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Test perturbative QCD at high Q2

Background for rare SM processes  (top, 
diboson, Higgs) and new Physics searches

Z+Higgs 
search

Measure Z/* → l+l- + jets with l = e, 
Clear signature

Motivation
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QCD predictions

Fixed Order

Resummation

Hadronization

Underlying Event

Parton Distribution Functions 
(PDF)

Factorization

σ p p̄→X=Σi , j∫ dx1dx2 f i
p
(x1 ,μ) f j

p̄
(x2 ,μ)×σ i , j

Hard scattering

Fragmentation

Parton Shower

Perturbative QCD

non-pQCD
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QCD predictions

PDF

Hard scattering
Fragmentation

non-perturbative QCD

Fixed order LO - NLO

MLM-CKKW matching Z+1, 2,...N jets ME-LO + PS

POWHEG merging NLO + PS

LOOPSIM Z+1, 2 jets NLO → approximate nNLO

Resummation Resum log enhanced terms at all orders

Perturbative QCD

Parametrization, analysis, input data...

Tune of phenomenological parameters

Absorb divergences

Renormalization scale
Factorization scale

Unphysical dependence of 
cross section on 

R
 

F

Handle to estimate 
theoretical uncertainty

Use the data to test the accuracy 
of the different models

Use the data to test the accuracy 
of the different models
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Jet algorithms

Iterative cone algorithms

Cluster particles around a cone of radius R
Split-merge or split-drop procedure to 
assign common particles
IRC-unsafe when seeds are used
Jetclu, midpoint, SIScone

Sequential recombination algorithms

Define a distance DR between particles
Cluster particles in order of increasing 
distance
IRC-safe at all order
kt, Cambridge/Aachen, anti-kt

There is not a “best choice” of 
algorithm and parameters
Experimental calibration effort 
need to focus on few algorithms

Cluster jets of collimated particles
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√ s

Full Tevatron Run II dataset 
L = 10 fb-1

Full Tevatron Run II dataset 
L = 10 fb-1

pp collisions at       = 1.96 TeV

Peak instantaneous luminosity 
~ 4 x 1032 cm-2 s-1

10 years of data acquisition: 
February 2002 – September 2011

Tevatron Run II
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y

x




Tracking system

Silicon detectors

Drift chambers COT

1.4 T Magnetic field

Calorimeter

Electromagnetic calorimeter

Hadronic calorimeter

Muon detectors

Wire chambers

Scintillators

3 Level Trigger System 

1.75 MHz → ~ 100 Hz

z

CDF Detector

η=−ln [ tan (θ/2)]

Δ R=√Δ η
2
+Δϕ

2
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Tracking
Muon 4-momentum
Electron angular coordinates

Calorimeter
Electron Energy
Hadronic jets reconstruction
Muon ID

Muon chambers
Muon trigger
Muon ID

CDF Detector
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Muons, Electrons, Z → l+l- and Jets reconstruction

Background estimation

Z → l+l- inclusive cross section

Unfolding

Systematic uncertainties

Z/* → e+e- and Z/* → +-                           
Combination

Z/* → l+l-+ jets measurement
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Jets
p

T
 > 30 GeV/c

|y| < 2.1

Leptons
E

T

e ≥ 25 GeV, p
T

≥ 25 GeV/c

|l| ≤ 1

Z/*
Two electrons or muons
66 ≤ M

Z → ll
 ≤ 116 GeV/c2

Opposite charged muons

High p
T
 leptons are used to 

trigger Z/* + jets events

Event selection and Monte Carlo samples

Monte Carlo Samples

Process Generator

Z/* + jets ALPGEN+PYTHIA

Z/* → l+l- PYTHIA

EW and QCD 
backgrounds

PYTHIA
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No isolation requirements           
→ multijet environment
Beam constrained tracks            
→ prompt leptons from Z decay
Muons fake rejection cuts

Correct muon p
T
 

resolution in Monte Carlo

Correct muon p
T
 and 

electron E
T
 scale in data

Lepton reconstruction

Ad-hoc lepton reconstruction 
and identification

Ad-hoc lepton reconstruction 
and identification

Leptons reconstructed from tracks associated to 
energy deposit in the calorimeters

