REGISTER.

PUSH Destination: OUT REGISTER, DS_ GEN. Explanation: “PUSH” sends

one word on the output stream.

RLE Destination: AUXILIARY LOGIC and EE REGISTER. Explanation: “Road
Latch Enable” enables the AM Map output to be latched into ML ADD. It
is also one of the control lines CTRLINES to the EE REGISTER.

RPOP Destination: Road-FIFO controller RFCTR. Explanation: “Road POP”
requests a new road from the Road-FIFO. Requested data (if available) will
be latched into FIFO REGISTER at the next clock rising edge. See SVT
note 34 for more details. RPOP has the same meaning and use as HPOP, but
refers to the road stream.

TRAIL Destination: OUT REGISTER Explanation: “TRAIL” indicates whether
the word to be sent in output is either a hit word (TRAIL = 0) or an End
Packet / End Event word (TRAIL = 1). TRAIL is equal to EPOUT. TRAIL
is one of the FSM state bits.

6.3 FSM internal signals

There are a few signal in Figure 5 that are neither external inputs nor outputs,
they are convenient names for signals generated and used internally by the FSM,
defined in order to simplify the diagram.

NEWLAY Used in Read mode only. Means that the FSM wants the SuperStrip
address corresponding to the next layer in the current road to be latched in
ML ADD at the next clock rising edge.

READY Is one of the FSM state bits. It is also used in Read Mode to indicate
that valid data are present at Middle Latch output. Data are valid while
READY 1is asserted.

16



WR Explanation: “WRite mode” defines the Hit Buffer to be in Write Mode (WR
= 1) or Read Mode (WR = 0).

7 FSM Auxiliary Logic

The Auxiliary Logic is a slave hardware sharing all the FSM signals (inputs, outputs
and internal signals) to generate control lines.

The Auxiliary Logic receives also inputs from other pieces of hardware, like the
VME slave or the Fifo Controllers, whose actions need to be combined with the
main FSM actions to generate the global control lines. The multiplexing between
the VME and the Hit Buffer state machine actions is controlled by the signal Test
MODe (TMOD, see Section 13).

-

[FISO + [F]S1+ from h

[FIS3 T [FIFCTR

[FIS2 * HPOP

[FIREFCTR
[FIRD_
(_ [FIEF_ * not (INIT) D
[FIREVME
(from VME) J

TMOD

Figure 6: Fifo read enable generation. The symbol [F] should be replaced by H or
R to obtain the two drawings relative to the Hit or Road fifo.

The main control functions of the Auxiliary Logic are:

1. Control of the pipeline stages, generating clock enables to Middle Latch reg-
isters (LEDATA and LEADD as shown in Figures 3 and 4) and read enables
to fifos (HRD_ and RRD_). In Figure 6 it is shown how the fifo output control
is implemented. The symbol [F] should be replaced by H or R to obtain the
two drawings relative to the Hit or Road fifo. The signals HREVME and
RREVME (represented by [FJREVME in Figure 6 ) allow a fifo to be read by
VME. The VME action (enabled by TMOD=1) is multiplexed to the action
of the standard ”Fifo Controller” (enabled by TMOD=0), described in the
document SVT note 34. The synchronous [F]fifo push out a word on the next
clock rising edge, if the [F]RD_is active (low).

2. Control of buses, generating the output enables of the three state buffers.
Three buses are in the Hit Buffer : the fifo’s output bus (HRFQ[0-22] in
Figure 2), the map’s output bus (LKO[0-15] in Figure 2), and the data bus
going to the output register (DATA[0-20] in Figure 2). In all these cases the

17



(TMOD * AMSSRD (from VME)

hot [not(LEE) * EE ] * SO

— ENSS_

ACT
S8 FF
ACTIVE COND T™MOD
R SS MAP OE
CLK L
not(DCLEtI J
RESET FF | not(DCLK)
CLK
4 N )
([LAYCN2..0]=N -1) TMOD b R

* NEWLAY

* not(LAST1)
S2*
(ILLAYCN2..0]=N)
* not (NEWLAY)

ACT
ﬂ D FF

ACTIVE COND

ACTIVE COND )

not(NRLE)* (S1 + S4) )

SO0 * EE |

LAST2 * S3

ACTIVE COND )

N >1

TMOD * ([LAYCN2..0]=N) *
) AMSSRD (from VME)

enamrN

EN FF
-

= ENAMN_

CLK
CLK
— i R
~ TMOD
NRLE ACT
—I> Fe
enamri
s2v |
([LAYCNZ2..0]=N)
* not (NEWLAY)

CLK

_Lb R

TMOD

ACT
= Pl e
enamrO

AM MAP OEs

Figure 7: SS and AM MAP output enable generation. In the AM MAP 8 memory
chips, one per layer, share the same data bus. For this reason 8 output enables are
provided. The logic in the drawing is valid for all layers N (ENAM_N_), but the
reset signals enamrl and enamr( for the layers 1 and 0 are drawn independently

because different.

18




generated output enables are shaped to guarantee no conflict between the
different objects that can drive the bus. When the driving of a bus must
be changed inside a clock cycle, the control logic is built so that the “active
enable” is disabled before the “inactive enable” 1s activated. This function
i1s implemented using Flip-Flops to generate the enables. The D inputs are
used to synchronously disable the enables (5 nsec of delay from the clock
rising edge), while asynchronous resets, whose timing is controlled by a double
frequency clock, are used to activate the enables with a delay that is roughly
a quarter of clock cycle.

Figure 7 shows the most difficult case, the control logic for the LKO bus.
Eight enables to the AM MAP (ENAM_[0-7]) and the enable to the SS MAP
(ENSS.) are generated in the EN FFs, multiplexing the VME action with the
FSM action. If FSM has the control of the bus (TMOD=0), each enable is
disabled at each clock rising edge (5 nsec of delay). If an ACTIVE CONDition
shown in the figure is TRUE the corresponding ACTive FF will be able to
activate the output enable trough the asynchronous reset whose timing is
controlled by the double frequency clock DCLK. The RESET FF turn off all
ACTive FFs at each clock cycle, so that the asynchronous reset generated by
them is short and cannot override the synchronous set of EN FFs at the next
clock rising edge.

Figure 8 shows the control logic for the DATA bus. The same strategy is used
since the EN FFs are synchronously disabled and asynchronously activated
by the ACT FFs whose action is delayed a quarter of clock cycle with respect
to the synchronous action.

Figure 9 shows the control logic for the HRFQ bus. The logic is simpler
because the Hit and Road fifos are active in well separated phases of the
event processing (during WRITE MODE is active the Hit-FIFO and during
READ MODE the Road-FIFO). However, in the last clock cycle of the FSM
state 0 (the end of SO is the end of the WRITE MODE) the bus must be
released by the Hit-FIFO and taken by the Road-FIFO. It is necessary to
disable quickly WR_ to allows RD_ to be activated in the same clock cycle.

3. Control of the memories, generating the chip select signals. Chip selects are
not continuously activated to reduce power dissipation on the board. Figure
10 shows this control logic.

4. Control of output data flow. Figure 11 shows the generation of the output
Data Strobe (DS_ is active low to be used directly as it is in the down-
stream Fifo), the output data bus (OUT[0-22]) and the output Spy Buffer
bus (OSPY[0-22]) used by the Spy Buffer system, devoted to data flow mon-
itoring (see Section 11).

7.1 FSM Auxiliary Logic inputs

Here we list the inputs that are not described in the Section 6.

19



ACTIVATE COND PULSE

NRLE * not(EE) ACT [
FF

CLK

s
5
S
[,
@]
EI:I

S3LAST2* — 5. OEHIT_
not(IHOLD) o ) REN -

FF
READY
Clk L

DISABLE COND

ACTIVATE COND PULSE
S3* LAST2 * acr] | GEN
not(IHOLD) e [
CLK —p | J not(DCLK)
not(READY) * S OEMLD
not(NRLE * not(EE)) EN -
DISABLE COND FF
CIFL

FSM_state:( 0o X1 X 2 {3 X4 ) 2 )(sl)(4l>(5l)
NRLE*not(EE) | [1]

E
I
I
]
I
I
I
I
I
I

T T
I I
I I
I I
] ]
I I
I I

’_:_I;

OEHIT_

OEMLD

. .
I I
I I
I I
f f
I I
I I
I I
I I
I I
I I

Figure 8: Hit List Memory and Middle Latch DATA output enable generation.

20



from FHLE HOEVME (from VME

HFCTR TMOD INIT

HRFQ22 S8+S0 D—ﬁ -
WR_ (to HIT
FIFO)

S1+S2+S3+S4
)

- P
EETHPOK :|> F’:D_ROAD FIFO
TMOD (to )

@OEVME (from VMED

Figure 9: Fifo’s output enable generation.

AMSSRD Source: VME interface. Explanation: “AM SS map ReaD” activates
the output enable to the AM or SS MAP from the VME interface (see Figure
7).

AMVME_ Source: VME interface. Explanation: “AM map select from VME” is
the chip select enable to read or write the memory from the VME interface
(see Figure 10).

FHLE Source: Hit Fifo Controller. Explanation: “Fifo Hit Latch Enable” is the
clock enable to the Fifo Register from the Hit Fifo ConTRoller. It is active
when a new word available from the Hit Fifo should be latched in the Fifo
Register (see Figure 9).

HREFCTR Source: Hit Fifo Controller. Explanation: “Hit Read Enable from
Fifo Controller” is the read enable (see Figure 6) to the Hit Fifo from the
internal state machine HFCTR, the Hit Fifo ConTRoller.

HRFQ22 Source: Hit-FIFO, Road-FIFO. Explanation: “Hit Road Fifo Q output
bit 22”7 is the end event bit in the HRFQ bus (see Figure 9).

HREVME Source: VME interface. Explanation: “Hit Read Enable from VME”
is the read enable to the Hit Fifo from the VME interface (see Figure 6).

HOEVME Source: VME interface. Explanation: “Hit fifo Qutput Enable” is the
output enable to the Hit Fifo from the VME interface (see Figure 9).

LAYCNJ[0-2 ] Source: COUNTERI. Explanation: “LAYer CouNter” is the out-
put of the counter COUNTER] in Figure 3 and keeps track of the number of
the layer currently processed.

21



(SSVME_ (from VME)) SS MAP CHIP SELECT

TMOD

SO * FHLE * not (HRFQ22)

L
not (EE) * S0 P ) > SSCS_
S8 CLK

C([IVAD19..IVAD17] =N) * AMVME_ (from VMED

TMOD
([LAYCN2 .0]=N -1) * NEWLAY
* not(LASTT)

j > AMCS_N
N> 1
S2 * ([LAYCN2..0]=N) CLK g

* not (NEWLAY)

C([IVAD19..IVAD17] =1) * AMVME_ (from VME))

TMOD

NRLE*not(EE) — AMCS. 1
* (LAYCN2..0]=1) C'-K*O\E

not (NEWLAY)

(([IVAD19 IVAD17] = 0) * AMVME._ (from VME))

TMOD
SO * EE * not(HPOK_)

S1* not(NRLE) + S4 > AMCS_0
S3 * LAST2 * not (EE) C'-K

AM MAP CHIP SELECTS
(8 lines, one line per LAYER).

Figure 10: SS and AM MAP chip selects generation.

22



TMOD

L PUSHTOT -

PUSHVME Y DS_ DS_
(from VME) CLK GEN

PUSH

not(DCLK)
p N\
IVDATA[O - 22] CE
OUT_PArity DATApzer—~1 » OUT[0-22]
(O]
DATAS V) & OSPY[0-22]
DATA[7-0] =
2
EEOUT CLK 0 ENSPY ROiUT
ouT IVDATA[0-22]
GEN
L IVADD19 )

Figure 11: Output data and Data Strobe (DS_) generation.

PUSHVME Source: VME INTERFACE. Explanation: “PUSH from VME” al-
lows to write a word in the output register from VME (see Section 14.1) and
to generate in the following cycle the Data Strobe (DS_) sending one word on
the output stream (see Figure 11).

RREFCTR Source: Road Fifo Controller. Explanation: “Road Read Enable
from Fifo Controller” is the read enable (see Figure 6) to the Road Fifo from
the internal state machine RFCTR, the Road Fifo ConTRoller.

RREVME Source: VME interface. Explanation: “Road Read Enable from VME”
is the read enable to the Road Fifo from the VME interface (see Figure 6).

ROEVME Source: VME interface. Explanation: “Road fifo Output Enable” is
the output enable to the Road Fifo from the VME interface (see Figure 9).

SSVME_ Source: VME interface. Explanation: “SS map select from VME” is
the chip select enable to read or write the memory from the VME interface
(see Figure 10).

TMOD Source: VME interface. Explanation: “Test MODe” puts the Hit Buffer
in Test Mode. When the Hit Buffer is in Test Mode (as long as TMOD is
TRUE) it is possible to access internal data from VME (see Section 13).

7.2 FSM Auxiliary Logic outputs

AMCS_[0-7 ] Destination: AM Map. Explanation: RAM chip selects. Since 8
memory chips, one per layer, share the same data bus, 8 chip selects are
provided.

23



DS_ Destination: Line Driver of Output Connector. Explanation: Data Strobe
signal is sent in output to the downstream board where is used to write data
in the input fifo.

ENAM_[0-7 ] Destination: AM Map. Explanation: RAM chip output enables.
Since 8 memory chips, one per layer, share the same data bus, 8 output
enables are provided. These signals are shaped to guarantee no conflict on

the LKO bus.

ENSS_ Destination: SS Map. Explanation: RAM chip output enable. Since the
SS Map share the data bus with the AM Map, ENSS_ is shaped to guarantee
no conflict on the LKO bus.

HRD_ Destination: Hit-FIFO. Explanation: read enable for the Hit-FIFO. If
HRD._ is active the Hit-FIFO push out a word at the next clock rising edge.

LEADD Destination: ML ADD. Explanation: “Latch Enable ADDress” causes
the present output of the look-up table (SS Map while in Write mode, AM
Map while in Read mode) to be latched at the next clock rising edge. LEADD
is simply defined as: LEADD=RLE4+HLE*LEP (see Figures 3 and 4)

LEDATA Destination: ML DATA. Explanation: “Latch Enable DATA” causes
the present output of the FIFO REGISTER to be latched at the next clock
rising edge. LEDATA is simply defined as: LEDATA=NRLE4HLE (see Fig-
ures 3 and 4).

OEHIT_ Destination: Hit List Memory. Explanation: enables the Hit List Mem-
ory output. This signal is shaped to guarantee no conflict between the Hit
List Memory (OEHIT. is the enable) and ML DATA (OEMLD is the enable)
on the DATA bus.

OEMLD Destination: ML DATA. Explanation: enables the ML DATA output.
This signal is shaped to guarantee no conflict between the Hit List Memory

and ML DATA on the DATA bus.

RD_ Destination: Road-FIFO. Explanation: enables the Road-FIFO output. This
signal is shaped to guarantee no conflict of the Hit and Road-FIFO on the
HRFQ[0-22] bus.

RESTAG_ Destination: Hit Count. Explanation: RESTAG_ is the Hit Count
reset. It is simply defined as RESTAG_ =NOT(INIT+CLRTAG).

RRD_ Destination: Road-FIFO. Explanation: read enable for the Road-FIFO. If
RRD._is active the Road-FIFO push out a word at the next clock rising edge.

SSCS_ Destination: SS Map. Explanation: RAM chip select. Since the SS Map
share the data bus with the AM Map, one chip select 1s provided.

WR_ Destination: Hit-FIFO, FIFO REGISTER, SPY BUFFER CONTROL (see
Section 11). Explanation: enables the Hit-FIFO output, identifying the right

24



time hits flow to the FIFO REGISTER and to the Hit Spy Buffer. This
signal is shaped to guarantee no conflict of the Hit and Road-FIFO on the
HRFQ[0-22] bus.

8 Hit List Control

The Hit Buffer has the capability of storing more then one hit for each SuperStrip
— one Hit List per SuperStrip. In addition, the maximum number of words in a Hit
List — the reserved size — is allowed to vary as a function of the SuperStrip, up to
a maximum of 8. Additional words above the maximum allowed for a SuperStrip
are discarded: the Hit List Memory content is never overwritten during an event.
This overflow situation is signaled by asserting an error bit. The size reserved for
each SuperStrip may be 2, 4, or 8. Since the Hit List Memory is 64k words deep,
the maximum number of Hit Lists that the Hit Buffer will handle is between 213
and 215,

The size reserved for a SuperStrip is encoded in the 2 LSb of the SuperStrip 1D.
For the current SuperStrip, these are the 2 LSb of the 16-bit output of ML ADD
— SS[0-1] in Figure 2. The code is shown in Table 3.

Size | SS1  SSO
2 X 0
4 0 1
8 1 1

Table 3: SS code for the maximum number of words 1n a Hit List. The size reserved
in the Hit List Memory is encoded in the SuperStrip 1D.

With the appropriate timing, the Hit List Control generates the 16-bit address
of each word in the Hit List Memory — ADDJ[0-15] in Figure 2. The 13 MSb of the
address (ADDI[3-15]) are obtained from the 13 MSb of the SuperStrip ID coming
from ML ADD (SS[3-15]). The 3 LSb of the address (ADD[0-2]) are obtained by
combining the 3 LSb of the SuperStrip ID (SS[0-2]) and the information stored
in the Hit Count (while in Write Mode) or in COUNTER2 (while in Read Mode).
Details of the Hit List Memory addressing will be given in the following subsections.

8.1 Hit Count

The Hit Count keeps track of the number of words currently stored in each Hit List
acting as a set of counters. The Hit Count is implemented as a TAG RAM using
chips IDT71B74. This allows a fast reset of all counters at the end of each event. A
simplified block diagram of such a chip is shown in Figure 12. The IDT71B74S10
is a high-speed address comparator consisting of a static RAM organized as 8k x
8 bit and an 8-bit comparator. It continuously compares the input data to the
content pointed by the address lines and sets the Match line to 1 or 0 according

25



. Cache-Tag Ram - 17 March 1995
IDT71874 BiCMOS

64k CACHE-TAG RAM
Simplified Block Diagram

Address | 8k x 8-BIT

7 13 MEMORY ARRAY
1/0O data

/ I I/O CONTROL
8 ¢
EQUAL
Y
MATCH

Figure 12: Simplified block diagram of a TAG RAM chip

to successful /unsuccessful comparison. The IDTT1B74 also provides a single RAM
clear control, which clears all words in the internal RAM to zero when activated.

In the Hit Count, 8 chips are connected as shown in Figure 13. Note that the
chips are used as if they were 8k x 1 bit. The CLRTAG signal resets all TAG RAM
content to zero. The CLRTAG signal will have to be asserted for two consecutive
clock cycles, to make it long enough to satisfy chip specifications.

The Hit Count keeps track of the number of words currently stored in each
Hit List acting as a set of unary counters, the counter bits being the output of the
Match lines. According to the SuperStrip ID least significant bits (SS[0-2]) the Hit
Count can be seen as a single bank of 8k 8-bit unary counters, 2 banks of 8k 4-bit
unary counters, or 4 banks of 8k 2-bit unary counters. Table 4 shows (with a #
symbol) which of the 8 Match lines must be combined according to the possible
values of SS[0-2] to yield the unary counter bits. All of these counters are cleared
simultaneously at the beginning of each event by the CLRTAG signal. The current
number of words stored in the Hit List is obtained by converting from unary to
binary the M lines flagged with #. In Write Mode, the appropriate counter is
increased every time a word is stored into the Hit List Memory. This is done by the
Hit List Control that activates the proper Write line (W_[0-7]) to the Hit Count,
as indicated in Table 5.

26



ADDOO — ADD12

HB TagRam - V2.1 - 25/10/94

CLRTAG

WRITE 0-7

Figure 13: Hit Count

MATCH 0-7

[ SS2 [SS1 ]SS0 || MO | M1 ][ M2 | M3 | M4 | Ms | M6 [ M7 |

0 [ 0 0 [ #] #

0 | 1 [ 0 # | #

L [0 ] o # | #

T [ 1 ] 0 # | #
0 | 0 | 1 || # | # | # | #

1o |1 # | # | # | #
x |10 N HFEH#E L H#E L H#E L #E | HEHEH

Table 4: Match lines to unary counter correspondence

27



HIT LIST CONTROL

HLC block - 14-FEB-96

NOT(HOVRFLW) hITWR_
*HITWE D Q >
CLK —»S
NOT(INVADD) I
“HLE® HITWE \ .
NOT(EE) NOT(HITWR_*HITWEDEL) NOTI-(ili)TCLK)
CLK HITWEDEL WRITER
INIT | NOT(CLK)
M [0-7]
SS[0-2]
HITCN [0-2] M- LINES
yvy  ENCODER
SS [3-15]
COMB.
LOGIC
COMB. COMB.
LOGIC LOGIC
Al
NOT(CLK)* |WD [0-7 COMB.
NOT(DCLK) LOGIC ot C|LK
' TOTHIT (CLK)
s | —
l NOT(CLK) [0-2]I
NOT(CLK) Y Y
w_ \MY% app \M f/
OEN GEN CcMP2
Y Y Y \j Y
W_[0-7] ADD[0-2]  ADD[3-15] = LAST2 EMPTY HOVRFLW

Figure 14: Hit List Control block diagram

28



[[SS2 [ SST [ SSO [ WO [ WI [ W2 [ W3 [ W4 | W5 [ W6 | W7 |

0 0 0 1 MO

0 1 0 1 M2

1 0 0 1 M4

1 1 0 1 M6
0 0 1 1 MO | M1 | M2

1 0 1 1 M4 | M5 | M6
p'd 1 1 1 MO | M1 | M2 | M3 | M4 | M5 | M6

Table 5: Write lines assertion rule. Each W_ line is asserted (i.e. given a low
pulse) when a 1 appears in the corresponding row-column. Mn indicates that W_
is asserted if Mn is 1.