Improved reconstructionImproved reconstruction
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Trigger and lepton ID efficiencies

All efficiencies evaluated as a function of data 
taking time
→ account for variations in detector conditions

Trigger efficiencies evaluated accounting 
for correlation with the lepton selection

Exploit Z → ll leptons to 
evaluate efficiencies

tag–probe legs method

Improved measurement 
accuracy

Improved measurement 
accuracy
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Jet reconstruction

Jet parameters:
R = 0.7
Overlap threshold f = 0.75
Seed p

T
 = 1 GeV/c

z-coordinate of primary vertex taken 
as reference point for clustering

Iterative Cone jet algorithm
Split-Merge procedure
E-scheme recombination

CDF Run II midpoint algorithm

Cluster calorimeters towers

Calorimeter cluster associated to 
electrons and muons are removed 
before jet clustering

Ad-hoc reconstruction
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Jet energy corrections

Single track E/p energy calibration

f

 || dependent correction to correct 

for gaps and different response 

f
ppI 

Pile-up of multiple pp interaction, 

parametrized as a function of the 
number of additional interaction 
vertexes

f
jes

 Absolute jet energy scale

Jet energy is corrected to remove detector 
effects combining several correction factors

Jet energy corrections 
validated with  + jet 
to check stability as a 
function of data taking time

Jet energy corrections 
validated with  + jet 
to check stability as a 
function of data taking time

pT=[ pT
raw× f η− f p p̄ I ]× f jes

Nucl.Instrum.Meth. A566 (2006) 375-412
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Background estimation

MC backgrounds
● Top
● Diboson WW, WZ, ZZ
● Z →  + jets

Data driven backgrounds 
● multi-jet
● W + jets

Muons → Same charge
Electrons → Jet fake rate

Side bands provide check 
of background estimation
Good modeling of Z 
invariant mass peak

Low background contamination between 2% - 10%Low background contamination between 2% - 10%
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Z/* → l+l- Cross section

Check stability of measured 
cross section as a function 
of data taking time

Inclusive (pp → Z → l+l-) 
provides a stringent test of 
lepton reconstruction and 
efficiencies

Inclusive (pp → Z → l+l-) 
provides a stringent test of 
lepton reconstruction and 
efficiencies



Stefano Camarda 18

Z/* → l+l- Cross section

Measured Cross Section 
± stat ± lumi [pb]

Z/* → +- 246.24 ± 0.62 ± 14.3

Z/* → e+e- 247.38 ± 0.51 ± 14.3

NNLO prediction 251.3 ± 5.0

Good control over lepton 
ID and trigger efficiencies

Excellent agreement between
Z/* → +- and Z/* → e+e- channels
within 0.2% statistical uncertainty

Excellent agreement between
Z/* → +- and Z/* → e+e- channels
within 0.2% statistical uncertainty
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Z/* + jets measurement definition

Detector level cross sections unfolded 
back to particle (hadron) level

Measurement defined at particle 
level in the same kinematic region of 
detector objects                              
→ avoid extrapolation uncertainty 

Applied photon lepton recombination 
in R

l-
 < 0.1                                   

→ allows inclusion of NLO EW 
corrections

Z +  process included in the 
definition of Z + jets

Δσ
Δα

=
N data

−N bkg

L
⋅U
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Detector level

Detector level cross sections compared to 
ALPGEN+PYTHIA Monte Carlo prediction plus background

Muons

Electrons
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Particle level unfolding

U (α)=

Δσ
Δα

( particle level )

Δσ
Δα

(detector level )

Simultaneously account for:

Z/* → l+l- acceptance

Jets reconstruction

Residual pile-up of multiple pp interactions

Bin-by-bin unfolding

Evaluated with ALPGEN+PYTHIA 
Z/* + jets Monte Carlo sample

Muons Electrons
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Systematic uncertainties

Jet Energy Scale 5%-15%

Calorimeter uniform response in  2%-5%

Multiple pp interactions 2%-10%

Monte Carlo backgrounds 2%-3%

Data Driven backgrounds 1%-4%

Trigger and Lepton ID efficiencies 1%

Primary Vertex acceptance <1%
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Z/* → e+e- and Z/* → +- combination