8.2 Hit List Control block diagram

Figure 14 shows a block diagram of the Hit List Control that allows us to summarize
its functions:

1. The block ADD GEN generates the address of each word in the Hit List
Memory (ADDJ[0-15]).

2. The block W_ GEN generates the write lines to the Hit Count (W_[0-7).

3. The block M-LINES ENCODER generates the binary code of the current
Hit List length using the M lines from the Hit Count (TOTHIT][0-2]). Tt also
generates signals for flagging empty Hit Lists (EMPTY) and Hit List overflow
(HOVRFLW).

4. The comparator CMP2 signals the last Hit List word (LAST2), when HITCN[0-
2] from COUNTER2 match TOTHITI[0-2].

5. The block HIT WRITER generates the control signals necessary for writing
a word in the Hit List Memory (HITWEDEL and HITWR.).

8.3 Hit List Control timing in the Read and Write Modes

Figure 15 shows the timing diagram of the Hit List Control signals. During the
Write Mode, the functions of the Hit List Control are doubled with respect to those
in Read Mode. While in Write Mode, in a single clock cycle a read-modify-write
operation is performed by the Hit List Control on the Hit Count. For this reason
the timing is more complicated in the Write Mode.

Write Mode

1. During the first half of the clock cycle, the Hit Count TAG RAM chips are
read at the address SS[3-15] to generate the proper values of the Match lines

29



HIT LIST CONTROL TIMING 20/4/1995

«— WRITE MODE

Slinininininlinl
oo ML

HLErEErNvADD | | [ - [+ [[

READ MODE ————

ginipiniin
ikl

HITWE_1 EN . . .

HITWEDEL_1 - Jo3 . . ]
wmwe_ T R LTL

HITCN [0-2] 7
ADDM [0:2] : @j Wj -
ADDM [3:15] |_ |_‘|

M[0:7] REn

R
Wo_ 25: UW_L
L

W1_ 1 1
w2_ oL

store next hit & get next next hit count
increment next hit count
store hit & get next hit count
increment hit count
get hit count

Figure 15: Hit List Control timing. The numbers by signal edges indicate simulated
delay in nsec from clock rising edge, using the Xilinx EPLD X7336-5.

30



MJ[0-7]. These Match lines combine with SS[0-2] to generate the proper WD[0-
7] and ADD[0-2] signals (blocks W_ GEN and ADD GEN in Figure 14), so
that the proper counter in the Hit Count can be incremented in the second
half of the clock cycle and the hit word may be stored in the Hit List Memory
in the next clock cycle. During the first half of the clock cycle the previous
hat word, if any, 1s stored in the Hit List Memory. The HOVRFLW signal is
also generated in the first half of the clock cycle, according to Table 6. When

wn
[N}
wn
—
wn
<

Rl olololo|ln

HOVRFLW
M1
M3
M5
M7
M3
M7
M7

A Nl et BEY Neol Neol B s)
= oo~ ol—lo|ln

Table 6: HitOVeRFLoW 1is set by one of the odd Match lines if activated when the
relative SS[0-2] code is also selected. On the same raw it is shown the Match line
and the corresponding code

HOVRFLW is asserted, the current word will not be stored into the Hit List
Memory.

2. During the second half of the clock cycle, the W_[0-7] lines are used to incre-
ment by 1 the unary counter by properly writing into the TAG RAM chips
(see Table 5). This write operation alters the status of the Match lines M[0-7].

3. The output signals W_ [0-7] and ADDJ[0-2] (see Figure 14), needed in the
second half of the clock cycle, are functions of the Match lines. In order to
keep them stable while the TAG RAM is being written, they are generated
during the first half of the clock cycle and then saved in a flip-flop register
latched by the clock trailing edge (see the blocks W_ GEN and ADD GEN in
Figure 14). This flip-flop also guarantees a stable address in the first half of
the next clock cycle, when the word 1s written in the Hit List Memory. For
the same reason, also the lines ADD[3-15] are saved in flip-flops (see Figure
14) latched by the clock trailing edge.

Read Mode

During the Read Mode, the Hit List Control gets the total number of hits to
be pushed on output, by decoding the unary counter (Match lines M[0-7]) into a
binary code (TOTHIT[0-2]). Under control of SS[0-2], the M-LINES ENCODER
(see Figure 14) picks the relevant Match lines, indicated in Table 4, from the Hit
Count and generates TOTHIT[0-2], according to Table 7. The Match lines are valid
soon after the ML ADD output is presented to the TAG RAM.

The Hit List Control continuously compares the binary code TOTHIT[0-2]
to the COUNTER2 output (HITCN[0-2]) and asserts LAST2 when they match.

31



Unary counter EMPTY | TOTHITI[0-2]

2-bit | 4-bit |  8-bit

00 | 0000 | 00000000 1 0

01 | 0001 | 00000001 0 0

11 | 0011 | 00000011 0 1

0111 | 00000111 0 2

1111 | 00001111 0 3

00011111 0 4

00111111 0 5

01111111 0 6

11111111 0 7

Table 7: Unary counter to binary code conversion. The number of bits of the unary
counter is defined in Table 4.

TOTHIT[0-2] zero code corresponds to both cases of one or no words in a super-
strip. EMPTY is asserted to distinguish the second case, when all the relevant
Match lines are zero (see Table 7).

8.4 More on Hit addressing

The address of the first hit word for each SuperStrip — i.e. the Hit List base
address — is obtained from the word SS[15-0] coming out of ML ADD, as indicated
in the 2nd column of Table 8.

SS 1D Hit List Hit List Memory address

SS[2-0] Base | Size || ADD [15-3] | ADD[2] | ADD[1] | ADDI[0]
xx 0 || SS[15-1] | 2 SS[15-3] SS[2] SS[1] Count[0]
x01 || SS[15-2] | 4 SS[15-3] SS[2] Count[1] | Count[0]
011 || SS[15-3]| 8 SS[15-3] | Count[2] | Count[1] | Count[0]
111 unused

Table 8: Addressing the Hit List Memory. The Hit List base address and reserved
size are encoded in the SuperStrip ID SS[0-15]. The address ADD[0-15], to a given
cell in the Hit List Memory, 1s a combination of the base address and a word count

COUNT[0-2].

To address a word in the Hit List Memory, the Hit List Control propagates
SS[15-3] to ADD[15-3], with the appropriate timing. According to Table 8, the Hit
List Control also propagates the proper part of the SS[2-0] bits to the ADD[2-0]
lines and complements it on the right with the LSb of a word counter, as indicated
in the 3 leftmost columns of the same table. The word counter field, Count[2-0],
comes:

32



e during the Write mode, from the binary coded value of the Hit Count unary
counter (cf. Table 4)

e during the Read mode, from the output of COUNTER2 (HITCNJ[2-0]).

8.5 Details of the block diagram

Here we summarize all parts and signals of the Hit List Control block diagram in
Figure 14.

Signal Names

ADDJ[0-15 ] Source: ADD GEN. Destination: Hit List Memory. Explanation:
“ADDress” bus for the Hit List Memory.

EMPTY Source: M-LINES ENCODER. Destination: FSM. Explanation: This
signal means that the SuperStrip currently present at the output of ML ADD
does not have any hit.

HITCNJ[0-2 ] Source: COUNTER2. Destination: ADD GEN, CMP2. Explana-
tion: “HIT CounT” is the number of words read out from a Hit List, during

the Read mode.

HITWE Source: HIT WRITER. Destination: W_ GEN. Explanation: Hit Write
Enable triggers the increment of the appropriate unary counter in the Hit
Count (that is the generation of the appropriate W_ lines in W GEN) and
the writing of a word in the Hit List Memory at the next clock cycle (that is
the generation of HITWR_ in HIT WRITER).

HITWEDEL Source: HIT WRITER. Destination: EE REGISTER, ADD GEN.
Explanation: “HIT Write Enable DELay” is HITWE delayed by half a clock
cycle to ensure the ADD bus is stable during actual hit writing. Infect
HITWEDEL controls the MUXES in ADD GEN of Figure 14. Inside the
EE REGISTER is used in the generation of the Internal Overflow error (see
section 10.1).

HITWR_ Source: HIT WRITER. Destination: Hit List Memory. Explanation:
“HIT WRite” is the write pulse to the Hit List Memory.

HLE See section 6.2. In the Hit List Control HLE is used by the HIT WRITER
to enable a writing cycle into the Hit List Memory.

HOVRFLW Source: M-LINES ENCODER. Destination: EE REGISTER, VME
error register REGO, HIT WRITER. Explanation: “Hit OVeRFLoW” signals
that the maximum number of hits allowed in the SuperStrip where the current
hit should be written has been reached. It will set a flag in both destination
registers and will disable the writing of the present hit in the Hit List Memory.

LAST2 Sece section 6.1.

33



M[0-7 ] Source: Hit Count. Destination: ADD GEN, M-LINES ENCODER, W
GEN. Explanation: “Match” flags from the 8 TAG RAM chips making the
unary counter for the current Hit List.

SS[0-15 ] Source: ML ADD. Destination: ADD GEN, M-LINES ENCODER, W
GEN. Explanation: Current “SuperStrip” ID.

TOTHIT[0-2 ]| Source: M-LINES ENCODER. Destination: CMP2 (see Figure
16) Explanation: Binary conversion of the unary counter, indicates the total
number of hits already stored for the current SuperStrip, but starting from
0. In this way it can be used to compare with the output of COUNTER2,
which also starts from 0. Its value is thus zero both for one hit and for no
hits (this is the reason for a separate EMPTY signal).

W _[0-7 ] Source: W GEN. Destination: Hit Count. Explanation: “Write” signals
to the Hit Count TAG RAM.

Block Names

ADD GEN outputs the ADD[0-2] address as indicated in Table 8. and ADD[3-15]

as shown in Figure 16.

CMP2 is a comparator. It signals the last Hit List word (LAST2), when HITCN][0-
2] from COUNTER2 match TOTHITI[0-2].

HIT WRITER controls writing into the Hit List Memory. The HLM WRITER
generates the proper write pulse (HITWR.) as needed by the HLM in the
second half of the clock cycle following the assertion of HLE, provided that
HOVRFLW is not asserted. It also generates the Output Enable for ML
DATA for the corresponding clock cycle (HITWE).

M-LINES ENCODER this is a block of combinatorial logic. It converts the
unary counter (M lines) as indicated in Table 4 to the binary value TOTHIT|[0-
2]. Tt also generates the EMPTY signal (EMPTY is asserted when all M lines
marked with # in the proper rows-columns of Table 4 are zero). Finally, in
case all the relevant M lines are already 1, it generates the HOVRFLW signal
(Table 4).

W_ GEN this is a block of combinatorial logic followed by a register that produces
low active signals (W_ lines) as needed to increment the unary counter ac-
cording to the rules of Table 5. The rising edge of the W_ pulses is produced
before the next clock rising edge using the double frequency clock.

9 Hit Buffer Block Diagram
——FIGURE 16 HAS BEEN UPDATED BUT THE TEXT OF THIS SECTION

IS OLD AND NEEDS TO BE UPDATED. PLEASE SKIP THE PARAGRAPH,
AND USE THE FIGURE FOR THE OTHER SECTIONS.——-

34



Figure 16 shows the overall block diagram of the Hit Buffer data-flow and
control logic. It shows all parts and data paths mentioned above. Control signals
to/from the FSM and VME boxes are not indicated. Most of the control signals
shown as arrows with one free end, entering or exiting from the various components,
connect to either FSM or VME.

Now we describe and explain the block diagram, by giving details of all parts
in Figure 16. All the control logic and all latches and registers have been imple-
mented into XILINX XEPLD chips (parts implemented into XEPLD’s in Figure 16
are enclosed in bordered boxes and parts which can not be integrated into XEPLD
are indicated with gray ovals).

Signal Names

AMWR Source: VME base address decoding. Destination: AM Map. Expla-
nation: “AM Map WRite” signals that VME wants to write the AM Map
RAM.

CLK Source: Master Clock. Destination: all synchronous logic blocks. Explana-
tion: “CLocK” is the main system clock, it is a symmetric square wave that
should cycle at about 30 MHz.

CTRLINES Source: VME INTerface, FSM, FIFO REGISTER. Destination: EE
REGISTER, VME error register REGO0. Explanation: this name indicates a
set of control signals used to generate the parity and error flags to be put in
the End Evenl word and in the VME error register.

DCLK Source: Master Clock. Destination: 777 Explanation: “Double frequency
CLocK” is a clock with a frequency which is twice that of the main system
clock CLK. It 1s used when multiple operations are required in a single main
clock cycle (e.g. read-modify-write of the Hit List Control).

DS Source: DS_ GEN. Destination: Output Line Drivers. Explanation: “Data
Strobe” signal for the output data stream.

EE Source: FIFO REGISTER. Destination: FSM. Explanation: “End Event”
signal from input streams, it corresponds to MO[22]

EVHOVRFLW Source: M-LINES ENCODER in Hit List Control. Destination:
EE REGISTER, VME error register REG0. Explanation: “EVent Hit OVeR-
FLoW?” signals that the maximum number of hits allowed in a SuperStrip has
been reached (see Section 8) in the current event. It will set a flag in both
destination registers.

HI[0-22 ] Source: HL transparent latch. Destination: MX1 & SWAP, HI to VME
buffers. Explanation: The “Hit Input” bus contains the last word popped
out from the input Hit-FIFO and frozen on HL by the Hit-FIFO controller
HFCTR.

35



d1ddX OLNI LI4 LON
NVD LVHL SINANOdINOD d.LddOSIa
IV STVYAO AIAVHS

LINI
pu e N
OVINTO HOLV1 S dIHO A'1dAX OLNI QHLNANA TdINL
TTAAIN IV SIX04d dSHHL ddISNI SLIVd
INNOD LIH
WIRIAOHAR | dassiy
- [61-L11AAVAT
ALINH k [S1-0IV.LVAAIL @
“Tisva [L-0IW ld
AAVANI dddd 0]
[ =0M1 ILSVT [Z-0]AVIN
4 . - 1 a Y
¥ | [TolNOLIH ¢ AMSSY i
3 - —
TOYLNOD El TTOAINOD
L — | - _ 1 %
N | (@avANDION: LSI'TLIH _UMSSIWV “gopv L AJONL dLInd
n| @EDION:ATH T ciass INVNE Lt /
o € o1 3 [Z0INDAVT | § [
> o Tc-0Iss g “ > [™moN
2 - d AAVTS
g z ANA
TAIMLIH B 3
- S z 21901 [$1°L1%1]
- AMLIH ;
- [s1-0laav. ¥ K XNV aaval
de sS NS RS
dTOH ES) “SSNA +
izl | £00¥ “UMSSINY 508§ WSd IEVLVAAL
VLVAAL T "
- — WANAD D
B VdLNO [|ALRIVd aavan
o — J ——
61aavAI ANATHY B B
AMA="SaY
= 4 T4 FTHA doda—>| = —
S 5 | [22-01ads0) ﬁ Lnoaa + y NHOd¥ 3 E
g - o Thoda SN T = o
€T )\~ =3
5 m i ‘ﬂﬁ [0z-61VIVa m m ] H
o N - EXARZ] 3 ViLyadT a
LNOE @ | ITD  dOWL l——p A'TOHY
a [L-0lvVIva =] L] [ [ce-01044H I
o [cz-0] 7 A_ [0z-+laavdvin el
: = @TOHH
VLVAAL z 5 M le-olmsan - Ta] S
Q 3 z e am
i > = [0z-0] = N0
AONL g 02-0 - 3]
9 o NIMH a1t ad| @ dOdH
10 g 2 m _ Soxiv ——
> 3 [81-L1] B
(QOWL)LON=HSNd+ aaval
JONL+dWAHSNd=LOLHSNd™m LINI OdH
TNHO. Gy 1D
orozon P
9661-ddS-S1  0lq gH QUAGS _ SNE
weSerq yoo[g 1307 Jogng W dET« HTH+ATI = AavaT ——

HTH +dTIN = VIVAd1 220V LVAAL [22-0lAdS¥H

block diagram

1C

36

Hit Buffer log

Figure 16



HITWEDEL Source: Hit Writer in Hit List Control. Destination: Middle Latch,
Hit List Memory. Explanation: “HIT Write Enable DELay” enables writing
of incoming hit words into the Hit List Memory by enabling the output from
ML DATA and simultaneously disabling the Hit List Memory output.

HITWR_ Source: Hit Writer in Hit List Control. Destination: Hit List Memory.
Explanation: “HIT WRite” is the write pulse to the Hit List Memory.

HRIN[0-20 ] Source: SWAP. Destination: ML DATA, End Event Register. Ex-
planation: “Hit/Road IN” corresponds to HI[0-20] (Write Mode) or RI[0-20]
(Read Mode). Bit 21, i.e. the End Packet bit from the input streams is only
used by FSM and it is not propagated to Middle Latch.

HRSWI[0-3 Source: FIFO REGISTER. Destination: SWAP. Explanation: “Hit/Road
SWapped bus” contains the 4 bits of the FIFO data that need to be propa-
gated to the output, but that are not used to address the Hit List memory.
They correspond to HI[0-3] during the Write Mode and to RI[17-20] during
the Read Mode.

HVME Source: VME interface. Destination: HI to VME buffers. Explanation:
“Hit stream to VME bus” enables output from the hit transparent Latch
(HL) to the VME data bus.

HREVME Source: VME interface. Destination: Hit-FIFO Controller HFCTR.
Explanation: “Hit fifo Read Enable from VME” generates a HR pulse to read
one word from the Hit-FIFO during the next clock cycle. The VME interface
has a simple FIFO controller that generates HREVME. HREVME is logically
ORed with the action of the Hit-FIFO Controller HFCTR to generate the HR
pulse to the Hit-FIFO (see Section 77?7 and Figure ?777). The result is that the
HPOP-HPOK protocol is bypassed when the input FIFO is read by VME.
In this case the FIFO is read independently of the empty flag status (HFE),
which is also read by VME.

ITHOLD Source: HOLD SYNC. Destination: FSM. Explanation: “Internal HOLD”
is the synchronized line corresponding to the external asynchronous HOLD_,
signaling an Almost Full from downstream FIFO.

INIT Source: VME interface. Destination: FSM, HFCTR, RFCTR, TAG RAM,
FIFO REGISTER, EE REGISTER. Explanation: “INITialize” initiates an
Init cycle. As long as INIT is high the FSM’s will stay in the “ready” state.
When INIT is dropped the Hit Buffer starts performing the normal operation
flow.

IVADD Source: VME interface. Destination: MAPADD multiplexer, LAY mul-
tiplexer. Explanation: “Internal Vme ADDress” is the internal address bus

from VME.

IVDATA Source: VME interface, HI to VME buffers, RI to VME buffers, LKO
to VME buffers, OUT REGISTER multiplexer, OUT REGISTER to VME
buffers. Destination: VME interface, SS Map, AM Map. Explanation: “In-
ternal VME DATA” is the internal data bus to/from VME.

37



LEADD Source: AUXILIARY LOGIC Destination: ML ADD. Explanation: “Latch
Enable ADDress” causes the present output of the look-up table (5SS Map
while in Write mode, AM Map while in Read mode) to be latched at the next
clock rising edge.

LEDATA Source: AUXILIARY LOGIC Destination: ML DATA. Explanation:
“Latch Enable DATA” causes the present output of the FIFO REGISTER to
be latched at the next clock rising edge.

M[0-7 ] Source: Hit Count. Destination: Hit List Control. Explanation: “Match”
flags from the 8 TAG RAM chips making the unary counter for the current
Hit List.