BLUE (Best Linear Unbiased Estimator) method

Weighted average

Account for uncertainties 
correlation

Iterative: re-evaluate 
proportional uncertainties with 
respect to combined value

Account for asymmetric 
errors
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Z/* + jets measurement

Analyzed full Tevatron Run II dataset ~10 fb-1

Ad-hoc lepton and jets reconstruction, accounting 
for the specific Z/* → l+l- + jets final state

Accurate check of Z/* → l+l- cross section

Measurement defined at particle level

Z/* → e+e- and Z/* → +- combined accounting 
for uncertainties correlation

Measured several differential cross sections in 
Z/* + ≥1, 2, 3 jets
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Results

Theoretical predictions

non-perturbative QCD corrections

Midpoint jet IR unsafety

Setting and parameters

Data-Theory comparison

Z + ≥ 1 jet

Z + ≥ 2 jets

Z + ≥ 3,4 jets

ALPGEN

POWHEG
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Comparison with many available 
theoretical predictions

Comparison with many available 
theoretical predictions

● Largest theory uncertainty: 


0
 scale variation

● PDF uncertainties: 2%-4%

Z/* + jets Theory Predictions

MCFM and BLACKHAT+SHERPA
NLO fixed order perturbative QCD 
→ reduced scale uncertainty wrt LO

ALPGEN+PYTHIA
Matched LO-ME+PS 
→ fundamental tool for Z+jets simulation

POWHEG+PYTHIA
Merged NLO+PS 
→ good modeling of high p

T
 and low p

T
 physics

LOOPSIM+MCFM
Approximate nNLO 
→ best pertubative QCD accuracy 

NLO QCD x NLO EW
Factorized NLO QCD and EW (ArXiv:1103.0914)
→ Important corrections at high p

T
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MCFM and BLACKHAT+SHERPA
NLO fixed order perturbative QCD 
→ reduced scale uncertainty wrt LO

ALPGEN+PYTHIA
Matched LO-ME+PS 
→ fundamental tool for Z+jets simulation

POWHEG+PYTHIA
Merged NLO+PS 
→ good modeling of high p

T
 and low p

T
 physics

LOOPSIM+MCFM
Approximate nNLO 
→ best pertubative QCD accuracy 

NLO QCD x NLO EW
Factorized NLO QCD and EW (ArXiv:1103.0914)
→ Important corrections at high p

T

Comparison with many available 
theoretical predictions

Comparison with many available 
theoretical predictions

● Largest theory uncertainty: 


0
 scale variation

● PDF uncertainties: 2%-4%

Z/* + jets Theory Predictions

L. Dixon, F. Febres, Z. Bern

M. Mangano, A. Messina, B. Cooper

C. Oleari, E. Re, S. Alioli

S. Sapeta, G. Salam

A. Mueck
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non-pQCD and QED radiation corrections

Hadronization

Underlying event

QED photon radiation
Evaluated with 
ALPGEN+PYTHIA Monte Carlo

Switch on/off 
hadronization,UE,QED

Studied the effect of 
PYTHIA tune variations

Fixed order perturbative QCD predictions need to 
be corrected for non-perturbative and EW effects
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IRC safe jet algorithms

Perturbative QCD predictions need to be 
evaluated with a IRC safe jet algorithm

SISCone anti-kt

→ Study difference at parton showered level 
between SISCone or anti-kt and midpoint

SISCone is the best choice

Residual differences of 2%-3% and 
flat with respect to jet multiplicities
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Setting and parameters of the predictions

Renormalization and 
factorization scale


0
 = H

T


0
 = E

T

Z


0
 = p

T

jet

PDF

MSTW2008
CTEQ6.6
NNPDF2.1
CT10


0
 = 2

0
; 

0
/2

68% CL variations
→ Hessian method

TUNE (Parton shower, 
hadronization, Underlying event )

TUNE A
TUNE DW
TUNE Perugia 2011


s
(M

Z
), 

QCD
 variations, and additional Monte 

Carlo specific parameters and variations

Setting Variations Uncertainty

Extensive study of variations and 
uncertainties of setting and parameters

Extensive study of variations and 
uncertainties of setting and parameters
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Z/* + ≥ 1 jet