MIS[0-22 ] Source: MX1 & SWAP. Destination: FIFO REGISTER. Explanation:
“Multiplexed Input Streams” bus. In Write Mode, it corresponds to the hit
input stream. In Read Mode, it corresponds to the road input stream. On
the MIS lines, the road number and the ¢ sector are coded in bit fields which
are different from those of the road input stream (Section 3.1). In Read Mode
the road number is coded by MIS[4-20] (MIS[4-20] = RI[0-16]), while the ¢
sector is coded by MIS[0-3] (MIS[0-3] = RI[17-20]). This field swap allows a
single bus to address both the AM Map and the SS Map, compatible with a
simple mapping into consecutive VME addresses.

NLAY[0-2 ] Source: Dip-switch. Destination: Layers comparator CMP1 Expla-
nation: “Number of LAYers” codes for the total number of layers.

OEHIT Source: 777. Destination: Hit List Memory. Explanation: “Output En-
able HIT” enables output from Hit List Memory onto the data bus.

PUSH Source: FSM. Destination: OUT REGISTER, DS_ GEN. Explanation: It
latches current DATA[0-20], EPOUT, and EEOUT into OUT REGISTER at
next clock rising edge. It also makes Data Strobe signal to be sent on output
cable during next clock cycle.

PUSHVME Source: VME INTERFACE. Destination: OUT REGISTER. Ex-
planation: this signal from VME commands to send one word on the output
stream.

RREVME Source: VME interface.. Destination: 777. Explanation: “Road fifo
Read Enable from VME” generates a RR pulse to read one word from the
Road-FIFO during the next clock cycle. The VME interface has a simple
FIFO controller that generates RREVME. RREVME is logically ORed with
the action of the Road-FIFO Controller RFCTR to generate the RR pulse
to the Road-FIFO (see Section 777 and Figure 777). The result is that the
HPOP-HPOK protocol is bypassed when the input FIFO is read by VME.
In this case the FIFO is read independently of the empty flag status (RFE),
which is also read by VME.

RVME Source: VME interface. Destination: RI to VME buffers. Explanation:
“Road stream to VME bus” enables output from the road transparent Latch
(HL) to the VME data bus.

38



SSWR Source: VME base address decoding. Destination: SS Map. Explanation:
“SS Map WRite” signals that VME wants to write the SS Map RAM.

TMOD Source: VME interface. Destination: FIFO controllers, VME MUXs.
Explanation: “Test MODe” puts the Hit Buffer in Test Mode. The Hit
Buffer is in Test Mode as long as TMOD is TRUE.

W _[0-7 ] Source: W GEN in Hit List Control. Destination: Hit Count. Explana-
tion: “Write” signals to the Hit Count TAG RAM.

Block Names

AM Map 1M x 16bit fast RAM. The 17 LSb of the address come from the FIFO
REGISTER???, the 3 MSb from the output of COUNTERI. Provides in
output the SuperStrip address for the current road-Layer combination. The
output FFFF is reserved to flag the “invalid road” condition.

CLFIFO this box generates the proper signals to clear the two FIFO, it is activated
by INIT.

COUNTER1, COUNTER2 these are 3 bit synchronous counters, they increase
by 1 at each clock rising edge if INCR is high, and are zeroed at clock rising
edge if CLR is high. Only used in Read mode. COUNTERI keeps track
of which layer is being processed, and COUNTER?2 keeps track of which hit
word in that layer is being sent to the output.

EE REGISTER + REGO This box contains a 21-bit register where the End
FEvent word 1s built before sending it in output???. It contains logic to gener-
ate the parity bit for the output stream, check the input streams parity, and
generate the parity error bit and flag, as described in section 10.1. REGO is
a VME register, at base address 0, containing the error bits.

FIFO REGISTER 23-bit positive edge triggered register with high-active Clock
Enable.

FSM this box indicates the HB finite state machine, thoroughly described in the
following of this document. It has been put in the diagram to remind that it
is part of the XEPLD logic.

HFCTR, RFCTR are the two FIFO Controllers. They contain FSM’s and logic
to handle FIFO reading as described in SVT note 34 (“Input FIFO reading
for SVT modules”). A special note is needed about the handling of the two
input streams. The following of this paragraph assumes familiarity with the
content of SVT note 34. That document assigns a transparent latch and a
register to the reading of one FIFO. Since here there are two FIFO’s which are
only read in two separate phases of the Hit Buffer operation, it is possible to
partially combine the data paths, and use only one register multiplexing the
transparent latch outputs. The transparent latches are implemented using
the input latch of the XEPLD and the two latch outputs are multiplexed
using the XEPLD internal logic. This makes it impossible to start both

39



FIFO Controllers from state S3, since they may both attempt to write into
the common register at the same time. For the Hit Buffer case, this conflict
can be avoided by having the Hit-FIFO Controller start in state S3 and the
Road-FIFO Controller start in state SO.

HIT LIST CONTROL (HLC) this box represents a fairly complex logic, it is
described in detail in the last section of this document.

HIT LIST MEMORY (HLM) 64k x 21bit fast RAM with high-active output
enable (OEHIT). The 13 MSb of the address come from the ADD MIDDLE
LATCH, the 3 LSb from the HLC. The 21 data bits come from the DATA
MIDDLE LATCH.

HL.,RL the two small rectangular boxes in the top left corner called HL. and RL
are the transparent latches used in the FIFO reading respectively for the hit
stream, and the road stream. They are controlled by HR and RR signals
(latches are frozen when these signals are low, transparent otherwise). These
are simply the inverse of the HR_ and RR_signals that provide the R_reading
pulse (low-active) to the Hit-FIFO and Road-FIFO respectively.

ML ADD Middle Latch for address, 16-bit positive edge triggered register with
high-active clock enable (LEADD). On output the 13 MSb are sent to the
HLM (ADDI[3-15]), the 3 LSb to the HLC (SS[0-2]).

ML DATA Middle Latch for data, 21-bit positive edge triggered register with
high-active clock enable (LEDATA) and high-active output enable (OEDATA).
When in Write mode, the hits are written here before being loaded into the
Hit List RAM. In Read mode, the road number is written here to be included
in the End Packet word.

MX1 and SWAP 23-bit multiplexer. When WR is high (Write mode), output
MO (Multiplexer Out) is equal to HI (HitIn). When WR is low (Read mode),
MO output is RI (RoadIn).

MX2 1-bit multiplexer. Output =FHLE (LE signal from Hit-FIFO controller)
when WR=1. Output=FRLE (LE from Road-FIFO controller) when WR=0.

OUT REGISTER 23-bit positive edge triggered register with high-active clock
enable (PUSH).

SS Map 128k x 16bit fast RAM. Provides in output the SuperStrip address corre-
sponding to each hit. The output FFFF is reserved to flag the “invalid Hit”
condition.

SWAP this block swaps back the two fields ¢ sector and road number of a word
from the road stream, so that during Read Mode HRINJ[0-16] correspond to
the road number and HRIN[17-20] to the ¢ sector.

TAG RAM 8 chips of 8k x 8bit fast Cache TAG RAM connected as shown in
Figure 13. Note that the chips are used as if they were 8k x 1bit. These

40



chips continuously compare the input data (kept fixed to 1 in our case) to
the content pointed by the address lines and set the M (match) line to 1 or
0 according to successful /unsuccessful comparison. IDT71B74S10 chips are
used. The CLRTAG signal resets all TAG RAM content to zero. Probably
the CLRTAG signal will have to be asserted for two consecutive clock cycles,
to make 1t long enough to satisfy chip specifications. Each location of the
TAG RAM correspond to a SuperStrip and keeps track of the number of hits
written in the HLM for that SuperStrip.

DS_ GEN this box indicates the logic that generates the proper Data Strobe
signal on the output cable. Assertion of this signal will be controlled by
PUSH.OR.PUSHVME.

HOLD_ SYNC this box indicates the logic that generates the IHOLD signal from
the HOLD._ signal incoming on the output cable. This signal originates from
the downstream FIFO Half_Full flag. Tt will have to be suitably latched (twice
?) to make it synchronous and avoid metastable states, and inverted if needed.
The internal IHOLD signal is high-active.

10 Checking for Integrity and Consistency

The last word of each event has the same format on both input streams.

It contains a 1-bit parity code that needs to be checked on the fly for every
event in order to promptly detect the occurrence of data corruption. The parity
code is computed by taking the bitwise XOR of all data words in the event (22
bits/word, excluding the EE bit) excluding the End Event word.

The HB must compute the parity code of incoming data in both input streams
and compare 1t with the code stored in each End Event word.

The HB must also compute the parity code for the output stream and include
it in the End Event word.

The EE word also contains an 8-bit event tag. The event tags in the two input
data streams (hits and roads) must be compared to check that they actually belong
to the same event. If tags are found to be different, then we know that the system
i1s somehow out of sync and therefore output data has no meaning. This error
condition is flagged by an error bit in the output stream (see Section 10.1).

The HB must include the event tag in each EE word in the output stream.

If the event tags of the two input streams are different, than the tag received
in the hit stream is included.

10.1 Exception Handling

A number of error conditions are detected within the HB.

1. Fifo Overflow: the "hold” mechanism in the communication protocol should
prevent the input Fifo’s from becoming full. If the ”Fifo Full” signal is de-
tected by the input control logic, it is a symptom that something is going
wrong in the data transfer and that part of the information has probably
been lost.

41



2. Internal Overflow: when the Hit Buffer encounters a situation which causes
data to be lost inside the Hit Buffer itself. In the Hit Buffer only one such
instance is foreseen:

(a) Buffer Overflow: the amount of memory allocated to a particular Su-
perStrip in the Hit List Memory for storing hits is insufficient and some
hats of that SuperStrip have been lost.

3. Invalid data: when the Hit Buffer detects a problem with input data. Two
possible errors are flagged:

(a) Invalid Hit: a hit received on the input stream does not correspond to a
valid SuperStrip address.

(b) Invalid Road: a road received on the input stream does not correspond
to a valid SuperStrip address.

4. Parity Error: the parity code in the EE word in one (at least) of the input
streams does not check. Input data is probably corrupted.

5. Lost Sync: the event tags from the two input streams (hits and roads) do not
match.

When an error condition is detected the following actions are taken:

1. A corresponding error flag is set in the Error Flag register. This register
is readable and clearable through the VME interface. Bit assignments are
specified in the section dealing with VME registers.

2. An error flag is set in the EE word of the output event. There is one such
bit for each of the 5 error classes described above. The error flag bits in
the output event are obtained by ORing the corresponding bits in the input
events from the two input streams with the possible error conditions detected
within the HB while processing that event.

The End Event word format is:

[0-7] Event tag

8] Parity

9] Parity Error

Lost Sync

FIFO Overflow

Invalid Data

Internal Overflow

] Truncated output (not used inside HB only propagated) [15-18] Spare
error flags

[19-20] Level 2 Buffer [21] End Packet bit: set to 1

[22] End Event bit: set to 1

[t Nt R S}

[
[9]
[10
[11
[12
[13
[14

Figures 17 and 18 show how the End Event REGISTER of Figure 16 is imple-
mented. The End Event word is built in the EE REGISTER as follows:

42



END EVENT REGISTER - Part 1

20 8|7 0
EE WORD:| EVENT ERRORS [P| EV TAG |

Bit [8-0] : Event Tag & Parity Generator

5 HEVTAG DATA[0-7]
A) HRIN[0-7] T Lﬁ 8 bits
A
OEMLD
CLK I G CLRTAG
EE*HLE CE
DATAQ
DATAle
B) DATA2 o
|
CE
DATA3 . 8:) D_) @,— OUTPA
(o]

—) FOR THE |
_— PRESENT INIT+S8
DATA19 D_ WORD

DATA20

EPOUT

Figure 17: Parity block and End Event register

43

15-SEP-96



ERROR FLAGS: END EVENT REGISTER & VME REGISTER 0

20 1413 9(8(7 0 7 o 2004195
EE WORD: | SPARES  |ERRORS [P o | REGISTER 0 | ERROR FLAGS |
HRIﬂ)D_ HLE+NRLE , IVDATA2
- I
HRIN1 LD CE \ D PAERNOW
HRIN2 O)D >‘ PAFF| —J RREGO
) p L R |HRIN8
—— EE
HRIN3 ° INIT ]
o PARITY
A) o FOR THE IVDATA3
o PRESENT
o
HRIN18 o WORD (NRLE+HLE)*EE RPAER !RREGO
WREGO
HRINI L)D_ HRIN9 —— CE ] DATA9
HRIN20 R PAER
.- ) INIT+S8 CLRTAG OEMLD
B) NRLE*EE IVDATA4
CE| | LOSTSYNCVME
HEVTAG=|y, T
HRIN[0-7] R RREG!
WREGO
NRLE*EE
HLE*EE HRINTO & LOSTSYNC DATAI0
HRIN10 . Lﬁ k
CLRTAG OEMLD
0 RREGO
IVDATAO
HFIFOFULL,_
T FIFOOVRFL CLRTAG
INIT
HRINII*EE
NIT [VDATA1  SS+INIT
RFIFOFULL_
IVDATAG
D) INVADD
S8+INIT ;E
j > HLE* —|
INVADD R >
NOT(EE)*LEP
—p CE (EE) IVDATA7
| R
LEADD*NOT(EE 7,
EB (NRLE+HLE)*EE RLE* —|cg | WREGO RREGO |F) UNDEFINED ERROR BITS
HRIN12 NOT(EE OEMLD
* DATAI2 LEDATA*EE
ss+NiT R INVDATA -CLRTAG
E) | S8+INIT IVDATAS J— . ERROR[14-20]
E R ) HRIN[14-20]
-
HOVRFLW ClE WREGO CLRTAG RREGO S8+INIT
HITWEDEL pro
IR DATAI3 | |ERROR[14-20] DATA[14-20]
- 1 1
HRIN13
CE OEMLD OEMLD
T LEDATA*EE CLRTAG

Figure 18: Parity block and End Event register

44



e Bits 0-7 are the Event Tag used to identify the event (see Figure 17A). The
Event Tag is included in the End Event word of each stream and is used to
verify the consistency of data on different streams. The information in the
EVTAG register is copied from the hit stream (HRIN bus during the Write
Mode) enabling the clock with the HLE signal (HLE means a word is available
from the hit stream) ANDed with the EE signal that ensure the End Event
word is present on the HRIN bus.

e Bit 8 is the parity computed on all words (22 bits/word since the EE bit is
excluded) sent in output to the downstream board, excluding the EE word
(see Figure 17B). The parity of each word on the DATA bus is added to the
parity of all previous words in the XOR and the feed back flip-flop. The result
is stored for each new word in the OUTPA flip-flop gated by the PUSH signal.
The register OUTPA is reset once per event (S8 signal means that the FSM
is in state 8) and when the HB is initialized (INIT).

o Bits 9-20 are dedicated to error flags. Only the bits 9-13 have meaning for the
HB, but all of them must be correctly propagated to the downstream boards
because they could have been seen by other modules upstream. Figure 18A-F
shows the hardware implementation of this part of the End Event register.
Since the VME register 0 (see the VME section) also stores information on
error conditions, its hardware description is included in the same figure. The
integration time for the EE register error flags is one event so the reset of the
corresponding flip-flops is sent once per event and when the board is initialized
(S8+INIT). The integration time for the VME register is defined only by the
VME writing cycle on that register, so the reset of the corresponding flip-flops
is done by WREGO0. In APPENDIX 18 follows the detailed descriptions of

the error flag implementations.

11 Spy Buffers

Data flowing through each input and output stream are copied into spy buffers.
There is one such buffer for each input and output stream (a total of 3 for the
Hit Buffer). The purpose of these buffers is to spy all the data going by without
causing any interference to the functioning of the Hit Buffer. Similar buffers will
be implemented in all modules of SVT. They act as built in logic state analyzers
and will help system monitoring and diagnosis. The contents of all buffers can be
freeze at any time (e.g. on error detection) to take a snapshot of all data that went
through every SVT module.

The buffers are implemented as RAM banks where a pointer is incremented
each time a data word is popped from the input FIFO or pushed to the output
stream. The RAM is 23 bit wide to hold 21 bit data plus EP and EE. The pointer
is the address where the next data will be written. When the pointer overflows,
it simply wraps around: incoming data will overwrite the buffer contents over and
over in a circular fashion. At POWER, ON the pointer is reset to zero, an overflow
flag 1s set the first time the pointer wraps around so that we know how much valid
data the buffer contains. The buffers can be in one of two modes: SPY or FREEZE.

45



SPY BUFFER TRIGGER SYSTEM

SPY BUFFER [™

j:_‘

LOCAL —— |

FLAGS ——— —

ERROR —/—J

BOARD 1

!

ERROR
FREEZE

SPY BUFFER [™

j:—‘

LOCAL — —

FLAGS ———— —
_/

ERROR —/—J

BOARD 2

o
N\

— ERROR

-~ |

Random
_ FREEZE

GLOBAL—— —
ERROR —
FLAGS —

-~ |

SPY BUFFER CONTROL BOARD

Figure 19: Spy buffer trigger system

46

BACKPLANE




When in SPY mode data are continuously copied into the RAM, when in FREEZE
mode copying is suspended and the contents of all the buffers can be read through
the VME interface without causing any interference to the data flow. The current
value of the pointer and the overflow flag can also be read. Both the pointer and
the overflow flag can be cleared through VME.

The buffer status is controlled by a single line (FREEZE) in the backplane as
shown in Figure 19, all buffers being controlled by the same line. The FREEZE
line is driven by the Spy Buffer Control Board (not part of the Hit Buffer).

The ERROR line in the backplane (BERRORLINE.) is an active low signal
set by the OR of a number of error conditions (ERROR LINE in Figure 20). Each
error condition can be enabled or disabled through VME. The BERRORLINE._ is
an open collector line that acts as a wired OR, of all enabled error conditions of all
the modules in a crate: it is received by the Spy Buffer Control Board (not part of
the Hit Buffer) and can be used to trigger the FREEZE line.

WREGO
| IVADD4  RREGO
ERROR_N R REGO bitN
D IVDATA N
— | 5A of
CLK CONN P3
ERROR
:D— LINE
IVDATA_N OR of all ERROR * ERREN bits
D
ERROR LINE
— ENABLE REG
WERREN bitN

Figure 20: ERROR line generation

Figure 20 shows how the ERROR line is implemented.

11.1 Spy Buffer Implementation

The Spy Buffer control logic performs these main functions:

1. Generates the addresses (see block ADD GEN in Figure 21) for the Spy Buffer
memories. The two input stream Spy Buffers (Hit and Road Spy Buffers)
share both the address and the data bus since they are used (written or read)
at different times. The address is provided by VME (IVADDI[0-16] in Figure

21) or by internal counters, one per each stream, depending on which status
is the board, FREEZE or SPY mode.

2. Generates the control signals to the memories (see block RAM CNTR in
Figure 21). Chip selects are provided to reduce power dissipation on the

47



INIT

¢ -
i FREEZE
ENSPY ° D< FREEZES D RD
T CLK
HSIIDYREGW
LFLE b_oh CLRD:CEO L—O|CE HSPYOWE
o HSPYEN
FLE =
y Jd / : % oLHS[0.16]]  CLk—p=¢,
|
o 2 ClK | 3 wglj HSPYREGW
I
WR- s SPYADD [0..16]
0 RSPYREGW
CLK Sk
o™ RSPYEN
/ UEJ RSPYREGW
ICLK 8 CLR -
m RSPYOWF
CE
'@l CLK
IVADD[0..16]
OSPYREGW| 0S[0..16] OSPYADD [0..16]
| CLR Q
PUSH — 0—0D OSPYEN _ E .
D
_>FJPUSHB o §CEO o |
5 ' —|>8— ADD GEN o || osPYowrF
cL
INIT
1
]
-
OSPYVME CL?S osPves AT
- ICLK* IDCLK
HSPYVME i
WR e NOT
- HSPYCS
| . (Istream]SPYEN) —¢
° — [stream]SPYWE
ASFYAYME clK &_JRSPYCS_ CLK —P L
IVDATA18  POINTER
OSPYOWE — ™) REGISTER
RSPYOWF
HSPYOWF — IVDATA17
IVADD[O..1]
0S[0..16] IVDATAO..16]
RS[0..16]
mEild SPYREGR

Figure 21: Spy buffer

48

control logic



12

board. Signals to write on the memories ([stream]SPYWE_ in Figure 21) are
generated so that each word received in the input streams is written in the Spy
Buffer after being latched in the FIFO REGISTER (FLE is the latch enable
for the FIFO REGISTER) and each word to be sent on the output stream
is stored in the Spy Buffer after being latched in the OUTPUT REGISTER
(PUSH is the latch enable to the OUTPUT REGISTER). The output control
of the memories (Output Enable generation) is totally dependent by the VME
logic and is described in section 14.2.