Leading jet p
T

H
T

jet =  p
T

jet

Z/* p
T

Available predictions:
MCFM, BLACKHAT, ALPGEN, POWHEG, LOOPSIM, NLO QCD x NLO EW
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LOOPSIM+MCFM only 4%-6% scale uncertainty

NLO EW correction ~5% at high pt → large virtual Sudakov logarithms

Z/* + ≥ 1 jet leading p
T

jet
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Large NLO/LO K factor ≥2 at high H
t

jet= p
T

jet         → Significant beyond NLO corrections

LO-ME+PS (ALPGEN) and NLO+PS (POWHEG) properly model data with large scale 
uncertainty
Good modeling of approximate nNLO LOOPSIM with reduced scale uncertainty

Z/* + ≥ 1 jet H
T

jet
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NLO EW correction ~5% at high p
T
 →  large 

virtual Sudakov logarithms

NLO EW corrections of the same order of 

approximate nNLO  scale uncertainty

NLO EW and NLO QCD corrections 
applied with a factorized ansatz

NLO EW and NLO QCD corrections 
applied with a factorized ansatz

Z/* + ≥ 1 jet p
T

Z
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Z/* + ≥ 2 jets

2nd leading jet p
T

Inclusive jet |y|

Di-jet mass, Z-jj mass

Dihedral angle 
Z-jj

Di-jet y, R

Available predictions:
MCFM, BLACKHAT, ALPGEN

Important final state for Higgs measurement 

and beyond SM searches

→ sensitive to new resonances
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Z/* + ≥ 2 jets

Good agreement
→ validation of Z/* + jets modeling

Good agreement
→ validation of Z/* + jets modeling
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Z/* + ≥ 2 jets

Angle between the Z/* decay 
plane and the di-jet plane
→ useful to study spin properties 
of new resonances

Agreement within large experimental and 
theoretical uncertainties

Agreement within large experimental and 
theoretical uncertainties
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Z/* + ≥ 2 jets

Di-jet angular separation
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Z/* + ≥ 3 jets

Inclusive jet p
T

Inclusive jet |y|

Available predictions:
BLACKHAT, ALPGEN



Stefano Camarda 40

Z/* + ≥ 3 jets inclusive jet p
T
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Z/* + ≥ 3 jets inclusive jet |y|
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LOOPSIM+MCFM scale variation lower than experimental uncertainty

Z/* + ≥ N jets

Measurement extended up Z/* + ≥ 4 jetsMeasurement extended up Z/* + ≥ 4 jets
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
s
 “matched” ALPGEN+PYTHIA setting and Tune Perugia 2011

coherence between CKKW 
s
 in ALPGEN and 

QCD
 in PYTHIA

Can use NLO (2-loop) PDF
No normalization 
factor needed

No normalization 
factor needed

Z/* + jets ALPGEN+PYTHIA



Stefano Camarda 44

Good modeling of perturbative high p
T
 (NLO accuracy) and non-

perturbative low p
T
 (PS+hadronization+UE) regions

POWHEG cross section independent of parton shower modeling 
   → lower dependence from PYTHIA Tune

Z/* + jets POWHEG+PYTHIA
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Summary

Z/* + jets Tevatron Legacy measurement

High accuracy achieved through Z/* → e+e- and Z/* → +-
combination

Measured a large set of differential cross sections in Z/* + 1, 2, 
3 jets

Data compared to state of the art theoretical predictions thanks 
to a tight exchange with several theoretical groups
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Thanks for your attentionThanks for your attention
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BACKUP
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Z + ≥N jets - BLACKHAT

Anti-kt has a flat LO-ME+PS / NLO ratio

SISCone has an increasing LO-ME+PS / NLO ratio
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Z + ≥N jets - BLACKHAT

R < R

R < (1 + x) R

Rsep ~ 1.6
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Z + ≥N jets - BLACKHAT

Z + 3 jets cross section sensitive to Rsep
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W + ≥ 2 jets - di-jet |y|

HEJ (large angle resummation) 
approach shows some differences 
wrt to sherpa at high y

D0 W+jets measurement
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-dependent jet energy correction
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W + jj mass

From arxiv:1207.0462
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Unfolding

Effect of reweighting pt hat MC in previous Z → ee + jets 
analyis is within 1%
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Unfolding

Same reweighting function applied in current analysis, 
unfolding factors within 1%
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