. Generates the bidirectional data buses to the Spy Buffer memories (see in

Figure 16 HRSPY[0-22] for the Hit and Road Spy Buffers and OSPY[0-22]
for the Output Spy Buffers) so that words flowing in the streams can be
written in the Buffers and can be read by VME (IVDATA bus in Figure 16).

Spy Buffer pointer information, the counter Overflow bit and the FREEZE
bit are provided in output under the VME control to implement the Pointer
Registers described in the Section 14.1 (see the block POINTER REGISTER
in Figure 21).

Init

An Init cycle is initiated through VME by writing into the appropriate address, or
when the INIT line is asserted high on the backplane input.

The module shall not respond to the backplane init signal if it lasts less than

100 nsec.

1.
2.

3.

7.

Init performs the following functions:

Resets all FSM’s to their initial state;

Clears the TAG RAM;

Clears the input Fifo’s;

. Clears the Parity bit and the Error Flags in the End Fvent register;

. If the HB was in the ”Test Mode” state (see below) prior to the Init, then

this state is exited;

. Following an Init the HB must be ready to accept the next event within 1

microsecond or less;

The contents of the look-up table RAM’s are not changed by the Init cycle.

In Figure 22 Init is implemented as the most significant bit (Q2) of a 3-bit

counter that is set to the initial value [1,0,0] by the signal Active-Init, the WINIT
signal (from VME or from the backplane) synchronized by the following flip-flop.
As a consequence INIT will be active all the time the Active-Init signal will be
on, plus 4 clock cycles following the Active-Init trailing edge. This implementation
guarantees that INIT is long enough to reset the TAG RAM.

49



WINIT ACTIVE_INIT Counter

4A of .D_ FF 7a2,a1,Q01= [1,0,0] o0

| Qf INIT
CONNP3 s a2

CLK INIT
Ele; REG 1

Q2

Figure 22: INIT as the MSB bit of a 3-bit counter

13 Test Mode

The HB can be set in ”Test Mode” by writing into the appropriate VME address
(see below).
While the HB 1s in Test Mode:

1. all the finite state machines are reset to the initial state and halted there
2. the input FIFO’s are available for reading through VME

3. the output register is available for writing through VME

4. the SS Map and AM Map RAM’s can be read/written through VME.

The Test Mode is exited only following an Init.

VCC ATMOD TMOD

TMOD

kIVDATAO —

CLK
WTMOD —p R

Figure 23: TMOD

Figure 23 shows how TMOD is generated. An asynchronous signal (ATMOD)
is activated by a VME writing cycle to the register 2. ATMOD is synchronized by
the following flip-flop to generate the TMOD signal.

Section 7 shows the implementation of the main functions enabled by TMOD.

14 VME Interface

The upper 8 bits in the address is used as "module address” while the lower 24 bits
are used as ”internal address”.

50



The module address is set by dip switches. Each RAM is mapped to a con-
tiguous internal address range and is accessible through block transfer. FIFO’s
are mapped to a contiguous address range in order to facilitate the use of block
transfer. Address modifier codes that are supported are:

09: Extended non-privileged data access
0B: Extended non privileged block transfer

The following operations can be performed asynchronously by VME only if the
HB is in Test Mode:

1. reading or writing the output register;
2. reading the Hit or Road Fifos;
3. reading or writing the AM or SS maps;

All other VME operations can be performed regardless of whether the HB is in
Test Mode or not.

14.1 VME Internal Address Map

Unless otherwise specified, the following rules hold:
e registers are read/write

e status and control signals are in positive logic (I=TRUE, 0=FALSE)

XX000000: Error Flags
0] Hit FIFO overflow
Road FIFO overflow

Buffer Overflow

]

]

]

] Lost Sync
]

] Invalid Hit
]

A write to this address (data is irrelevant) will clear all error flags.

XX000004: Init
This is a write-only register.
A write to this address (data is irrelevant) will cause an Init cycle.

XX000008: Test Mode
A write to this address (data is irrelevant) will put the HB into Test mode.

XX00000C: Hit-FIFO Status

This is a read-only register.
[0] FIFO Empty_ (active low)

51



[1] FIFO Half Full_ (active low)
[2] FIFO Full_ (active low)

XX000010: Road-FIFO Status

This is a read-only register.
[0] FIFO Empty_ (active low)
[1] FIFO Half Full_ (active low)
[2] FIFO Full_ (active low)

XX000014: Output Status (Hold)
This is a read-only register.
[0] syncronized HOLD_ (active low)

XX000018: FSM State
This is a read-only register: it contains the current state number of the finite
state machine that controls the HB

XX000020: FSMH State
This is a read-only register: it contains the current state number of the finite
state machine that controls the input Hit-FIFO.

XX000024: FSMR State
This is a read-only register: it contains the current state number of the finite
state machine that controls the input Road-FIFO.

XX000028: Output Register

A write to this address when the HB is in Test mode will cause a data transfer
to occur immediately on the output stream. Data will be transferred regardless of
the status of the IHOLD signal.

XX000030: Hit Spy Buffer Pointer

[0-16] Pointer

[17] Overflow flag

[18] Spy Status (0 = FREEZE, 1 = SPY)

A write to this address (data is irrelevant) will reset the pointer to zero and clear
the overflow flag. The status cannot be changed: it is controlled only by the status
of the FREEZE line on the backplane.

XX000034: Road Spy Buffer Pointer

[0-16] Pointer

[17] Overflow flag

[18] Spy Status (0 = FREEZE, 1 = SPY)

A write to this address (data is irrelevant) will reset the pointer to zero and clear
the overflow flag. The status cannot be changed: it is controlled only by the status
of the FREEZE line on the backplane.

XX000038: Output Spy Buffer Pointer

52



[0-16] Pointer

[17] Overflow flag

[18] Spy Status (0 = FREEZE, 1 = SPY)

A write to this address (data is irrelevant) will reset the pointer to zero and clear
the overflow flag. The status cannot be changed: it is controlled only by the status
of the FREEZE line on the backplane.

XX000040: Error Line Enable
Each bit, if set, enables the corresponding error flag to drive the ERROR line on
the backplane.
[0] Hit FIFO overflow
[1] Road FIFO overflow
[2] Hit Parity Error
[3] Road Parity Error
[4] Lost Sync
[5] Buffer Overflow
[6] Tnvalid Hit
[7] Invalid Road
XX100000 - XX1FFFFF: ID Prom (256K x 8)
This is a 256k bites EPROM that contains ASCII text. It is read only.

XX200000 - XX20FFFF: Hit-FIFO

This read-only address range is used for mapping the Hit-FIFO so that it can
be read easily with a VME block transfer. The HB must be in Test mode for
this operation to yield meaningful results. The size of the FIFO in the current
implementation is 4K, the remaining address space is reserved for possible future
expansion. The FIFO will be read once for every address, regardless of its Empty
Flag status. The Empty Flag will be included in the read data as most significant
bit:
[0-22] 23-bit data word from FIFO
[31] 0 if data have been read from an empty FIFO or the last word in the FIFO
has been read, 1 if more than one word was in the FIFO.

XX210000 - XX21FFFF: Road-FIFO

This read-only address range is used for mapping the Road-FIFO so that it
can be read easily with a VME block transfer. The HB must be in Test mode for
this operation to yield meaningful results. The size of the FIFO in the current
implementation is 4K, the remaining address space is reserved for possible future
expansion. The FIFO will be read once for every address, regardless of its Empty
Flag status. The Empty Flag will be included in the read data as most significant
bit:
[0-22] 23-bit data word from FIFO
[31] 0 if data have been read from an empty FIFO or the last word in the FIFO
has been read, 1 if more than one word was in the FIFO.

53



XX280000-XX2FFFFF: Hit Spy Buffer
128k words 23 bit each

[0-20] Data

[21] End Packet

[22] End Event

XX300000-XX37FFFF: Road Spy Buffer
128k words 23 bit each

[0-20] Data

[21] End Packet

[22] End Event

XX380000-XX3FFFFF: Output Spy Buffer
128k words 23 bit each

[0-20] Data

[21] End Packet

[22] End Event

XX400000 - XX47FFFF: S8 Map

This is a 128K times 16 bit RAM that holds the look-up table for the mapping
from hit coordinate to SuperStrip as described above. The “invalid hit” condition
1s flagged by the look-up output being FFFF.

XX800000 - XXBFFFFF: AM Map

This is a 1M times 16 bit RAM that holds the look-up table for the mapping
from road and layer to SuperStrip as described above. The “invalid road” condition
1s flagged by the look-up output being FFFF.

14.2 VME Hardware Implementation

fffff Sorry this 1s missing————

15 Design Partitioning

The Hit Buffer board makes use of large scale programmable integrated devices for
all parts except RAM’s and FIFO’s.

All of the Hit Buffer control logic is implemented in the XILINX 7300 XEPLD
chips.

The XEPLD programming is in ABEL, with few exceptions where the ORCAD
schematics are used together with ABEL files.

Figure 24 shows how the project 1s divided into XILINX chips.

fffff Sorry the description of the Figure is still missing —————

In Figure ?7 is the list of used chips with important informations:

54



OUTPUT

A'1ddX OLNI LId LON
NVD LVHL SLNANOdINOD JLAIDSIA
IV STVAO A4AVHS

LINI €7 ‘T'00 DI
OVINTD — 1> 9EEL ¥ S dIHD A'1dIX OLNI AILNANETdINI
a4 HYV SAXOE SHHL HAISNI SLYVd
- —am
INNOD LIH
Q ASSINY [61-L1]aav Al
MTIIAOH .
ot £AaVANT 9€EL NALNO ‘9£€L dVIANA Csuang 135
ALdwd A e I L I pPIEL NNLD 9H
_ I TAavANI — amsswy ¥10 1
TN 1SV [Z-01AVIN
m TAMLIHI - — 124892
T e | 1L CLSVIN TAMLIHD - IR | e— ANIAdSHH
- €, [zolss AMSSINY 5oy L ™D TO¥INOD
o » WVNE ¥a1INd AdS
[zolNowH | 9€EL LD ADV.L + 3 [Z-0NOAVT | 0 [™oNI
3 o
[} ] i 7 ) PYIEL
t QONL
ATOHINOY ‘WSH MO ¢ TMMLIH g 3 m_v__wm@ A'TdINA
TAAIMLIH | g - > 3 NS HAVIS HNA
[si-€laav 3 [lsrelss | § G
[z-olaav w_ =
= 4 YAdSd
9€EL ¥ AHOWZI LSI1T LIH 5 o I% WS
0 — ———
SsNd
100y v 0LNo ) o » IEVLVAAL
AMSSINY ~§08S
“4ANID \ |
VdLNO [|ALIdVd GIT)oN A 2
aavat 9T GTHA ANATY

vy :

qM
5
1noga g
100da yriEL g
z = i
[0z-6IVIVA ul VIVATN NN HNAIH “ay | g
homa 8VIVA g VIVaaT | 144577 ol T 1oy
@ I > T g
[-0IvIva I3 | locvlaavavi = - 0411 tnpuH -
5 [ 3 IIH ~qr10HH
[zz-0] 7 [€-0IMS¥H 3 10
VLVAAI ) o 4| = | | - -,
] g Z [lze-0lSTIN
Q 5 - -] m Q
AOWL ° > g loz-0] adq1 di| @ QOWL
NIMH =)
'en) g ¥ = ATHL
“ Iy <]
1 m z > AHH
(QO.L)LON+HSNd+ LINI MOdH = =
JOWL+dNAHSNd=LOLHSNd™ ATAN 1D AMAH="SAH
QIAEO Gy par1d
-awATaH Arovin
orozon P HLSYIN
9661-dAS-§1 _uonnied g omimi AdSNd
dET« ATH+AT = AavaT
Suonnired d1307 1yng MH [2T-0IAdSHH

HTH+dTIN = VLVAd1 [91-0lAAVAI  [2Z-0IVLYAAIL

5

Figure 24: Hit Buffer logic block diagram partitioned into XEPLD chips
5



1. a measure of the amount of used resource (SIZE FACTOR, to be compared
to the chip macrocell number, that is 144 for 73144 and 36 for 7336);

2. the number of still available free pins (FREE INPUTS, OUTPUTS and I/0Os);
3. the number of used over the number of available fast inputs (USED FI/AV
FI).

16 Input/Output Interface

FRONT PANEL CONNECTOR
| ] DATA[0-20]
* ) Data
s ega—Pin 1
3&%
o |ee] CY7C4245
o |oe®f
o |oe
[ X4
e® ©
HHIRS %
N Rs
44 pin47 Rs WCLK
H
o . DS_ 74AS32
o pin48 WEN
(X ] —
i A INIT
o 74AS32
pin 50

Vce

Figure 25: The DS_ signal and DATA bus from the input connector to the
CYT7C4245-10 fifo.

The input FIFO 1s CY7C4245, 4Kx18 synchronous fifo from CYPRESS. Data are
sampled on the rising edge of the strobe; Figure 25 shows how the DS_ (data strobe)
is received from the connector and used to write in the fifo (this is exactly the same
of what it is done on the Merger board). The differential lines are sent to the
AT&T receivers 1141LF. Since the fifo is very fast and sensitive to spikes the gate
T4AS32 has been inserted to filter glitches shorter than few nanoseconds; it adds a
5.8 ns maximum delay on the DS_ line compared to the data lines that go directly
from the receivers to the fifo. The DS_ line to be sent to write clock WCLK is
also provided with both serial and parallel terminations. The DS_ itself is used to
produce the active low write enable line (WEN_) to the fifo. Since the fifo is very
fast, it is important to enable it only for a short time before writing. A small delay
between the WCLK and WEN_ lines is due to the second gate 7T4AS32.

Figure 26 shows the timing with which the DS_signal must be generated by an
upstream board to be compatible with the writing function into the CY7C4245-10
fifo. To use the same signal DS_ to generate both WCLK and WEN_, an active low

56



Tcycle

A
Y

Tw

WCLK A
WEN_ I e e IR

Figure 26: The DS_ signal timing relative to the DATA bus timing.

signal is necessary. This signal will enable the clock with the correct set-up time
and will strobe data on the rising edge, at the end of the pulse. To understand the
limits for T1, T2 and Tw in the Figure, we need also to consider some of the fifo
switching characteristics shown in table 9.

Description Min. | Max. | Unit

Clock Cycle Frequency 100 | MHz
Data Access time 2 8 ns
Clock Cycle time 10 ns
Clock HIGH time 4.5 ns
Clock LOW time 4.5 ns
Data Set-up time 3 ns
Data Hold time 0.5 ns
Enable Set-up time 3 ns
Enable Hold time 0.5 ns

Table 9: Important switching characteristics of the Fifo CY7C4245-10

The minimum clock low time is 4.5 ns, but the width of the signal needs to be at
least Tw_min==8.8 ns since WEN_ has a 3 ns Set-up time and can be 5.8 ns delayed
compared to the WCLK (gate 74AS32 in Figure 25). However the small delay of
WEN_ (the minimum 73AS32 delay is 1 ns) with respect to WCLK guarantees the
Enable Hold time (0.5 ns) is satisfied.

The minimum clock high time the fifo accept i1s 4.5 ns; but in our case the
clock high time Th will be longer since the period is roughly Tcycle=33-40 ns and
Th=Tcycle-Tw.

The minimum value for T1 is given by the Data Set-up time (3ns), while the
minimum value for T2 is given by the Data Hold time (0.5 ns) added to the 74AS32

57



maximum delay (5.8 ns). We add to these numbers few nanoseconds to guarantee
that small routing differences won’t prevent the writing function. In conclusion we
recommend the minimum values for T1 and T2:

Tl_min = 6 ns; T2_min= 10 ns;

As a result for a Tcycle=40 ns, the DS_ rising edge can have a delay T1 between 6
and 30 ns.

The electrical implementation of the input/output drivers for the front panel is
such that these requirements are followed:

1. The DS_sent on the output cable is adjusted in time and width with respect
to the data word being sent such that it can be succesfully used as input to
the logic shown in Figure 25 located into a downstream board. The Hit Buffer
generates the DS_ signal for the output connector as described in Section 7
and shown in Figure 11. The DS_ timing for the Hit Buffer is described for
a clock cycle of 39 ns by the parameters values (see Figure 25):

T1 =29 ns; T2= 10ns; Tw=19 ns;

Since the DS_ generation is implemented in a programmable chip, the timing
can be adjusted if necessary. The drivers used on the Hit Buffer upstream
the output connector are the AT&T 26C31CD.

2. If an input cable is disconnected, the corresponding DS_line will be set to high
(pullup and pulldown are applied to the input differential lines, see Figure 25).

3. If the output cable is disconnected, the input HOLD_ signal will be set to
TRUE (that is the HOLD_ line after the receiver will be low; pullup and
pulldown are applied to the input differential lines).

4. A dip switch is implemented on the board which allows to disregard the status
of HOLD_ (data will be pushed out regardless of HOLD.).

17 Physical Implementation

The Hit Buffer is implemented as a nine unit Eurocard board 400mm deep (9Ux400mm).
Multiwire technology has been used for electrical connections. The standard 32 bit
VME interface is implemented using two connectors on the backplane (P1 and P2).
Connector P3 is used for the following signals: ERROR, FREEZE, INIT. Board
thickness is 2.36 & 0.18 mm. The front panel includes:

e 3 Flat cable connectors, 50 contacts each for input and output streams. Con-
nector type 3M-3433D202 or equivalent.

e 1 Green LED for DTACK activity
e 3 Green LED’s for Data Strobe activity (one for each I/O stream)

e 3 Red LED’s for HOLD._ activity (one for each 1/O stream)

58



Table 10 shows the pinout of the front panel connectors. The last 4 couples of
pins are assigned to HOLD_ (Pins [50,49]), DS_ (Pins [48,47]), EE (Pins [46,45])
and EP (Pins [44,43]). The other 21 couples of pins are used for the data signals
DATAJ0-20] defined and described for the different streams in Section 3.

pin use pin use
1 Dj 2 Dy
3 D3 4 Dy

a1 D3, 42 | Du
43 [ EP* | 44 | EP
45 | EE* | 46 | EE
47 | DS> | 48 | DS
49 [ HOLD* | 50 | HOLD.

Table 10: Pinout for the front panel connectors. * indicates the line connected to
the inverted pin of the driver or receiver.

18 APPENDIX

1. Bits [14-20] (see Figure 18F) are simply implemented as the OR of the cor-
responding bits in the hit and road End Event words since they are not gen-
erated by the HB. The flip-flop clocked when the End Event word for roads or
hits is present on the HRIN bus (EE*LEDATA=1 where LEDATA=HLE+NRLE)
is set if an error flag is present on one of the two input streams. This 1s the
simplest implementation: all other error bits add an internal error code to
the corresponding error bit of the two input streams.

2. Bit 9 is the result of the parity check on both input streams (see Figure 18A).
In the PAFF Flip Flop the parity is calculated and added on all event words
received in input, two times for each event: the first time is for data coming
from the hit stream (during WRITE MODE) and the second time is for data
coming from the road stream (during READ MODE). The parity calculated
in PAFF for one stream is compared to what it is expected to be (bit 8,
HRINS, of the corresponding End Event word) and the result is latched in
the following Flip Flop when the End Fvent word is identified (HLE*EE=1
and RLE*EE=1 for the hit and road stream respectively). On the same
clock edge when EE bit is active, the PAFF Flip Flop is synchronously reset,
since data from that stream are finished and a new parity calculation is going
to start for the other stream. The Hit Buffer parity check is added to the
upstream board parity check bit (HRIN9), before being latched to generate
the parity check bit (see PAER in Figure 18A). While in the EE register a
single bit is available for the parity check (PAER) and it is the OR of the

59



errors on the two input streams, in the REGO there is space for two separate
bits: the Hit PArity ERror and the Road PArity ERror.

. Bit 10 is the result of the two input stream consistency check (Lost Sync
error, see Figure 18B). The EVTAG register containing the event code of the
hit stream (see Figure 17A) is compared to the the bits 0-7 of the HRIN bus
and the result is latched when the End Event word of the road stream is
present on that bus (EE*RLE=1). The values of HRINI0 at the two times
HLE*EE=1 and RLE*EE=1 are ORed to the internal error flag to include in
the EE register the error flags from upstream boards. The description of the
implementation of the remaining error bits will be less detailed because it is
very similar to the previous ones.

. Bit 11 reports if one of the two FIFOs has ever been Full during the event
(FIFOOVRFL see Figure 18C).

. Bit 12 reports if any of the addresses to the HLM was invalid during the event
(invalid DATA) (see Figure 18D). The INValid ADDress is generated when
all lines of the LKO bus are high (see Figure 16).

. Finally bit 13 reports if any SuperStrip had too many hits so that some of
them could not be written in the HLM (HOVRFLW, see Figure 18E).

60



